Wearable device with heat transfer pathway
A wearable device is disclosed according to one embodiment. The wearable device can include an eyewear body, onboard electronic components and a heat transfer device. The eyewear body can be configured for wearing by a user to hold one or more optical elements mounted on the eyewear body within a field of view of the user. The onboard electronic components can be carried by the eyewear body at a first portion of the eyewear body and can comprise a heat source that generates heat during electrically powered operation thereof. The elongate heat transfer device can be disposed within the eyewear body and can be thermally coupled to the heat source. The heat transfer device can extend lengthwise between the heat source and the thermal coupling to transfer heat from the heat source through the eyewear body.
Latest Snap Inc. Patents:
This application is a continuation and claims the benefit of priority to U.S. patent application Ser. No. 15/084,683, filed Mar. 30, 2016, which claims the benefit of priority of U.S. Provisional Application Ser. No. 62/301,061, filed Feb. 29, 2016, which are hereby incorporated by reference in their entirety.
TECHNICAL FIELDThe subject matter disclosed herein generally relates to heat management in wearable electronic devices such as smart glasses.
BACKGROUNDMany devices, including wearable devices, utilize electronics to perform various functions. Heat management for such electronics, to keep the electronics within a heat range corresponding to acceptable performance, can be problematic owing for example to space and weight constraints of a wearable device of which the electronics form part, as well as by the fact that some such devices can be worn in contact with the user's body.
The present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings, in which:
A brief overview of some aspects of the disclosure with reference to selected drawings follows, after which various features of the disclosed subject matter will be described in greater detail.
One aspect of this disclosure relates to a wearable device such as an eyewear article with onboard electronic components such as a camera, a processor, WiFi, Bluetooth®, and various modules as is shown in
One aspect of the disclosure comprises utilizing a heat transfer device to transfer heat generated by the onboard electronic components away therefrom (and away from the face of the user), so as to reduce the likelihood of localized heating adjacent the onboard electronic components and heating adjacent the user's face. In some embodiments, the heat transfer device can extend laterally across a frame of the smart glasses, extending from one side of the frame to the other side of the frame. Thus, heat generated by the onboard electronics components carried in a first side portion of the frame can be transferred to a second side portion of the frame, where the heat can be dissipated as shown in
In some embodiments, the smart glasses that can provide for a thermal coupling between different components of the smart glasses (e.g., between a temple and the frame). More particularly, the thermal coupling can extend across an articulated joint (e.g., a hinge assembly) between the temple and the frame to provide part of a heat conduction path from onboard electronic components in the frame to the core wire of the temple, as shown in the embodiment of
Further, the inventor proposes a cap hinge that can be part of the housing of the frame as well as being part of the hinge assembly (e.g.,
Thus, according to examples herein, multiple heat transfer pathways can be formed to transfer the heat generated during operation of the onboard electronics components (heat sources) to various components and/or portions of the smart glasses where it can be dissipated.
In some examples, the onboard electronic components may be carried by the frame alone. In other embodiments, the electronic components may be carried by on or more of the temples. In yet further embodiments, the electronic components may be carried by both the frame and at least one of the temples. Similarly, the heat transfer device can be part of the temple(s) (
In some embodiments, the smart glasses can be operable (i.e. are electrically powered) even in a collapsed condition where one or more of the temples are folded towards the frame to a non-wearable position for the user. In such a collapsed condition, as well as in a wearable condition where one or both of the temples are extended so as to be received around a user's face, the onboard electronic components can run software and perform other tasks that can improve the glasses' efficiency and performance. The thermal coupling between the temple and the frame and the one or more heat transfer devices can be configured to transfer heat away from the electronic components both when the temple(s) is in the wearable condition and when the temple is in the collapsed condition.
DETAILED DESCRIPTIONThe description that follows includes apparatuses, systems, and techniques that embody illustrative embodiments of the disclosure. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. It will be evident, however, to those skilled in the art, that embodiments of the inventive subject matter may be practiced without these specific details. In general, well-known structures and techniques are not necessarily shown in detail. Certain embodiments described in detail herein may be referred to as examples.
