FGFR/PD-1 combination therapy for the treatment of cancer

- ASTEX THERAPEUTICS LTD

Provided herein are combination therapies for the treatment of cancer. In particular, the disclosed methods are directed to treatment of cancer in a patient comprising administering an antibody that blocks the interaction between PD-1 and PD-L1 and an FGFR inhibitor, wherein the antibody that blocks the interaction between PD-1 and PD-L1 and the FGFR inhibitor are administered if one or more FGFR variants are present in a biological sample from the patient.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 62/142,569, filed Apr. 3, 2015, the disclosure of which is hereby incorporated by reference in its entirety.

SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Mar. 22, 2016, is named PRD3366USNP_SL.txt and is 53,086 bytes in size.

TECHNICAL FIELD

Provided herein are combination therapies for the treatment of cancer. In particular, the disclosed methods are directed to treatment of cancer in a patient comprising administering an antibody that blocks the interaction between PD-1 and PD-L1 and a fibroblast growth factor receptor (FGFR) inhibitor.

BACKGROUND

For cancer patients failing the main therapeutic option (front-line therapy) for that cancer type, there is often no accepted standard of care for second and subsequent-line therapy, unless a particular genetic abnormality is identified and a specific therapy is available. Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases involved in regulating cell survival, proliferation, migration and differentiation. FGFR alterations have been observed in some cancers. To date, there are no approved therapies that are efficacious in patients with FGFR alterations.

SUMMARY

Disclosed herein are methods of using a combination therapy comprising an antibody that blocks the interaction between PD-1 and PD-L1 and an FGFR inhibitor to treat cancer in the patient. In some embodiments, the methods comprise administering to the patient a pharmaceutically effective amount of an antibody that blocks the interaction between PD-1 and PD-L1 and a pharmaceutically effective amount of an FGFR inhibitor, wherein the antibody that blocks the interaction between PD-1 and PD-L1 and the FGFR inhibitor are administered if one or more FGFR variants are present in a biological sample from the patient.

In other embodiments, the methods of treating cancer in a patient comprise: administering to the patient a pharmaceutically effective amount of an antibody that blocks the interaction between PD-1 and PD-L1; monitoring the efficacy of the antibody; and, if the antibody is not efficacious, evaluating a biological sample from the patient for a presence of one or more FGFR variants and administering to the patient a pharmaceutically effective amount of an FGFR inhibitor if the one or more FGFR variants are present in the sample.

BRIEF DESCRIPTION OF THE DRAWINGS

The summary, as well as the following detailed description, is further understood when read in conjunction with the appended drawings. For the purpose of illustrating the disclosed methods, there are shown in the drawings exemplary embodiments of the methods; however, the methods are not limited to the specific embodiments disclosed. In the drawings:

FIG. 1 illustrates PD-L1 expression in a 120 lung cancer samples set by histology and FGFR mutant and amplification status. PD-L1 H-scores (Y-axis) were plotted for NSCLC adenocarcinoma (left), small cell lung cancer (middle), and NSCLC squamous (right). The FGFR mutation and/or amplification status versus the PD-L1 staining for each of the 120 samples is shown. Mutation—an FGFR mutation was identified; No FGFR Alteration—no mutation or fusion was detected; Amplification—an FGFR gene amplification was identified; Mutation+Amp—samples positive for both FGFR mutation and gene amplification; Not Tested—IHC for PD-L1 was performed, but sample was not tested on Foundation Medicine panel.

FIG. 2 illustrates PD-L1 expression in an 80 non-small-cell lung carcinoma (NSCLC) sample set by FGFR fusion status by NSCLC histology. PD-L1 H-scores (Y-axis) were plotted for NSCLC adenocarcinoma (left), and NSCLC squamous (right). The FGFR fusion status versus the PD-L1 staining for each of the 80 samples is shown. Fusion Positive—an FGFR fusion was detected; Fusion Wild-Type—no FGFR fusion was detected; Not Tested—insufficient sample for testing or QC failure.

FIG. 3 illustrates the effect of JNJ42756493 on immune cell viability. Normal donor peripheral blood mononuclear cells (PBMCs), either unstimulated or stimulated with anti-CD3 antibodies, were treated with increasing concentrations of JNJ42756493 (0.0000077, 0.000023, 0.000070, 0.00021, 0.00063, 0.00188, 0.00565, 0.01694, 0.051, 0.152, 0.457, 1.372, 4.115, 12.346, 37.037, 111.111, 333.333, and 1000 nM). On days 1, 2, 5 and 6 after plating, cell viability was assessed by CellTiter-Glo (Promega).

FIG. 4 illustrates the effect of JNJ42756493 on IFN-γ levels induced by anti-PD-1 antibodies in a Mixed Lymphocyte Reaction (MLR) Assay. Cultures of CD4+ T and allogeneic dendritic cells were treated with anti-PD-1 antibodies (concentrations left to right—30, 10, 3.33, 1.11, 0.37, 0.12 nM). JNJ42756493 was added at 100, 1, or 0.01 nM alone (concentrations left to right), together with anti-PD-1 antibodies (100, 1, or 0.01 nM JNJ42756493 together with 30, 10, 3.33, 1.11, 0.37, or 0.12 nM of anti-PD-1 antibody), or in the presence of isotype control (IC). 5 days after treatment, IFN-γ levels in the supernatant were measured by Meso Scale Discovery (MSD).

FIG. 5 illustrates the effect of JNJ42756493 on IFN-γ levels induced by anti-PD-1 antibodies in a Cytomegalovirus antigen assay (CMV) Assay. Peripheral blood mononuclear cells (PMBCs) were stimulated with CMV antigen and treated with anti-PD-1 antibodies (concentration left to right—30, 10, 3.33, 1.11, 0.37, 0.12 nM) as indicated. JNJ42756493 was added at 100, 1, or 0.01 nM alone (concentrations left to right), together with anti-PD-1 antibodies (100, 1, or 0.01 nM JNJ42756493 together with 30, 10, 3.33, 1.11, 0.37, or 0.12 nM of anti-PD-1 antibody), or in the presence of isotype control (IC). 6 days after treatment, IFN-γ levels in the supernatant were measured by MSD.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The disclosed methods may be understood more readily by reference to the following detailed description taken in connection with the accompanying figures, which form a part of this disclosure. It is to be understood that the disclosed methods are not limited to the specific methods described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed methods.

Unless specifically stated otherwise, any description as to a possible mechanism or mode of action or reason for improvement is meant to be illustrative only, and the disclosed methods are not to be constrained by the correctness or incorrectness of any such suggested mechanism or mode of action or reason for improvement.

Reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. When a range of values is expressed, another embodiment includes from the one particular value and/or to the other particular value. Further, reference to values stated in ranges include each and every value within that range. All ranges are inclusive and combinable.

When values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.

The term “about” when used in reference to numerical ranges, cutoffs, or specific values is used to indicate that the recited values may vary by up to as much as 10% from the listed value. Thus, the term “about” is used to encompass variations of ±10% or less, variations of ±5% or less, variations of ±1% or less, variations of ±0.5% or less, or variations of ±0.1% or less from the specified value.

It is to be appreciated that certain features of the disclosed methods which are, for clarity, described herein in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the disclosed methods that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any subcombination.

As used herein, the singular forms “a,” “an,” and “the” include the plural.

