Moldboard retention system for a milling machine
A milling machine includes a frame, a ground-engaging rotor assembly coupled to the frame, and a rotor chamber surrounding the ground-engaging rotor assembly. The rotor chamber includes a moldboard having a top, a bottom, and two sides positioned between the top and the bottom, and the moldboard further having an open position and a closed position. The rotor chamber also includes at least one movable pin secured to the moldboard, the pin being movable by an in-line actuator between a pin extended position and a pin retracted position. Further, the rotor chamber includes a rotor chamber frame wall having an opening located to receive the pin when the pin is in the extended position and the moldboard is in the closed position, and the receiving of the pin in the rotor chamber frame wall opening secures the moldboard from movement.
Latest Caterpillar Paving Products Inc. Patents:
The present disclosure relates generally to moldboard retention system for a milling machine, and more particularly, to a pin assembly for securing the moldboard in both an open and closed position.
BACKGROUNDThe present disclosure relates to milling machines that are used in road surface preparation or repairs. Milling machines are typically used to remove a layer or layers of ground surface or old or defective road surface in preparation for road formation or resurfacing. Many milling machines include a rotor having rotor bits for breaking up the ground surface, and include a rotor chamber to help direct the milled material toward a conveyor or back toward the surface. Such rotor chambers may include chamber walls that surround the rotor. The chamber walls may include a moldboard at the rear of the chamber that is movable between a closed position for milling, and an open position for access to the rotor for inspection and/or repair.
U.S. Pat. No. 5,474,397, issued to Lyons on Dec. 12, 1995 (“the '397 patent”), describes a mobile milling machine 1 for milling a road surface that includes a floating moldboard 20 for directing milled material onto a loading device 30 positioned behind the machine. The moldboard 20 is vertically movable between a top and bottom stop positions, and is pivotable about a horizontal axis at the top stop position to expose the milling roller 10 for repairs. A locking pin 84 is slidably positioned in a housing 86 fastened to moldboard 20. Pin 84 can be extended into an adjacent slot 88 in the adjacent frame rail 14. The pin 84 is locked in place by a removable key 90 that extends through housing 86 and blocks movement of pin 84. With pin 84 in the slot 88 moldboard 20 can only move vertically. Removal of pin 84 from slot 88 permits moldboard 20 to pivot outwardly and upwardly, as shown in FIG. 4 of the '397 patent. However, the pin 84 securement of the '397 patent suffers drawbacks in its manual nature and lack of full securement in the moldboard closed and pivoted positions.
The moldboard retention system of the present disclosure may solve one or more of the problems set forth above and/or other problems in the art. The scope of the current disclosure, however, is defined by the attached claims, and not by the ability to solve any specific problem.
SUMMARYIn one aspect of the present disclosure, a milling machine includes a frame, a ground-engaging rotor assembly coupled to the frame, and a rotor chamber surrounding the ground-engaging rotor assembly. The rotor chamber includes a moldboard having a top, a bottom, and two sides positioned between the top and the bottom, and the moldboard further having an open position and a closed position. The rotor chamber also includes at least one movable pin secured to the moldboard, the pin being movable by an in-line actuator between a pin extended position and a pin retracted position. Further, the rotor chamber includes a rotor chamber frame wall having an opening located to receive the pin when the pin is in the extended position and the moldboard is in the closed position, and the receiving of the pin in the rotor chamber frame wall opening secures the moldboard from movement.
According to another aspect of the present disclosure, a milling machine includes a frame, a ground-engaging rotor assembly coupled to the frame, and a rotor chamber surrounding the ground-engaging rotor assembly. The rotor chamber includes a moldboard having a top, a bottom, and two sides positioned between the top and the bottom, and the moldboard further having an open position and a closed position. The rotor chamber also includes at least one hydraulic actuator secured to the moldboard, the hydraulic actuator having a cylinder end and a rod, with the hydraulic actuator being movable between a rod extended position and a rod retracted position. The rotor chamber further includes a first frame wall having an opening located to receive the rod end when the hydraulic actuator is in the extended position and the moldboard is in the closed position, the receiving of the rod in the first frame wall opening secures the moldboard from movement. Further, the rotor chamber includes a second frame wall having an opening located to receive the rod end when the hydraulic actuator is in the extended position and the moldboard is in the open position, the receiving of the rod in the second frame wall opening secures the moldboard from movement.
According to yet another aspect of the present disclosure, a method of operating a milling machine is provided, wherein the milling machine includes a operator control, a moldboard, a scraper door coupled to the moldboard, and a pin assembly coupled to the moldboard. The method includes receiving a signal from the operator control corresponding to a requested moldboard-up sequence. The following sequence is performed in response to the signal: raising the scraper door; moving a pin of the pin assembly from a pin securing position to a pin releasing position to release the moldboard from a frame wall of the machine; moving the moldboard to an open position; and moving the pin to a securing position to secure the moldboard to another frame wall of the machine when the moldboard is in the open position.