Embodiments described herein relate to apparatuses and techniques that allow smart glasses to that can transfer heat away from onboard electronic components (and the face of the user) in a more desirable manner. This can make the smart glasses as more reliable and wearable.
This disclosure applies to smart glasses (e.g., those that have electronics carried thereby). Smart glasses include onboard electronic components such as a power source, power and communication related circuitry, communication devices (e.g., a camera, a microphone, sensors, etc.), display devices, a computer, a memory, modules, and/or the like.
Regarding the construction of the smart glasses itself, according to one example, the smart glasses comprise an eyewear body configured for wearing by a user to hold one or more optical elements mounted on the eyewear body within a field of view of the user. Such optical elements can include not just lenses (as is the case in the embodiments described below), but can in other embodiments include any object that can be held close to the eye and through which or from which light is passed to the eye. As such, the term optical elements includes displays (such as virtual reality displays, augmented reality displays, or other near-eye displays), surfaces such as those of a smartphone or tablet, and lenses, both corrective and non-corrective, for example.
The smart glasses can include the frame and a pair of the temples coupled thereto on opposite ends of the frame at articulated joints. For any one of the temples, the temple is in the wearable configuration or condition when the temple is substantially fully unfolded for reception along a side of the user's head. In contrast, a temple is in the collapsed configuration or condition when that temple is hingedly folded towards the frame. Thus, the smart glasses can be in both the wearable configuration and the collapsed configuration at the same time (e.g., one temple unfolded the other temple folded towards the frame) and the onboard electronics components can be electrically powered so as to be operable in either condition, as previously discussed.
The onboard electronic components 20A and 20B can be carried by the eyewear body 13 (e.g., either or both of the temple(s) 14A, 14B and/or the frame 16). The onboard electronic components 20A and 20B can comprise the heat source that generates heat during electrically powered operation. As previously discussed, the onboard electronic components 20A and 20B can comprise a power source, power and communication related circuitry, communication devices (e.g., a camera, a microphone, sensors, etc.), display devices, a computer, a memory, modules, and/or the like.
As will be discussed in further detail herein, the eyewear body 13 can be configured for wearing by a user to hold one or more optical elements mounted on the eyewear body 13 within a field of view of a user. More particularly, the frame 16 can be configured to hold the one or more optical elements, while the temples 14A and 14B can be connected to the frame 16 at the respective articulated joints 18A and 18B. The onboard electronic components 20A and/or 20B can be carried by the eyewear body 13 and can comprise a heat source that generates heat during electrically powered operation thereof. The heat transfer device 21A, 21B, and/or 21C can be disposed within the eyewear body 13 and can be thermally coupled to the heat source at a first portion of the eyewear body 13 (e.g., a right side portion 26A). The heat transfer device 21A, 21B, and/or 21C can extend to a second portion of the eyewear body 13 (e.g., a second end portion 26B) and can be configured to move at least a portion of the heat from the heat source (the onboard electronic components 20A and/or 20B) to the second portion of the eyewear body 13. In the embodiment of
The temple 14A is illustrated in the wearable condition while the temple 14B is illustrated in the collapsed condition in
According to the embodiment of
The heat transfer device 21C can be thermally coupled to the onboard electronic components 20A and/or 20B. More particularly, the heat transfer device 21C can be located within the frame 16 and can extend laterally along the frame 16 from the right side portion 26A (adjacent a first of the one or more optical elements) to the second end portion 26B (adjacent a second of the one or more optical elements). The heat transfer device 21C can be the heat pipe 24 as further described herein in reference to
The heat transfer device 21C can transfer at least a portion of the heat produced by a heat source (the onboard electronic components 20A) from the right side portion 26A to the second end portion 26B where the heat can be dissipated. As will be illustrated in
The temples 14A, 14B and the frame 16 can be constructed of a plastics material, cellulosic plastic (e.g., cellulosic acetate), an eco-plastic material, a thermoplastic material, or the like in addition to the heat transfer devices 21A, 21B, and/or 21C. As discussed previously, the core wires 22A, 22B can act to provide structural integrity to the eyewear body 13 (i.e. the temple(s) 14A. 14B and/or the frame 16). Additionally, the core wires 22A. 22B can act as the heat transfer device 21A. 21B (e.g., a heat sink) to transfer the heat generated by the onboard electronic components 20A and/or 20B away therefrom so as to reduce the likelihood of localized heating adjacent the onboard electronic components 20A and/or 20B. As such, the core wires 22A, 22B (and/or the heat pipe 24) can be thermally coupled to the heat source to provide a heat transfer pathway for the heat source. The core wires 22A, 22B can be constructed of a relatively flexible conductive metal or metal alloy material such as one or more of an aluminum, an alloy of aluminum, alloys of nickel-silver, and a stainless steel, for example.