The following abbreviations are used throughout the disclosure: FFPE (formalin-fixed, paraffin-embedded); NSCLC (non-small-cell lung carcinoma); SCLC (small-cell lung cancer); FGFR (fibroblast growth factor receptor); PD-1 (programmed cell death 1); PD-L1 (programmed death-ligand 1); FGFR3:TACC3 (fusion between genes encoding FGFR3 and transforming acidic coiled-coil containing protein); FGFR3:BAIAP2L1 (fusion between genes encoding FGFR3 and brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 1); FGFR2:AFF3 (fusion between genes encoding FGFR2 and AF4/FMR2 family, member 3); FGFR2:BICC1 (fusion between genes encoding FGFR2 and bicaudal C homolog 1); FGFR2:CASP7 (fusion between genes encoding FGFR2 and caspase 7); FGFR2:CCDC6 (fusion between genes encoding FGFR2 and coiled-coil domain containing 6); FGFR2:OFD1 (fusion between genes encoding FGFR2 and oral-facial-digital syndrome 1).

The term “antibody” refers to (a) immunoglobulin polypeptides, i.e., polypeptides of the immunoglobulin family that contain an antigen binding site that specifically binds to a specific antigen (e.g., PD-1 or PD-L1), including all immunoglobulin isotypes (IgG, IgA, IgE, IgM, IgD, and IgY), classes (e.g. IgG1, IgG2, IgG3, IgG4, IgA1, IgA2), subclasses, and various monomeric and polymeric forms of each isotype, unless otherwise specified, and (b) conservatively substituted variants of such immunoglobulin polypeptides that immunospecifically bind to the antigen (e.g., PD-1 or PD-L1). Antibodies are generally described in, for example, Harlow & Lane, Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1988). Unless otherwise apparent from the context, reference to an antibody also includes antibody derivatives as described in more detail below.

“Antibody fragments” comprise a portion of a full length antibody, generally the antigen-binding or variable region thereof, such as Fab, Fab′, F(ab′)2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments. Various techniques have been developed for the production of antibody fragments, including proteolytic digestion of antibodies and recombinant production in host cells; however, other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In some embodiments, the antibody fragment of choice is a single chain Fv fragment (scFv). “Single-chain Fv” or “scFv” antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Generally, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding. For a review of scFv and other antibody fragments, see James D. Marks, Antibody Engineering, Chapter 2, Oxford University Press (1995) (Carl K. Borrebaeck, Ed.).

An “antibody derivative” means an antibody, as defined above, that is modified by covalent attachment of a heterologous molecule such as, e.g., by attachment of a heterologous polypeptide (e.g., a cytotoxin) or therapeutic agent (e.g., a chemotherapeutic agent), or by glycosylation, deglycosylation, acetylation or phosphorylation not normally associated with the antibody, and the like.

The term “monoclonal antibody” refers to an antibody that is derived from a single cell clone, including any eukaryotic or prokaryotic cell clone, or a phage clone, and not the method by which it is produced. Thus, the term “monoclonal antibody” is not limited to antibodies produced through hybridoma technology.

“Biological sample” refers to any sample from a patient in which cancerous cells can be obtained and protein expression can be evaluated and/or RNA can be isolated. Suitable biological samples include, but are not limited to, blood, lymph fluid, bone marrow, sputum, a solid tumor sample, or any combination thereof. In some embodiments, the biological sample can be formalin-fixed paraffin-embedded tissue (FFPET).

As used here, “block(s) the interaction” refers to the ability of an anti-PD-1 antibody or an anti-PD-L1 antibody to inhibit or reduce binding of PD-L1 to PD-1, such that signaling/functioning through PD-1 is abolished or diminished.

As used herein, “FGFR variant” refers to an alteration in the wild type FGFR gene, including, but not limited to, FGFR fusion genes, FGFR mutations, FGFR amplifications, or any combination thereof “FGFR fusion” or “FGFR fusion gene” refers to a gene encoding a portion of FGFR (e.g., FGRF2 or FGFR3) and one of the herein disclosed fusion partners created by a translocation between the two genes.

As used herein, “patient” is intended to mean any animal, in particular, mammals. Thus, the methods are applicable to human and nonhuman animals, although most preferably with humans. “Patient” and “subject” may be used interchangeably herein.

“Pharmaceutically effective amount” refers to an amount of an antibody that blocks the interaction between PD-1 and PD-L1 and an amount of an FGFR inhibitor that treats the patient.

As used herein, “treating” and like terms refer to reducing the severity and/or frequency of cancer symptoms, eliminating cancer symptoms and/or the underlying cause of said symptoms, reducing the frequency or likelihood of cancer symptoms and/or their underlying cause, and improving or remediating damage caused, directly or indirectly, by cancer.

Disclosed herein are methods of treating cancer in a patient comprising: administering to the patient a pharmaceutically effective amount of an antibody that blocks the interaction between PD-1 and PD-L1 and a pharmaceutically effective amount of an FGFR inhibitor, wherein the antibody that blocks the interaction between PD-1 and PD-L1 and the FGFR inhibitor are administered if one or more FGFR variants are present in a biological sample from the patient.

PD-1 is a cell surface receptor expressed on the surface of CD4+ and CD8+ T cells, B cells, and myeloid cells. The ligands of PD-1, PD-L1 and PD-L2, are expressed on immune cells; in addition, PD-L1 is also expressed on cancer cells. When engaged by its ligands, PD-1 downregulates the immune response by reducing T cell proliferation, cytokine production and effector function. Antibodies against PD-1 (anti-PD-1 antibodies) and/or its ligands (anti-PD-L1 antibodies, for example) can block the interaction between PD-1 and PD-L1, thereby inhibiting the downregulation of the immune response. The disclosed methods comprise administering to the patient a pharmaceutically effective amount of an antibody that blocks the interaction between PD-1 and PD-L1. In some embodiments, the methods can comprise administering to the patient a pharmaceutically effective amount of an anti-PD-1 antibody. In some embodiments, the methods can comprise administering to the patient a pharmaceutically effective amount of an anti-PD-L1 antibody. In some embodiments, the methods can comprise administering to the patient a pharmaceutically effective amount of an anti-PD-1 antibody and an anti-PD-L1 antibody.

Exemplary anti-PD-1 antibodies include, but are not limited to, OPDIVO® (nivolumab) (Bristol-Myers Squibb) and KEYTRUDA® (pembrolizumab) (Merck). Exemplary anti-PD-L1 antibodies include, but are not limited to, MPDL3208A (Roche) and MEDI4736 (AstraZeneca).

Exemplary FGFR inhibitors are described in U.S. Publ. No. 2013/0072457 A1 (incorporated herein by reference) and include N-(3,5-dimethoxyphenyl)-N′-(1-methylethyl)-N-[3-(1-methyl-1H-pyrazol-4-yl)quinoxalin-6-yl]ethane-1,2-diamine (referred to herein “JNJ-42756493”), including any tautomeric or stereochemically isomeric forms thereof, N-oxides thereof, pharmaceutically acceptable salts thereof, or solvates thereof (suitable R groups are also disclosed in U.S. Publ. No. 2013/0072457 A1). Thus, in some embodiments, the FGFR inhibitor can be the compound of formula (I):


or a pharmaceutically acceptable salt thereof. In some aspects, the pharmaceutically acceptable salt is a HCl salt.

The antibody that blocks the interaction between PD-1 and PD-L1 and the FGFR inhibitor can be administered as a single therapeutic agent or can be co-administered as individual agents. When administered as individual agents, the antibody and FGFR inhibitor can be administered contemporaneously or sequentially in either order. In some embodiments, the antibody that blocks the interaction between PD-1 and PD-L1 and the FGFR inhibitor can be administered contemporaneously. In some embodiments, the antibody that blocks the interaction between PD-1 and PD-L1 can be administered sequentially. In some aspects, for example, the antibody that blocks the interaction between PD-1 and PD-L1 can be administered first, followed by administration of the FGFR inhibitor. In other aspects, the FGFR inhibitor can be administered first, followed by administration of the antibody that blocks the interaction between PD-1 and PD-L1. When administered sequentially, the antibody and FGFR inhibitor can be administered within seconds, minutes, hours, days, or weeks of each other.