Both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the features, as claimed. As used herein, the terms “comprises,” “comprising,” “having,” “including,” or other variations thereof, are intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements, but may include other elements not expressly listed or inherent to such a process, method, article, or apparatus.
For the purpose of this disclosure, the term “ground surface” is broadly used to refer to all types of surfaces that form typical roadways (e.g., asphalt, cement, clay, sand, dirt, etc.) or can be milled in the removal or formation of roadways. In this disclosure, relative terms, such as, for example, “about,” “substantially,” “generally,” and “approximately” are used to indicate a possible variation of ±10% in a stated value or characteristic. The current disclosure is described with reference to a milling machine. As used herein, a milling machine includes any machine that includes a ground engaging rotor or cutter to displace ground surfaces. Examples of such milling machines include cold planers and ground reclaimers.
Milling assembly 16 may include a ground-engaging rotor or cutter 26 having rotor bits 28. The rotor 26 may be enclosed within a series of walls forming a rotor chamber 30. The walls of the rotor chamber 30 may include, inter alia, front and side frame walls 32, adjustable side plates 34 extending below the side frame walls 32, a moldboard 36 (shown in dashed lines) at the rear of the rotor chamber 30, and an adjustable scraper door 38 (shown in dashed lines) extending below the moldboard 36. During operation, as rotor 26 rotates in ground surface 20, the rotor chamber 30 forms a barrier that retains much of the milled material, and urges the milled material toward the conveyor assembly 18.
As will be explained in more detail below, the moldboard 36 and scraper door 38 may be moved between a closed position extending generally vertically, to an open position extending generally horizontally. These positions are both depicted in dashed lines in
As shown in
The hydraulically actuated pin assembly 40 may be coupled to each of the opposite sidewalls 50 of the moldboard 36. A single pin assembly 40 will be described below, but it is understood that the description will be equally applicable to both pin assemblies 40. Referring to
Referring to
The disclosed moldboard retention system may be applicable to any machine having a rotor and rotor chamber, and may assist in providing proper operation and safe access to the rotor within the rotor chamber. In particular, the pin assembly 40 provides a straightforward design for securing the moldboard 36 in the open position (
Referring to
Referring to the exemplary “moldboard-down” process 130 of
The above described process steps need not be performed in the order described, but rather certain steps can be performed in a different order and/or can be performed simultaneously with other steps. Further, the operator controls 44 may be configured to require depression or operator input throughout the entire sequence of the process to actuate all of the steps of the sequence, or alternatively, the entire sequence (raising, lowering, and securing the moldboard) may be done automatically after triggering by a single depression or operator action of the operator control 44 at the beginning of the desired sequence.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed machine without departing from the scope of the disclosure. Other embodiments of the machine will be apparent to those skilled in the art from consideration of the specification and practice of the moldboard support structure disclosed herein. For example, while pin assembly 40 is described as hydraulically actuated, any other type of actuator may be used, such as a pneumatic, solenoid, electronic, or piezoelectric type actuator. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.
Claims
1. A milling machine, comprising
- a frame;
- a ground-engaging rotor assembly coupled to the frame;
- a rotor chamber surrounding the ground-engaging rotor assembly, the rotor chamber including: a moldboard having a top, a bottom, and two sides positioned between the top and the bottom, the moldboard further having an open position and a closed position; at least one movable pin secured to the moldboard, the pin being movable by an in-line actuator between a pin extended position and a pin retracted position; a rotor chamber frame wall having an opening located to receive the pin when the pin is in the extended position and the moldboard is in the closed position, and the receiving of the pin in the rotor chamber frame wall opening secures the moldboard from movement; and a sensor system associated with the movable pin to determine when the pin is in the pin extended or pin retracted position.
2. The milling machine of claim 1, wherein the in-line actuator is a hydraulic actuator, and the pin is a piston rod of the hydraulic actuator.
3. The milling machine of claim 1, wherein the frame wall is a first frame wall, and the milling machine further including a second frame wall, the second frame wall having an opening located to receive the pin when the pin is in the extended position and the moldboard is in the open position.
4. The milling machine of claim 2, wherein the at least one movable pin is a first movable pin, and the milling machine further includes a second movable pin secured to an opposite side of the moldboard with respect to the first movable pin, the second movable pin being movable by an in-line actuator between an pin extended position and a pin retracted position, and
- the rotor chamber frame wall is a first rotor chamber frame wall, and the milling machine further includes a second rotor chamber frame wall opposite the first rotor chamber frame wall, the second rotor chamber frame wall having an opening located to receive the second movable pin when the second pin is in the extended position and the moldboard is in the closed position.
5. The milling machine of claim 1, further including an operator input device for initiating a moldboard-up sequence, the moldboard-up sequence includes moving of the pin to the extended position after one or more moldboard sensors indicate that the moldboard is in the open position.