The temple 14A and core wire 22A can extend generally rearward from a rear facing surface of the right side portion 26A of the frame 16. According to the illustrated example of
As will be illustrated subsequently, the articulated joint 18A can also be formed as part of the frame 16 and the temple 14A. Indeed, the articulated joint 18A can be configured to provide for movement of the temple 14A relative to the frame 16. Thus, the articulated joint 18A allows for movement of the temple 14A such that it is disposable between the collapsed condition and the wearable configuration as illustrated in
As previously discussed with reference to
The heat transfer device 21C can transfer at least a portion of the heat produced by a heat source (the onboard electronic components 20A) from the right side portion 26A to the second end portion 26B where the heat can be dissipated (the path of the heat transfer is shown by arrows in
In particular, the onboard electronic components 20A can be housed within a cavity in the right side portion 26A of the frame 16. According to one example, this cavity can encompass a small volume (e.g., the cavity can be is ˜17 mm long). Thus, in order to dissipate the heat more evenly and effectively, the heat transfer devices 21A and 21C (e.g., the heat pipe 24 and the core wire 22A) can be used to transfer heat away from the onboard electronic components 20A and a housing 33 that forms and encases the cavity and the onboard electronic components 20A. According to some embodiments, the heat pipe 24 can be configured to be attached directly to one, some, or all of the onboard electronics components 20A in the right side portion 26A to receive heat therefrom. The heat pipe 24 can be routed through the top part of the frame 16 to the second end portion 26B (
According to the embodiment if
The cap hinge 30 can form a portion of the thermal coupling 34 and can additionally form a portion of the frame 16 and the hinge assembly 28. More particularly, the cap hinge 30 can have a first portion 36 integrally formed with the housing 33 of the frame 16 and has a second portion 40 comprising a projection extending from the frame 16 and the first portion 36. The cap hinge 30 can be abutted along one or more internal surfaces 54 disposed within the frame 16 in a conductive heat exchange relationship by the one or more heat sinks 50, 52 internal to the frame 16. Similarly, the heat transfer device 21C (e.g., the heat pipe 24) can be abutted by second ends of the one or more heat sinks 50, 52 to form a heat exchange relationship therewith.
The temple hinge 32 can form a portion of the thermal coupling 34 and can additionally form a portion of the temple 14A and the hinge assembly 28. The temple hinge 32 can comprise another heat sink (in addition to at least the core wire 22A and the cap hinge 30). The temple hinge 32 can be coupled to the core wire 22A in a conductive heat exchange relationship. More particularly, according to one example the core wire 22A can be soldered or otherwise connected to the temple hinge 32 in a solid heat conductive manner. The temple hinge 30 can be connected to the cap hinge 32 via a metal screw or fastener (not shown).