The pharmaceutically effective amount of the antibody that blocks the interaction between PD-1 and PD-L1 and FGFR inhibitor will be dependent on several factors including, but not limited to, stage and severity of the cancer, as well as other factors relating to the health of the patient. Those skilled in the art would know how to determine the pharmaceutically effective amount.

The disclosed methods are suitable for treating cancer in a patient if one or more FGFR variants are present in a biological sample from the patient. In some embodiments, the FGFR variant can be one or more FGFR fusion genes. In some embodiments, the FGFR variant can be one or more FGFR mutations. In some embodiments, the FGFR variant can be one or more FGFR amplifications. In some embodiments, a combination of the one or more FGFR variants can be present in the biological sample from the patient. For example, in some embodiments, the FGFR variants can be one or more FGFR fusion genes and one or more FGFR mutations. In some embodiments, the FGFR variants can be one or more FGFR fusion genes and one or more FGFR amplifications. In some embodiments, the FGFR variants can be one or more FGFR mutations and one or more FGFR amplifications. In yet other embodiments, the FGFR variants can be one or more FGFR fusion genes, mutations, and amplifications.

Exemplary FGFR fusion genes are provided in Table 1 and include, but are not limited to: FGFR2:AFF3; FGFR2:BICC1; FGFR2:CASP7; FGFR2:CCDC6; FGFR2:OFD1; FGFR3:BAIAP2L1; FGFR3:TACC3-Intron; FGFR3:TACC3V1; FGFR3:TACC3V3; or a combination thereof. The sequences of the FGFR fusion genes are disclosed in Table 6.

TABLE 1 Exemplary FGFR fusion genes Fusion Gene FGFR Exon Partner Exon FGFR2 FGFR2:AFF3 19 8 FGFR2:BICC1 19 3 FGFR2:CASP7 19 4 FGFR2:CCDC6 19 2 FGFR2:OFD1 19 3 FGFR3 FGFR3:BAIAP2L1 18 2 FGFR3:TACC3 Intron 18 4 FGFR3:TACC3 v1 18 11 FCFR3:TACC3 v3 18 10

The methods can further comprise evaluating the presence of one or more FGFR variants in the biological sample before the administering step. Suitable methods for evaluating a biological sample for the presence of one or more FGFR variants are disclosed elsewhere herein.

The disclosed methods can be dependent upon PD-L1 expression in the cancer or can be carried out irrespectively of PD-L1 expression in the cancer. In some embodiments, for example, the methods can comprise administering to the patient a pharmaceutically effective amount of an antibody that blocks the interaction between PD-1 and PD-L1 and a pharmaceutically effective amount of an FGFR inhibitor, wherein the antibody that blocks the interaction between PD-1 and PD-L1 and the FGFR inhibitor are administered if one or more FGFR variants are present in a biological sample from the patient and PD-L1 expression in the biological sample from the patient is at a specified level or within a specified range. In some aspects, for example, the methods can be carried out if the PD-L1 expression is high in the biological sample. Accordingly, in some embodiments the methods can comprise administering to the patient a pharmaceutically effective amount of an antibody that blocks the interaction between PD-1 and PD-L1 and a pharmaceutically effective amount of an FGFR inhibitor, wherein the antibody that blocks the interaction between PD-1 and PD-L1 and the FGFR inhibitor are administered if PD-L1 expression is high and one or more FGFR variants are present in a biological sample from the patient. Alternatively, the methods can be carried out if the PD-L1 expression is low in the biological sample. Accordingly, the methods can comprise administering to the patient a pharmaceutically effective amount of an antibody that blocks the interaction between PD-1 and PD-L1 and a pharmaceutically effective amount of an FGFR inhibitor, wherein the antibody that blocks the interaction between PD-1 and PD-L1 and the FGFR inhibitor are administered if PD-L1 expression is low and one or more FGFR variants are present in a biological sample from the patient. The methods can be carried out if the PD-L1 expression is moderate. Accordingly, the methods can comprise administering to the patient a pharmaceutically effective amount of an antibody that blocks the interaction between PD-1 and PD-L1 and a pharmaceutically effective amount of an FGFR inhibitor, wherein the antibody that blocks the interaction between PD-1 and PD-L1 and the FGFR inhibitor are administered if PD-L1 expression is moderate and one or more FGFR variants are present in a biological sample from the patient. As discussed elsewhere herein, PD-L1 expression levels can be based upon a numerical H-score (low includes an H-score of about 0 to about 99; moderate includes an H-score of about 100 to about 199; and high includes an H-score of about 200 to about 300) or can be based upon a comparison to a reference value.

In other embodiments, the methods can be carried out irrespectively of PD-L1 expression in the biological sample from the patient and can be based on the presence of one or more FGFR variants without factoring in PD-L1 expression.

The methods can further comprise evaluating PD-L1 expression in the biological sample from the patient. Exemplary methods of evaluating PD-L1 expression are disclosed elsewhere herein. PD-L1 expression can be evaluated before, during, or after the administering step.

In some embodiments, the methods can comprise evaluating the presence of one or more FGFR variants and PD-L1 expression in the biological sample from the patient before the administering step.

Suitable biological samples evaluating PD-L1 expression, evaluating the presence of one or more FGFR variants, or for evaluating both PD-L1 expression and the presence of one or more FGFR variants include, but are not limited to, blood, lymph fluid, bone marrow, a solid tumor sample, or any combination thereof.

The disclosed methods can be used to treat a variety of cancer types including, but not limited to, lung cancer, bladder cancer, gastric cancer, breast cancer, ovarian cancer, head and neck cancer, esophageal cancer, glioblastoma, or any combination thereof. In some embodiments, the methods can be used to treat lung cancer. The lung cancer can be non-small cell lung cancer (NSCLC) adenocarcinoma, NSCLC squamous cell carcinoma, small cell lung cancer, or any combination thereof. Thus, in some aspects, the methods can be used to treat NSCLC adenocarcinoma. In other aspects, the methods can be used to treat NSCLC squamous cell carcinoma. In yet other aspects, the methods can be used to treat small cell lung cancer. In some embodiments, the methods can be used to treat bladder cancer. In some embodiments, the methods can be used to treat gastric cancer. In some embodiments, the methods can be used to treat breast cancer. In some embodiments, the methods can be used to treat ovarian cancer. In some embodiments, the methods can be used to treat head and neck cancer. In some embodiments, the methods can be used to treat esophageal cancer. In some embodiments, the methods can be used to treat glioblastoma. In some embodiments, the methods can be used to treat any combination of the above cancers.

Also disclosed are methods of treating cancer in a patient comprising: administering to the patient a pharmaceutically effective amount of an antibody that blocks the interaction between PD-1 and PD-L1; monitoring the efficacy of the antibody; and if the antibody is not efficacious, evaluating a biological sample from the patient for a presence of one or more FGFR variants and administering to the patient a pharmaceutically effective amount of an FGFR inhibitor if the one or more FGFR variants are present in the sample.

The efficacy of the antibody can be monitored by, for example, evaluating the patient's symptoms for progression of the cancer, evaluating the severity of the cancer symptoms, evaluating the frequency of the cancer symptoms, measuring tumor size, or any combination thereof. Without intent to be limiting, progression or failure to reduce the progression of the cancer, increased severity or no change in severity of the cancer symptoms, increased frequency or no change in the frequency of the cancer symptoms, increased size or no change in size of the tumor, or any combination thereof, can be indications that the antibody is not efficacious.