6. The milling machine of claim 5, further including a scraper door extending from the bottom of the moldboard, the scraper door being movable between a raised position and a lowered position, and the moldboard-up sequence includes moving the moldboard toward the open position after one or more scraper door sensors indicate that the scraper door is raised.
7. The milling machine of claim 6, further including moldboard one or more actuators configured to pivot the moldboard to the open position.
8. A milling machine, comprising
- a frame;
- a ground-engaging rotor assembly coupled to the frame;
- a rotor chamber surrounding the ground-engaging rotor assembly, the rotor chamber including: a moldboard having a top, a bottom, and two sides positioned between the top and the bottom, the moldboard further having an open position and a closed position; at least one hydraulic actuator secured to the moldboard, the hydraulic actuator having a cylinder end and a rod, with the hydraulic actuator being movable between a rod extended position and a rod retracted position; a first frame wall having an opening located to receive the rod end when the hydraulic actuator is in the extended position and the moldboard is in the closed position, the receiving of the rod in the first frame wall opening secures the moldboard from movement; and a second frame wall having an opening located to receive the rod end when the hydraulic actuator is in the extended position and the moldboard is in the open position, the receiving of the rod in the second frame wall opening secures the moldboard from movement.
9. The milling machine of claim 8, wherein the at least one hydraulic actuator is a first hydraulic actuator, and the milling machine further includes a second hydraulic actuator secured to an opposite side of the moldboard with respect to the first hydraulic actuator, the second hydraulic actuator having a cylinder end and a rod end, with the second hydraulic actuator being movable between a rod extended position and a rod retracted position, and
- the milling machine further includes a third frame wall opposite the first frame wall, the third frame wall having an opening located to receive the rod end of the second hydraulic actuator when the second actuator is in the extended position and the moldboard is in the closed position.
10. The milling machine of claim 8, further including a sensor system associated with the hydraulic actuator to determine when the hydraulic actuator is in the extended or retracted position.
11. The milling machine of claim 8, further including an operator input device for initiating a moldboard-up sequence, wherein the moldboard-up sequence includes moving of the rod end to the extended position after one or more moldboard sensors indicate that the moldboard is in the open position.
12. The milling machine of claim 11, further including a scraper door extending from the bottom of the moldboard, the scraper door being movable between a raised position and a lowered position, and the moldboard-up sequence includes moving the moldboard toward the open position after one or more scraper door sensors indicate that the scraper door is raised.
13. The milling machine of claim 12, further including moldboard actuators configured to pivot the moldboard to the open position.
14. A method of operating a milling machine, the milling machine having a operator control, a moldboard, a scraper door coupled to the moldboard, and a pin assembly coupled to the moldboard, the method comprising:
- receiving a signal from the operator control corresponding to a requested moldboard-up sequence; and
- performing the following in response to the signal: raising the scraper door; moving a pin of the pin assembly from a pin securing position to a pin releasing position to release the moldboard from a frame wall of the machine; moving the moldboard to an open position; and moving the pin to a securing position to secure the moldboard to another frame wall of the machine when the moldboard is in the open position.
15. The method of claim 14, wherein the moving of the moldboard to an open position is initiated after confirming that the pin is in the pin releasing position.
16. The method of claim 15, moving of the pin to the securing position is achieved via hydraulic actuation.
17. The method of claim 14, further including receiving a signal from the operator control corresponding to a requested moldboard-down sequence; and
- performing the following in response to the moldboard-down signal: moving the pin of the pin assembly from a pin securing position to a pin releasing position to release the moldboard from the another frame wall of the machine; moving the moldboard to a closed position; moving the pin to a securing position to secure the moldboard to the frame wall of the machine, when the moldboard is in the closed position; and lowering the scraper door.
18. The method of claim 17, wherein moving the moldboard to a closed position is initiated after confirming that the pin is in the pin releasing position.
19. The method of claim 18, moving of the pin to the securing position is achieved via hydraulic actuation.
5474397 | December 12, 1995 | Lyons |
9127417 | September 8, 2015 | Risi |
9416502 | August 16, 2016 | Emme |
20090010713 | January 8, 2009 | Kotting |
20090044366 | February 19, 2009 | Kotting |
20130154340 | June 20, 2013 | Kotting et al. |
20130195554 | August 1, 2013 | Rukavina |
20130249271 | September 26, 2013 | Killion |
20140361599 | December 11, 2014 | Losen |
20160040371 | February 11, 2016 | Roetsch |
20180163351 | June 14, 2018 | Frankemolle et al. |
202881834 | April 2013 | CN |
Type: Grant
Filed: Dec 20, 2017
Date of Patent: Aug 20, 2019
Patent Publication Number: 20190186088
Assignee: Caterpillar Paving Products Inc. (Brooklyn Park, MN)
Inventors: Jason Bjorge (Blaine, MN), Nathan Mashek (Saint Michael, MN)
Primary Examiner: Abigail A Risic
Application Number: 15/849,033
International Classification: E01C 23/08 (20060101); E01C 23/12 (20060101); E01C 23/088 (20060101);