The cap hinge 30 can be abutted along one or more internal surfaces 54 disposed within the frame 16 in a conductive heat exchange relationship by the first internal heat sink 50 and the second internal heat sink 52. The first internal heat sink 50 and the second internal heat sink 52 can be entirely internal to the frame 16 (i.e. can be disposed within the housing 33 of
The first internal heat sink 50 can be spaced from the second internal heat sink 52. According to the example of
According to one example, the one or more internal surfaces 54 of the cap hinge 30 and/or other surface of the heat sinks 50, 52 can have TIMs disposed thereon. The TIM can help to provide good thermal contact between the cap hinge 30 and the first internal heat sink 50 and the second internal heat sink 52, for example. The first internal heat sink 50 and the second internal heat sink 52 can additionally utilize TIMs to provide for good thermal contact between the first internal heat sink 50 and the second internal heat sink 52 and the onboard electronic components 20A (e.g., the processor, the WiFi module, the memory, and the image sensor 56) and the heat transfer device 21C. All of these contacts via TIMs allow for heat to be moved rearward or forward through the first internal heat sink 50 and the second internal heat sink 52 to either the cap hinge 30 and on to the core wire 22A or on to the heat pipe 24.
Thus, according to the embodiment of
A wearable device is disclosed according to one embodiment. The wearable device can include an eyewear body, onboard electronic components, a thermal coupling and a heat transfer device. The eyewear body can be configured for wearing by a user to hold one or more optical elements mounted on the eyewear body within a field of view of the user. The onboard electronic components can be carried by the eyewear body at a first portion of the eyewear body and can comprise a heat source that generates heat during electrically powered operation thereof. The thermal coupling can be thermally coupled to the heat transfer device at a second portion of the eyewear body. The elongate heat transfer device can be disposed within the eyewear body and can be thermally coupled to the heat source and the thermal coupling. The heat transfer device can extend lengthwise between the heat source and the thermal coupling to transfer heat from the heat source to the thermal coupling.
According to another embodiment, a pair of smart glasses is disclosed. The smart glasses can comprise a frame, onboard components, and a heat transfer device. The frame can be configured to hold the one or more optical elements and can have a first lateral portion disposed to a first side of the one or more optical elements and an opposing second lateral portion disposed to a second side of the one or more optical elements. The onboard electronic components can be carried by the frame within the first lateral portion and can comprise a heat source that generates heat during electrically powered operation thereof. The heat transfer device can be carried by the frame and can extend laterally along the frame from the first lateral portion of the frame to the second lateral portion of the frame. The heat transfer device can be thermally coupled the heat source at the first lateral portion and can be configured to transfer the heat from the heat source to the second lateral portion of the frame.
According to another embodiment, a pair of smart glasses is disclosed. The smart glasses can comprise a frame, onboard electronic components, a thermal coupling and a heat transfer device. The frame can be configured to hold the one or more optical elements and can have a first lateral portion disposed to a first side of the one or more optical elements and an opposing second lateral portion disposed to a second side of the one or more optical elements. The onboard electronic components can be carried by the frame within the first lateral portion and can comprise a heat source that generates heat during electrically powered operation thereof. The thermal coupling can be carried by the frame within the second lateral portion. The heat transfer device can be carried by the frame and can extend laterally along the frame from the first lateral portion of the frame to the second lateral portion of the frame. The heat transfer device can be thermally coupled the heat source at the first lateral portion and can be thermally coupled to the thermal coupling at the second lateral portion. The heat transfer device can be configured to transfer the heat from the heat source to the thermal coupling.
Language
Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.
Although an overview of the inventive subject matter has been described with reference to specific example embodiments, various modifications and changes may be made to these embodiments without departing from the broader scope of embodiments of the present disclosure. Such embodiments of the inventive subject matter may be referred to herein, individually or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single disclosure or inventive concept if more than one is, in fact, disclosed.
The embodiments illustrated herein are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. The Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
As used herein, the term “or” may be construed in either an inclusive or exclusive sense. Moreover, plural instances may be provided for resources, operations, or structures described herein as a single instance. Additionally, boundaries between various resources, operations, modules, engines, and data stores are somewhat arbitrary, and particular operations are illustrated in a context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within a scope of various embodiments of the present disclosure. In general, structures and functionality presented as separate resources in the example configurations may be implemented as a combined structure or resource. Similarly, structures and functionality presented as a single resource may be implemented as separate resources. These and other variations, modifications, additions, and improvements fall within a scope of embodiments of the present disclosure as represented by the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Claims
1. A wearable device comprising:
- a frame configured for wearing by a user to hold one or more optical elements mounted on the frame within a field of view of the user;
- onboard electronic components carried by the frame at a first end portion of the frame that extends longitudinally rearward to interface with a first temple, the onboard electronic components comprising a heat source that generates heat during electrically powered operation thereof; and
- an elongate heat transfer device disposed within the frame and thermally coupled to the heat source and extending lengthwise across the frame between the heat source and a second end portion of the frame that extends longitudinally rearward to interface with a second temple, the heat transfer device configured to transfer heat from the heat source to the second end portion.