In some embodiments, the methods can comprise administering to the patient a pharmaceutically effective amount of an anti-PD-1 antibody. In some embodiments, the methods can comprise administering to the patient a pharmaceutically effective amount of an anti-PD-L1 antibody. In some embodiments, the methods can comprise administering to the patient a pharmaceutically effective amount of an anti-PD-1 antibody and an anti-PD-L1 antibody. Exemplary anti-PD-1 antibodies include, but are not limited to, OPDIVO® (nivolumab) (Bristol-Myers Squibb) and KEYTRUDA® (pembrolizumab) (Merck). Exemplary anti-PD-L1 antibodies include, but are not limited to, MPDL3208A (Roche) and MEDI4736 (AstraZeneca).

Exemplary FGFR inhibitors include those disclosed above, including N-(3,5-dimethoxyphenyl)-N′-(1-methylethyl)-N-[3-(1-methyl-1H-pyrazol-4-yl)quinoxalin-6-yl]ethane-1,2-diamine (referred to herein “JNJ-42756493”), including any tautomeric or stereochemically isomeric forms thereof, N-oxides thereof, pharmaceutically acceptable salts thereof, or solvates thereof (suitable R groups are also disclosed in U.S. Publ. No. 2013/0072457 A1). In some embodiments, the FGFR inhibitor can be the compound of formula (I):


or a pharmaceutically acceptable salt thereof. In some aspects, the pharmaceutically acceptable salt is a HCl salt.

The pharmaceutically effective amount of the antibody and FGFR inhibitor will be dependent on several factors including, but not limited to, stage and severity of the cancer, as well as other factors relating to the health of the patient. Those skilled in the art would know how to determine the pharmaceutically effective amount.

The disclosed methods are suitable for treating cancer in a patient if one or more FGFR variants are present in a biological sample from the patient. In some embodiments, the FGFR variant can be one or more FGFR fusion genes. In some embodiments, the FGFR variant can be one or more FGFR mutations. In some embodiments, the FGFR variant can be one or more FGFR amplifications. In some embodiments, a combination of the one or more FGFR variants can be present in the biological sample from the patient. For example, in some embodiments, the FGFR variants can be one or more FGFR fusion genes and one or more FGFR mutations. In some embodiments, the FGFR variants can be one or more FGFR fusion genes and one or more FGFR amplifications. In some embodiments, the FGFR variants can be one or more FGFR mutations and one or more FGFR amplifications. In yet other embodiments, the FGFR variants can be one or more FGFR fusion genes, mutations, and amplifications. Exemplary FGFR fusion genes are provided in Table 1 and include, but are not limited to: FGFR2:AFF3; FGFR2:BICC1; FGFR2:CASP7; FGFR2:CCDC6; FGFR2:OFD1; FGFR3:BAIAP2L1; FGFR3:TACC3-Intron; FGFR3:TACC3V1; FGFR3:TACC3V3; or a combination thereof.

Suitable methods for evaluating a biological sample for the presence of one or more FGFR variants are disclosed elsewhere herein.

The disclosed methods can be dependent upon PD-L1 expression in the biological sample or can be carried out irrespectively of PD-L1 expression in the cancer. In some aspects, for example, if the antibody is not efficacious, the methods can comprise measuring an expression level of PD-L1 in the biological sample and administering to the patient a pharmaceutically effective amount of an FGFR inhibitor if the PD-L1 expression is at a specified level or within a specified range. Methods of evaluating PD-L1 expression are disclosed elsewhere herein. The methods can be carried out if the PD-1 expression in the biological sample is low. In some embodiments, for example, the evaluating step can further comprise measuring an expression level of PD-L1 in the biological sample and the second administering step can comprise administering the FGFR inhibitor if the expression level of PD-L1 is low. In some aspects, methods of treating cancer in a patient comprise: administering to the patient a pharmaceutically effective amount of an antibody that blocks the interaction between PD-1 and PD-L1; monitoring the efficacy of the antibody; and if the antibody is not efficacious, evaluating a biological sample from the patient for a presence of one or more FGFR variants and measuring an expression level of PD-L1 in the biological sample, and administering to the patient a pharmaceutically effective amount of an FGFR inhibitor if the one or more FGFR variants are present and if the expression level of PD-L1 is low in the sample.

The methods can be carried out if the PD-1 expression in the biological sample is moderate. Thus, the evaluating step can further comprise measuring an expression level of PD-L1 in the biological sample and the second administering step can comprise administering the FGFR inhibitor if the expression level of PD-L1 is moderate. The methods can be carried out if the PD-1 expression in the biological sample is high. For example, the evaluating step can further comprise measuring an expression level of PD-L1 in the biological sample and the second administering step can comprise administering the FGFR inhibitor if the expression level of PD-L1 is high.

As discussed elsewhere herein, PD-L1 expression levels can be based upon a numerical H-score (low includes an H-score of about 0 to about 99; moderate includes an H-score of about 100 to about 199; and high includes an H-score of about 200 to about 300) or can be based upon a comparison to a reference value.

In other embodiments, the methods can be carried out irrespectively of PD-L1 expression in the cancer and can be based on the presence of one or more FGFR variants in the biological sample without factoring in PD-L1 expression.

Suitable biological samples include, but are not limited to, blood, lymph fluid, bone marrow, a solid tumor sample, or any combination thereof.

The disclosed methods can be used to treat a variety of cancer types including, but not limited to, lung cancer, bladder cancer, gastric cancer, breast cancer, ovarian cancer, head and neck cancer, esophageal cancer, glioblastoma, or any combination thereof. In some embodiments, the methods can be used to treat lung cancer. The lung cancer can be non-small cell lung cancer (NSCLC) adenocarcinoma, NSCLC squamous cell carcinoma, small cell lung cancer, or any combination thereof. Thus, in some aspects, the methods can be used to treat NSCLC adenocarcinoma. In other aspects, the methods can be used to treat NSCLC squamous cell carcinoma. In yet other aspects, the methods can be used to treat small cell lung cancer. In some embodiments, the methods can be used to treat bladder cancer. In some embodiments, the methods can be used to treat gastric cancer. In some embodiments, the methods can be used to treat breast cancer. In some embodiments, the methods can be used to treat ovarian cancer. In some embodiments, the methods can be used to treat head and neck cancer. In some embodiments, the methods can be used to treat esophageal cancer. In some embodiments, the methods can be used to treat glioblastoma. In some embodiments, the methods can be used to treat any combination of the above cancers.

Evaluating a Sample for the Presence of One or More FGFR Variants

The following methods for evaluating a biological sample for the presence of one or more FGFR variants apply equally to any of the above disclosed methods of treatment.

Suitable methods for evaluating a biological sample for the presence of one or more FGFR variants are described in the methods section herein and in U.S. Provisional Patent App. No. 62/056,159, which is incorporated herein in its entirety. For example, and without intent to be limiting, evaluating a biological sample for the presence of one or more FGFR variants can comprise any combination of the following steps: isolating RNA from the biological sample; synthesizing cDNA from the RNA; and amplifying the cDNA (preamplified or non-preamplified). In some embodiments, evaluating a biological sample for the presence of one or more FGFR variants can comprise: amplifying cDNA from the patient with a pair of primers that bind to and amplify one or more FGFR variants; and determining whether the one or more FGFR variants are present in the sample. In some aspects, the cDNA can be pre-amplified. In some aspects, the evaluating step can comprise isolating RNA from the sample, synthesizing cDNA from the isolated RNA, and pre-amplifying the cDNA.

Suitable primer pairs for performing an amplification step include, but are not limited to, those disclosed in U.S. Provisional Patent App. No. 62/056,159, as exemplified below:

FGFR3TACC3 V1 Forward: GACCTGGACCGTGTCCTTACC (SEQ ID NO: 1) Reverse: CTTCCCCAGTTCCAGGTTCTT (SEQ ID NO: 2) FGFR3TACC3 V3 Forward: AGGACCTGGACCGTGTCCTT (SEQ ID NO: 3) Reverse: TATAGGTCCGGTGGACAGGG (SEQ ID NO: 4) FGFR3TACC3 Forward: GGCCATCCTGCCCCC (SEQ ID NO: 5) Intron Reverse: GAGCAGTCCAGGTCAGCCAG (SEQ ID NO: 6) FGFR3BAIAP2L1 Forward: CTGGACCGTGTCCTTACCGT (SEQ ID NO: 7) Reverse: GCAGCCCAGGATTGAACTGT (SEQ ID NO: 8) FGFR2BICC1 Forward: TGGATCGAATTCTCACTCTCACA (SEQ ID NO: 9) Reverse: GCCAAGCAATCTGCGTATTTG (SEQ ID NO: 10) FGFR2AFF3 Forward: TGGTAGAAGACTTGGATCGAATTCT (SEQ ID NO: 11) Reverse: TCTCCCGGATTATTTCTTCAACA (SEQ ID NO: 12) FGFR2CASP7 Forward: GCTCTTCAATACAGCCCTGATCA (SEQ ID NO: 13) Reverse: ACTTGGATCGAATTCTCACTCTCA (SEQ ID NO: 14) FGFR2CCDC6 Forward: TGGATCGAATTCTCACTCTCACA (SEQ ID NO: 15) Reverse: GCAAAGCCTGAATTTTCTTGAATAA (SEQ ID NO: 16) FGFR2OFD1 Forward: AGGGTGCATCAACTCATGAATTAG (SEQ ID NO: 17) Reverse: ACTTGGATCGAATTCTCACTCTCA (SEQ ID NO: 18)

The presence of one or more FGFR variants can be evaluated at any suitable time point including upon diagnosis, following tumor resection, following first-line therapy, during clinical treatment, or any combination thereof.

Evaluating PD-L1 Expression in the Cancer

The following methods for evaluating PD-L1 expression in a biological sample apply equally to any of the above disclosed methods of treatment.

In some embodiments, the disclosed methods can be dependent upon PD-L1 expression in the biological sample from the patient. Thus, administering to the patient a pharmaceutically effective amount of an antibody that blocks the interaction between PD-1 and PD-L1 and a pharmaceutically effective amount of an FGFR inhibitor may be based upon PD-L1 expression and the presence of one or more FGFR variants in the biological sample from the patient. The methods can comprise evaluating PD-L1 expression in a biological sample from the patient. The biological sample from which PD-L1 expression is evaluated can be the same biological sample from which the presence of one or more FGFR variants are evaluated, or the biological samples from which PD-L1 expression is evaluated can be a different biological sample from which the presence of one or more FGFR variants are evaluated. “Same biological sample” refers to a single sample from which both PD-L1 expression and FGFR variants are evaluated. “Different biological sample” includes the same source of sample (blood, lymph fluid, bone marrow, a solid tumor sample, etc.) taken at different time points or different sources of sample. For example, a blood sample can be obtained from the patient, evaluated for PD-L1 expression or the presence of one or more FGFR variants, and at a later time point, another blood sample can be obtained from the patient and evaluated for the presence of one or more FGFR variants or PD-L1 expression. Conversely, a blood sample can be obtained from the patient and evaluated for PD-L1 expression and/or the presence of one or more FGFR variants and a solid tumor sample can be obtained from the patient and evaluated for the presence of one or more FGFR variants and/or PD-L1 expression.

In some embodiments, the level of PD-L1 expression can be converted into a numerical H-score (as described in the methods section herein). The level of PD-L1 expression can be converted into a numerical H-score of: low PD-L1 expression, which includes an H-score of about 0 to about 99; moderate PD-L1 expression, which includes an H-score of about 100 to about 199; or high PD-L1 expression, which includes an H-score of about 200 to about 300. Treating the patient can be based upon these H-scores. For example, if the treatment methods are carried out on a patient with a low H-score, that patient would have PD-L1 expression corresponding to an H-score of about 0 to about 99. If the treatment methods are carried out on a patient with a moderate H-score, that patient would have PD-L1 expression corresponding to an H-score of about 100 to about 199. If the treatment methods are carried out on a patient with a high H-score, that patient would have PD-L1 expression corresponding to an H-score of about 200 to about 300.

In other embodiments, the level of PD-L1 expression can be compared to a reference PD-L1 expression level. In a preferred embodiment, the reference PD-L1 expression level can be predetermined. For example, a reference data set may be established using samples from unrelated patients with low, moderate and high PD-L1 expression levels. This data set can represent a standard by which relative PD-L1 expression levels are compared among patients and/or quantified using the H-Score method. In some embodiments, the reference PD-L1 expression level can be determined by comparing a patient population that is administered the antibody that blocks the interaction between PD-1 and PD-L1 to a patient population that is administered placebo. The PD-L1 expression level for each patient in the respective populations can be determined in accordance with the methods described herein. Clinical outcomes (e.g., progression-free survival or overall survival) for the patient populations can be monitored. Clinical outcomes for the patient populations relative to PD-L1 expression levels can then be compared. The reference PD-L1 expression level can correspond to the PD-L1 expression level above which the patient population that is administered the antibody that blocks the interaction between PD-1 and PD-L1 demonstrates a statistically significant improvement in at least one clinical outcome relative to the patient population that is administered placebo. A patient PD-L1 expression level that is less than the reference PD-L1 expression level, particularly when combined with the presence of one or more FGFR variants in a patient sample, can be indicative that the patient will benefit from treatment with the antibody that that blocks the interaction between PD-1 and PD-L1 in combination with an FGFR inhibitor. For example, in some embodiments, the methods can comprise administering an antibody that blocks the interaction between PD-1 and PD-L1 and an FGFR inhibitor, wherein the antibody that blocks the interaction between PD-1 and PD-L1 and the FGFR inhibitor are administered if one or more FGFR variants are present in a biological sample from the patient and the PD-L1 expression in the biological sample is less than a reference PD-L1 expression level, wherein the reference PD-L1 expression level corresponds to a PD-L1 expression level above which treatment with the antibody that blocks the interaction between PD-1 and PD-L1 alone is likely to be efficacious.

Methods for determining PD-L1 expression include, but are not limited to, immunohistochemistry (IHC), Western Blotting, microscopy, immunoprecipitation, BCA assays, spectrophotometry, or any combination thereof. Exemplary methods for evaluating PD-L1 expression are described in the methods section herein.

PD-L1 expression can be evaluated at any suitable time point including upon diagnosis, following tumor resection, following first-line therapy, during clinical treatment, or any combination thereof.

The following examples are provided to further describe some of the embodiments disclosed herein. The examples are intended to illustrate, not to limit, the disclosed embodiments.

EXAMPLES

Methods

PD-L1 Immunohistochemistry

PD-L1 immunohistochemistry (IHC) was performed at a CRO (QualTek, Newtown, Pa.). Samples were stained using a CD274 PD-L1 (RUO) assay. Slides stained with a CD274 PD-L1 (RUO) assay were examined in random order and/or in blinded fashion by a board-certified clinical pathologist, the Medical Director of QualTek Clinical Laboratories (CAP/CLIA facility). The entire tissue section was evaluated for CD274 PD-L1. Only viable tissue was evaluated; areas of necrosis or obviously poorly fixed areas of tissue were not evaluated.