2. The wearable device of claim 1, wherein the heat transfer device comprises a core wire configured to form part of a structural framework for at least part of the frame.
3. The wearable device of claim 1, further comprising a first thermal coupling thermally coupled to the heat transfer device at the second end portion of the frame, wherein the first thermal coupling comprises one or more of a heat sink, a core wire, and a heat pipe.
4. The wearable device of claim 3, wherein:
- the first temple is connected to the frame by a first articulated joint disposed at the first end portion; and
- the second temple is connected to the frame by a second articulated joint disposed at the second end portion.
5. The wearable device of claim 4, further comprising a second thermal coupling comprising at least one heat sink for the heat source extending between the heat source and a core wire of the temple across the first articulated joint between the first temple and the frame.
6. The wearable device of claim 5, wherein the second thermal coupling comprises one or more portions of the first articulated joint, and wherein the first articulated joint comprises a hinge assembly including a cap hinge that comprises a portion of the second thermal coupling, the cap hinge forms a portion of the frame and the hinge assembly.
7. The wearable device of claim 4, further comprising:
- a core wire located within the second temple; and
- the first thermal coupling thermally coupled to the core wire across the second articulated joint between the second temple and the frame.
8. The wearable device of claim 1, wherein the heat transfer device comprises a heat pipe having a wick extending along at least a portion of a lateral length thereof, the heat pipe configured to carry a working fluid that is evaporated to a vapor at a first lateral end portion thereof by the heat from the heat source and direct the vapor to a second lateral end portion thereof where the vapor condenses back to the working fluid and is absorbed by the wick.
9. Smart glasses comprising:
- a frame configured to hold one or more optical elements, the frame having a first lateral end portion disposed to a first side of the one or more optical elements and an opposing second lateral end portion disposed to a second side of the one or more optical elements;
- onboard electronic components carried by the frame within the first lateral end portion and comprising a heat source that generates heat during electrically powered operation thereof; and
- a heat transfer device carried by the frame and extending laterally along substantially an entirety of the frame from the first lateral end portion of the frame to the second lateral end portion of the frame, wherein the heat transfer device is thermally coupled to the heat source at the first lateral end portion and is configured to transfer the heat from the heat source to the second lateral end portion of the frame, and wherein the heat transfer device comprises a core wire configured to form part of a structural framework for at least part of the frame.
10. The smart glasses of claim 9, further comprising:
- an elongated temple having a core wire that forms a portion thereof, the temple connected to the frame at an articulated joint between the temple and the frame; and
- a thermal coupling carried by the frame and arranged to generally interface a portion of the temple, the thermal coupling configured to conduct the heat away from the heat source across the articulated joint to the core wire within the temple.
11. The smart glasses of claim 10, wherein the articulated joint comprises a hinge assembly including a cap hinge that comprises a portion of the thermal coupling, the cap hinge forms a portion of the frame and the hinge assembly.
12. The smart glasses of claim 10, wherein the second lateral end portion is configured to house the thermal coupling, and wherein the heat transfer device is thermally coupled to the thermal coupling at the second lateral end portion.
13. The smart glasses of claim 12, wherein the thermal coupling comprises one or more of a heat sink, a core wire, and a heat pipe.
14. The smart glasses of claim 9, wherein the heat transfer device comprises a heat pipe having a wick extending along at least a portion of a lateral length thereof, the heat pipe configured to carry a working fluid that is evaporated to a vapor at a first lateral portion thereof by the heat from the heat source and direct the vapor to a second lateral portion thereof where the vapor condenses back to the working fluid and is absorbed by the wick.