The tumor H-Score was calculated from the intensity of CD274 PD-L1 membrane reactivity on a four-point semi-quantitative scale (0: null, negative or non-specific staining of cell membranes; 1+: low or weak intensity staining of cell membranes; 2+: medium or moderate intensity staining of cell membranes; and 3+: high or strong intensity staining of cell membranes) and the estimated percentage of CD274 PD-L1 positive tumor cells (0-100%) for each discrete intensity value.

Tumor CD274 PD-L1 membrane reactivity was captured by a standard H-Score−the tumor H-Score minimum of 0 and the tumor H-Score maximum of 300: Tumor H-Score=([% positive cells at 1+]*1)+([% positive cells at 2+]*2)+([% positive cells at 3+]*3)

Next-Generation Sequencing (NGS)

NGS for FGFR mutations and gene amplification was performed by Foundation Medicine, Cambridge, Mass. using the FoundationOne panel (http://www.foundationmedicine.com).

FGFR Fusions

FGFR fusions were determined using a proprietary qRT-PCR assay developed by Janssen Oncology Translational Research as described in U.S. Provisional Application No. 62/056,159.

Results

PD-L1 Expression in Tumors with FGFR Fusions and Mutations

To determine the overlap of PD-L1 expression with FGFR alterations, immunohistochemistry (IHC) for PD-L1 was performed on human tumor tissue samples which were subsequently assessed for FGFR alterations. FGFR amplifications and mutations were identified using next-generation sequencing (Foundation Medicine panel, FMI). FGFR fusions were screened for using a Janssen-developed qRT-PCR assay.

Correlation of FGFR Mutations and Amplification with PD-L1

PD-L1 expression was first assessed in a set of 120 commercially sourced lung FFPE tumor tissues comprised of forty of each of the following lung tumor histologies; non-small-cell lung carcinoma (NSCLC) adenocarcinoma; NSCLC squamous cell carcinoma; and small-cell lung cancer (SCLC). FGFR mutations and gene amplification were detected using the Foundation Medicine panel. PD-L1 staining versus FGFR status was plotted for each tumor type (FIG. 1). PD-L1 expression was largely reserved to tumors without FGFR mutations or amplifications. Out of nine samples with FGFR mutations, no PD-L1 staining was observed in seven samples (78%). Two of the nine samples showed very low PD-L1 staining with H-scores of 20 and 70, respectively. Of four samples with FGFR gene amplification, one sample showed moderate-high PD-L1 staining (H-score=140), with three having almost no staining (H-score=4, n=1). No staining was observed in the one tumor sample harboring both an FGFR mutation and FGFR gene amplification. FGFR mutation and amplification status was unknown for 24 tumor samples, of which nine exhibited PD-L1 staining with H-scores ranging from 55 to 220.

FGFR Fusions and PD-L1 Expression in Bladder and NSCLC

The set of 120 lung FFPE tumor tissues was subsequently screened for FGFR fusions using a Janssen-developed qRT-PCR assay (as described in U.S. Provisional Application No. 62/056,159) detecting nine fusions (Table 1). Results for PD-L1 expression by FGFR fusion status for the NSCLC tumor samples (n=80) are shown in FIG. 2. Twenty-three percent (7/31) of NSCLC adenocarcinoma samples, and 52% (13/25) of NSCLC squamous cell carcinoma tumor samples were positive for FGFR fusions. All fusion-positive adenocarcinoma samples exhibited no or low PD-L1 expression, 6/7 (86%) or 1/7 (14%), respectively (Table 2). Fusion-negative adenocarcinoma samples showed a range of PD-L1 from no expression (12/31, 39%), low (12/31, 39%), moderate (4/31, 13%), to high PD-L1 (3/31, 10%) (Table 2). Fusion-positive squamous cell carcinoma sample PD-L1 H-scores were equally distributed across the no expression, low, moderate, or high expression categories (4/31, 31% each respectively) (Table 3). Fusion-negative squamous samples also showed a range of H-scores from no expression (6/25, 24%), low (11/25, 44%), moderate (5/25, 20%), and high expression (3/25, 12%) (Table 3).

TABLE 2 NSCLC Adenocarcinoma - PD-L1 H-Scores by FGFR fusion status NSCLC Adeno- H-Score Range carcinoma 0 1-25 26-50 51-99 100-199 200-300 Category: No Low Mod. High Fusion  6 (86%) 1 (14%) Positive Fusion 12 (39%) 9 (29%) 2 (6%) 1 (3%)  4 (13%) 3 (10%) Negative

TABLE 3 NSCLC Squamous Cell Carcinoma - PD-L1 H-Scores by FGFR fusion status NSCLC H-Score Range Squamous 0 1-25 26-50 51-99 100-199 200-300 Category: No Low Mod. High Fusion 4 (31%) 2 (15%) 1 (8%) 1 (8%) 4 (31%) 1 (8%)  Positive Fusion 6 (24%) 8 (32%) 2 (8%) 1 (4%) 5 (20%) 3 (12%) Negative

Forty-five commercially sourced bladder tumors were sequenced for mutations by the Foundation Medicine panel (FMI), stained for PD-L1 expression, and screened for FGFR gene fusions using the Janssen qRT-PCR assay. Forty-two of 45 samples (93%) were positive for FGFR fusions. Five samples (11%) were positive for an FGFR mutation (FGFR3-R248C or FGFR3-S249C), all of which were also positive for FGFR fusions. PD-L1 staining H-scores for samples with FGFR alterations are summarized in Table 4, and listed in Table 5. For FGFR fusion positive samples, 22/37 (59%) were negative for PD-L1 staining. Ten FGFR fusion-positive samples (27%) expressed low levels of PD-L1, and five samples (14%) showed high PD-L1 expression. All samples with both FGFR mutations and FGFR fusions in the same tumor sample (n=5) were negative for PD-L1 staining. Overall, PD-L1 staining was absent in 64% (27/42) of bladder samples with FGFR alterations, keeping in mind that almost all of the tumors in this sample set were positive for FGFR fusions.

FGFR mutation and PD-L1 expression data were available for seven commercially sourced metastatic NSCLC samples with FGFR fusions (Janssen). No PD-L1 staining was observed in 4/7 (57%) of samples. Two samples exhibited very low PD-L1 staining, H-scores of 4 and 15. One sample showed moderate PD-L1 with an H-score of 160. Interestingly, the FGFR fusion-positive sample with moderate PD-L1 staining harbored an FGFR4 V550I mutation—an FGFR gatekeeper residue mutation with potential to confer resistance to tyrosine kinase inhibitors.

Overall these data show that the majority of commercially available tumor samples harboring FGFR alterations have very little expression or do not express PD-L1.

TABLE 4 PD-L1 staining in FGFR fusion positive bladder samples H-Score Range n = 42 0 1-25 26-50 51-99 100-199 200-300 Category: No Low Mod. High Fusion Positive 22 8 2 5 Fusion +  5 Mutation % of Total 64% 19% 0% 5% 0% 12% FGFR + Samples Expressing per Category

TABLE 5 PD-L1 expression, FGFR fusion and mutation status in commercial bladder and NSCLC tumor samples Janssen Tumor FGFR H-Score Sample ID Type FGFR Fusion Gene(s) Mutation (0-300) 2329 Bladder None None 300 2425 Bladder FGFR3:BAIA/FGFR2:CASP7/ None 300 FGFR2:OFD1 F26993.C3a Bladder FGFR3:BAIA/FGFR2:AFF/ None 300 FGFR2:CASP7/FGFR2:CCDC6 F5244.E22b Bladder FGFR2:CASP7 None 300 F28052.E14a Bladder FGFR2:BICC1/FGFR2:AFF3/ None 280 FGFR2:CCDC6 F27999.D25 Bladder FGFR3:BAIA/FGFR2:CCDC6 None 250 F7799.H25b Bladder FGFR3:BAIAP2L/FGFR2:CASP7/ None 70 FGFR2:OFD F28057.D1a Bladder FGFR3:BAIA None 60 F15377.A2 Bladder FGFR2:AFF3 None 21 F28137.G3b Bladder FGFR3:TACC3v3/FGFR2:AFF3 None 20 F7538.A1b Bladder FGFR3:BAIAP2L/FGFR2:BICC1/ None 20 FGFR:AFF3/FGFR2:CASP7 F26375.A2 Bladder FGFR3:BAIA/FGFR2:AFF/ None 18 FGFR2:CASP7 F7830.G3ba Bladder FGFR2:CASP7 None 10 F7860.B2b Bladder FGFR2:AFF3FGFR2:CASP7 None 10 F27338.C4a Bladder FGFR3:BAIA/FGFR2:CASP7 None 6 F5242.G10ba Bladder FGFR2:CASP7 None 3 2319 Bladder FGFR2:CASP7 None 0 2321 Bladder None None 0 2346 Bladder FGFR3:BAIA/FGFR2:CASP7/ None 0 FGFR2:OFD1 2347 Bladder FGFR3:BAIAP2L1/ FGFR3-S249C 0 FGFR2:CCDC6 2362 Bladder FGFR3:TACC3v1/FGFR3:TACC3v3/ FGFR3-S249C 0 FGFR3:BAIA/FGFR2:BICC1/FGFR2: AFF3/FGFR2:CASP7/FGFR2: CCDC6 2376 Bladder FGFR3:TACC3,v1/FGFR2: None 0 BICC1/FGFR2:CASP7 2381 Bladder FGFR3:BAIA/FGFR2:AFF3/ FGFR3-R248C 0 FGFR2:CASP7 FGFR3-S249C 2430 Bladder FGFR3:BAIA/FGFR2:CASP7 None 0 2434 Bladder FGFR3:BAIA None 0 2458 Bladder FGFR3:BAIA/FGFR2:AFF3/ FGFR3-R248C 0 FGFR2:CASP7 2455 Bladder None None 0 2473 Bladder FGFR2:AFF3/FGFR2:OFD1 None 0 2480 Bladder FGFR2:OFD1 None 0 2518 Bladder FGFR3:BAIA/FGFR2:AFF3/ None 0 FGFR2:CASP7/FGFGFR2:OFD1 2533 Bladder FGFR2:OFD1 None 0 2541 Bladder FGFR2:CASP7/FGFR2:OFD1 None 0 2561 Bladder FGFR3:BAIA/FGFR2:BICC1/ None 0 FGFR2:AFF3/FGFR2:CASP7 2563 Bladder FGFR2:OFD1 None 0 4916 Bladder FGFR2:OFD1 None 0 F27064.CFS Bladder FGFR3:BAIA/FGFR2:AFF/ None 0 FGFR2:CASP7 F28132.Ba Bladder FGFR3:TACC3v1/FGFR3:BAIAP2L/ None 0 FGFR2:BICC1/FGFR2:CCDC6 F7269.C2 Bladder FGFR3:BAIAP2L/FGFR2:CASP7 None 0 F7271.AFSb Bladder FGFR2:AFF3/FGFR2:CASP7 None 0 F7467.D1bb Bladder FGFR2:AFF3/FGFR2:CASP7/ None 0 FGFR2:CCDC6 F7484.BFSc Bladder FGFR2:AFF3 None 0 F7502.D1b Bladder FGFR2:AFF3/FGFR2:CASP7 FGFR3-S249C 0 F7789.DFSb Bladder FGFR3:BAIAP2L/FGFR2:CASP7 FGFR2-M537I 0 F7876.D1bb Bladder FGFR3:BAIAP2L/FGFR2:OFD1 None 0 I-7290.E13a Bladder FGFR2:CASP7 None 0 CNT06GK NSCLC FGFR3:TACC3intron FGFR4-V550I 160 CNT0RHX NSCLC FGFR3:BAIAP2L None 15 CNT0RFD NSCLC FGFR2:BICC1 None 4 CNT06FI NSCLC FGFR2:AFF3 None 0 CNT06FJ NSCLC FGFR2:CCDC6 None 0 CNT06G5 NSCLC FGFR3:TACC3v1/FGFR3:TACC3intron/ None 0 FGFR2:AFF3 CNT0RFX NSCLC FGFR3:BAIAP2L/FGFR2:CASP7 None 0

FGFR in Vitro Experiments

To determine the effects of JNJ427564493 on immune cell viability in vitro, peripheral blood mononuclear cells (PBMCs) from normal donors were stimulated with anti-CD3 antibodies to activate T cells, in the presence of increasing concentrations of JNJ42756493. Unstimulated PBMCs were also included to determine if JNJ42756493 affected unactivated immune populations. Cell viability was assessed at four different time points, over 6 days. FIG. 3 shows the luminescence signal, as a measurement of cell viability, in the presence of increasing concentrations of JNJ42756493 (up to 1 μM) at days 1, 2, 5 and 6 post-treatment. For both the stimulated and unstimulated groups, at all time points tested, cell viability remained constant with increasing concentrations of compound. These data suggest that the addition of JNJ42756493 does not impair immune cell viability.

JNJ42756493 was next tested to analyze the impact on the activity of anti-PD-1 antibodies in two in vitro functional assays: Mixed Lymphocyte Reaction (MLR); and Cytomegalovirus antigen assay (CMV). For the MLR assay, CD4+ T cells are stimulated with allogeneic dendritic cells, leading to T cell activation and IFN-γ secretion. In this assay, anti-PD-1 antibodies caused dose-dependent increases in IFN-γ levels (FIG. 4, PD-1 alone). When T cells and DCs were treated with 0.01, 1 or 100 nM of JNJ42756493, IFN-γ levels were similar to those observed in the untreated samples (FIG. 4, JNJ-493 alone vs controls), suggesting that FGFR inhibition does not affect T cell activation. Furthermore, combinations of JNJ42756493 with anti-PD-1 antibodies caused similar IFN-γ secretion as observed with anti-PD-1 treatment alone (FIG. 4, JNJ-493+anti-PD-1 compared to PD-1 alone). These results suggest that JNJ42756493 does not impair the functional activity of anti-PD-1 antibodies in the MLR assay.

In the CMV assay, PBMCs from CMV-reactive donors were stimulated by the addition of CMV antigen. CMV-reactive T cells are active, expand and secrete pro-inflammatory cytokines such as IFN-γ. In the presence of anti-PD-1 antibodies, significantly higher levels of IFN-γ were secreted upon CMV stimulation (FIG. 5, PD-1 alone). In contrast, JNJ42756493 alone had no impact on cytokine levels (FIG. 5, JNJ-493 alone). Similarly, JNJ42756493 combinations with anti-PD-1 antibodies led to similar increases of IFN-γ as seen with anti-PD-1 alone (FIG. 5, JNJ42756493+anti-PD-1 compared to PD-1 alone). These data show that JNJ42756493 does not affect the activity of anti-PD-1 antibodies in the CMV assay.

Those skilled in the art will appreciate that numerous changes and modifications can be made to the preferred embodiments and that such changes and modifications can be made without departing from the spirit of the invention. It is, therefore, intended that the appended claims cover all such equivalent variations as fall within the true spirit and scope of the invention.