15. The smart glasses of claim 9, further comprising:
- a second temple connected to the second lateral end portion of the frame at a second articulated joint;
- a core wire located within the second temple; and
- a thermal coupling thermally coupled to the heat transfer device at the second lateral end portion of the frame, the thermal coupling additionally thermally coupled to the core wire across the second articulated joint between the second temple and the frame.
16. Smart glasses comprising:
- a frame configured to hold one or more optical elements, the frame having a first lateral end portion disposed to a first side of the one or more optical elements and an opposing second lateral end portion disposed to a second side of the one or more optical elements;
- onboard electronic components carried by the frame within the first lateral end portion and comprising a heat source that generates heat during electrically powered operation thereof; and
- a thermal coupling carried by the frame within the second lateral end portion; and
- a heat transfer device carried by the frame and extending laterally along substantially an entirety of the frame from the first lateral end portion of the frame to the second lateral end portion of the frame, wherein the heat transfer device is thermally coupled to the heat source at the first lateral end portion and is thermally coupled to the thermal coupling at the second lateral end portion, and wherein the heat transfer device is configured to transfer the heat from the heat source to the thermal coupling.
17. The smart glasses of claim 16, further comprising:
- an elongated temple having a core wire that forms a portion thereof, the temple connected to the frame at an articulated joint between the temple and the frame; and
- a second thermal coupling carried by the frame and arranged to generally interface a portion of the temple, the second thermal coupling configured to conduct at least a portion of the heat away from the heat source across the articulated joint to the core wire within the temple.
18. The smart glasses of claim 17, wherein the articulated joint comprises a hinge assembly including a cap hinge that comprises a portion of the second thermal coupling, the cap hinge forms a portion of the frame and the hinge assembly.
19. The smart glasses of claim 16, wherein the heat transfer device comprises a heat pipe having a wick extending along at least a portion of a lateral length thereof, the heat pipe configured to carry a working fluid that is evaporated to a vapor at a first lateral portion thereof by the heat from the heat source and direct the vapor to a second lateral portion thereof where the vapor condenses back to the working fluid and is absorbed by the wick.
6038295 | March 14, 2000 | Mattes |
6980909 | December 27, 2005 | Root et al. |
7173651 | February 6, 2007 | Knowles |
7411493 | August 12, 2008 | Smith |
7535890 | May 19, 2009 | Rojas |
8131597 | March 6, 2012 | Hudetz |
8199747 | June 12, 2012 | Rojas et al. |
8332475 | December 11, 2012 | Rosen et al. |
8718333 | May 6, 2014 | Wolf et al. |
8724622 | May 13, 2014 | Rojas |
8874677 | October 28, 2014 | Rosen et al. |
8909679 | December 9, 2014 | Root et al. |
8995433 | March 31, 2015 | Rojas |
9040574 | May 26, 2015 | Wang et al. |
9055416 | June 9, 2015 | Rosen et al. |
9100806 | August 4, 2015 | Rosen et al. |
9100807 | August 4, 2015 | Rosen et al. |
9191776 | November 17, 2015 | Root et al. |
9204252 | December 1, 2015 | Root |
9443227 | September 13, 2016 | Evans et al. |
9482882 | November 1, 2016 | Hanover et al. |
9482883 | November 1, 2016 | Meisenholder |
9489661 | November 8, 2016 | Evans et al. |
9491134 | November 8, 2016 | Rosen et al. |
9740023 | August 22, 2017 | Ashwood |
9851585 | December 26, 2017 | Ashwood |
10042187 | August 7, 2018 | Ashwood et al. |
20080198324 | August 21, 2008 | Fuziak et al. |
20100309426 | December 9, 2010 | Howell et al. |
20110202598 | August 18, 2011 | Evans et al. |
20110221656 | September 15, 2011 | Haddick et al. |
20120155064 | June 21, 2012 | Waters |
20120209924 | August 16, 2012 | Evans et al. |
20140259271 | September 18, 2014 | Cox et al. |
20140368544 | December 18, 2014 | Kobayashi |
20150200554 | July 16, 2015 | Marks et al. |
20160041395 | February 11, 2016 | Yajima |
20160212888 | July 21, 2016 | Nikkhoo et al. |
20160252727 | September 1, 2016 | Mack et al. |
20170248801 | August 31, 2017 | Ashwood |
20180074343 | March 15, 2018 | Ashwood |
20180136491 | May 17, 2018 | Ashwood et al. |
2887596 | July 2015 | CA |
WO-0135159 | May 2001 | WO |
WO-2017151519 | September 2017 | WO |
WO-2018145085 | August 2018 | WO |
- “U.S. Appl. No. 15/073,856, Non Final Office Action dated Mar. 9, 2017”, 7 pgs.
- “U.S. Appl. No. 15/073,856, Notice of Allowance dated Aug. 25, 2017”, 9 pgs.
- “U.S. Appl. No. 15/073,856, Response filed May 22, 2017 to Non Final Office Action dated Mar. 9, 2017”, 9 pgs.
- “U.S. Appl. No. 15/084,683, Corrected Notice of Allowance dated Jun. 20, 2017”, 4 pgs.
- “U.S. Appl. No. 15/084,683, Non Final Office Action dated Dec. 1, 2016”, 11 pgs.
- “U.S. Appl. No. 15/084,683, Notice of Allowance dated Apr. 12, 2017”, 7 pgs.
- “U.S. Appl. No. 15/084,683, PTO Response to Rule 312 Communication dated Jun. 30, 2017”, 2 pgs.
- “U.S. Appl. No. 15/084,683, Response filed Feb. 28, 2017 to Non Final Office Action dated Dec. 1, 2016”, 10 pgs.
- “U.S. Appl. No. 15/086,233, Non Final Office Action dated Dec. 21, 2016”, 12 pgs.
- “U.S. Appl. No. 15/086,233, Notice of Allowance dated Apr. 24, 2017”, 7 pgs.
- “U.S. Appl. No. 15/086,233, Response filed Mar. 16, 2017 to Non Final Office Action dated Dec. 21, 2016”, 9 pgs.
- “International Application Serial No. PCT/US2017/019740, International Search Report dated Jun. 2, 2017”, 5 pgs.
- “International Application Serial No. PCT/US2017/019740, Written Opinion dated Jun. 2, 2017”, 9 pgs.
- Leyden, John, “This SMS will self-destruct in 40 seconds”, [Online]. Retrieved from the Internet: <URL: http://www.theregister.co.uk/2005/12/12/stealthtext/, (Dec. 12, 2005), 1 pg.
- Lin, Jun, “Eyewear with conductive Temple Joint”, U.S. Appl. No. 14/869,149, filed Sep. 29, 2015, (Sep. 29, 2015), 33 pgs.
- “U.S. Appl. No. 15/425,774, Notice of Allowance dated Apr. 12, 2018”, 12 pgs.
- “U.S. Appl. No. 15/818,458, Non Final Office Action dated Nov. 29, 2018”, 10 pgs.
- “U.S. Appl. No. 16/037,844, Preliminary Amendment filed Aug. 10, 2018 t”, 7 pgs.
- “International Application Serial No. PCT/US2017/019740, International Preliminary Report on Patentability dated Sep. 13, 2018”, 11 pgs.
- “International Application Serial No. PCT/US2018/017059, International Search Report dated May 24, 2018”, 8 pgs.
- “International Application Serial No. PCT/US2018/017059, Written Opinion dated May 24, 2018”, 18 pgs.
Type: Grant
Filed: Jul 12, 2017
Date of Patent: Jun 11, 2019
Assignee: Snap Inc. (Santa Monica, CA)
Inventor: Andrea Ashwood (Los Angeles, CA)
Primary Examiner: Darryl J Collins
Application Number: 15/648,037
International Classification: G02C 5/00 (20060101); G02C 11/00 (20060101); H05K 7/20 (20060101); G02C 5/14 (20060101);