The disclosures of each patent, patent application, and publication cited or described in this document are hereby incorporated herein by reference, in its entirety.

Nucleotide Sequence of FGFR Fusion Genes

The nucleotide sequences for the FGFR fusion cDNA are provided in Table 6. The underlined sequences correspond to either FGFR3 or FGFR2, the sequences in black represent the fusion partners and the sequence in italic fonts represent the intron sequence of the FGFR3 gene.

TABLE 6 FGFR3:TACC3 v1 >ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGTGGCC (2850 base pairs) GGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGCGAGCGGCA (SEQ ID NO: 19) GAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTCTTCGGCAGCGGG GATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGGTCCCATGGGGCCCACTG TCTGGGTCAAGGATGGCACAGGGCTGGTGCCCTCGGAGCGTGTCCTGGTGGGGC CCCAGCGGCTGCAGGTGCTGAATGCCTCCCACGAGGACTCCGGGGCCTACAGCT GCCGGCAGCGGCTCACGCAGCGCGTACTGTGCCACTTCAGTGTGCGGGTGACAG ACGCTCCATCCTCGGGAGATGACGAAGACGGGGAGGACGAGGCTGAGGACACA GGTGTGGACACAGGGGCCCCTTACTGGACACGGCCCGAGCGGATGGACAAGAAG CTGCTGGCCGTGCCGGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCA ACCCCACTCCCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGC ACCGCATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAA GCGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGTTTG GCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCGCACCGGC CCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCTGGGCAGCGACG TGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCCACATCCAGTGGCTCA AGCACGTGGAGGTGAATGGCAGCAAGGTGGGCCCGGACGGCACACCCTACGTTA CCGTGCTCAAGACGGCGGGCGCTAACACCACCGACAAGGAGCTAGAGGTTCTCT CCTTGCACAACGTCACCTTTGAGGACGCCGGGGAGTACACCTGCCTGGCGGGCA ATTCTATTGGGTTTTCTCATCACTCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGA GGAGCTGGTGGAGGCTGACGAGGCGGGCAGTGTGTATGCAGGCATCCTCAGCTA CGGGGTGGGCTTCTTCCTGTTCATCCTGGTGGTGGCGGCTGTGACGCTCTGCCGC CTGCGCAGCCCCCCCAAGAAAGGCCTGGGCTCCCCCACCGTGCACAAGATCTCCC GCTTCCCGCTCAAGCGACAGGTGTCCCTGGAGTCCAACGCGTCCATGAGCTCCAA CACACCACTGGTGCGCATCGCAAGGCTGTCCTCAGGGGAGGGCCCCACGCTGGC CAATGTCTCCGAGCTCGAGCTGCCTGCCGACCCCAAATGGGAGCTGTCTCGGGCC CGGCTGACCCTGGGCAAGCCCCTTGGGGAGGGCTGCTTCGGCCAGGTGGTCATG GCGGAGGCCATCGGCATTGACAAGGACCGGGCCGCCAAGCCTGTCACCGTAGCC GTGAAGATGCTGAAAGACGATGCCACTGACAAGGACCTGTCGGACCTGGTGTCT GAGATGGAGATGATGAAGATGATCGGGAAACACAAAAACATCATCAACCTGCTG GGCGCCTGCACGCAGGGCGGGCCCCTGTACGTGCTGGTGGAGTACGCGGCCAAG GGTAACCTGCGGGAGTTTCTGCGGGCGCGGCGGCCCCCGGGCCTGGACTACTCCT TCGACACCTGCAAGCCGCCCGAGGAGCAGCTCACCTTCAAGGACCTGGTGTCCTG TGCCTACCAGGTGGCCCGGGGCATGGAGTACTTGGCCTCCCAGAAGTGCATCCAC AGGGACCTGGCTGCCCGCAATGTGCTGGTGACCGAGGACAACGTGATGAAGATC GCAGACTTCGGGCTGGCCCGGGACGTGCACAACCTCGACTACTACAAGAAGACG ACCAACGGCCGGCTGCCCGTGAAGTGGATGGCGCCTGAGGCCTTGTTTGACCGA GTCTACACTCACCAGAGTGACGTCTGGTCCTTTGGGGTCCTGCTCTGGGAGATCT TCACGCTGGGGGGCTCCCCGTACCCCGGCATCCCTGTGGAGGAGCTCTTCAAGCT GCTGAAGGAGGGCCACCGCATGGACAAGCCCGCCAACTGCACACACGACCTGTA CATGATCATGCGGGAGTGCTGGCATGCCGCGCCCTCCCAGAGGCCCACCTTCAAG CAGCTGGTGGAGGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACGTAAAG GCGACACAGGAGGAGAACCGGGAGCTGAGGAGCAGGTGTGAGGAGCTCCACGG GAAGAACCTGGAACTGGGGAAGATCATGGACAGGTTCGAAGAGGTTGTGTACCA GGCCATGGAGGAAGTTCAGAAGCAGAAGGAACTTTCCAAAGCTGAAATCCAGAA AGTTCTAAAAGAAAAAGACCAACTTACCACAGATCTGAACTCCATGGAGAAGTC CTTCTCCGACCTCTTCAAGCGTTTTGAGAAACAGAAAGAGGTGATCGAGGGCTAC CGCAAGAACGAAGAGTCACTGAAGAAGTGCGTGGAGGATTACCTGGCAAGGATC ACCCAGGAGGGCCAGAGGTACCAAGCCCTGAAGGCCCACGCGGAGGAGAAGCT GCAGCTGGCAAACGAGGAGATCGCCCAGGTCCGGAGCAAGGCCCAGGCGGAAG CGTTGGCCCTCCAGGCCAGCCTGAGGAAGGAGCAGATGCGCATCCAGTCGCTGG AGAAGACAGTGGAGCAGAAGACTAAAGAGAACGAGGAGCTGACCAGGATCTGC GACGACCTCATCTCCAAGATGGAGAAGATCTGA FGFR3:TACC3 v3 <ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGTGGCC (2955 base pairs) GGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGCGAGCGGCA (SEQ ID NO: 20) GAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTCTTCGGCAGCGGG GATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGGTCCCATGGGGCCCACTG TCTGGGTCAAGGATGGCACAGGGCTGGTGCCCTCGGAGCGTGTCCTGGTGGGGC CCCAGCGGCTGCAGGTGCTGAATGCCTCCCACGAGGACTCCGGGGCCTACAGCT GCCGGCAGCGGCTCACGCAGCGCGTACTGTGCCACTTCAGTGTGCGGGTGACAG ACGCTCCATCCTCGGGAGATGACGAAGACGGGGAGGACGAGGCTGAGGACACA GGTGTGGACACAGGGGCCCCTTACTGGACACGGCCCGAGCGGATGGACAAGAAG CTGCTGGCCGTGCCGGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCA ACCCCACTCCCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGC ACCGCATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAA GCGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGTTTG GCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCGCACCGGC CCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCTGGGCAGCGACG TGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCCACATCCAGTGGCTCA AGCACGTGGAGGTGAATGGCAGCAAGGTGGGCCCGGACGGCACACCCTACGTTA CCGTGCTCAAGACGGCGGGCGCTAACACCACCGACAAGGAGCTAGAGGTTCTCT CCTTGCACAACGTCACCTTTGAGGACGCCGGGGAGTACACCTGCCTGGCGGGCA ATTCTATTGGGTTTTCTCATCACTCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGA GGAGCTGGTGGAGGCTGACGAGGCGGGCAGTGTGTATGCAGGCATCCTCAGCTA CGGGGTGGGCTTCTTCCTGTTCATCCTGGTGGTGGCGGCTGTGACGCTCTGCCGC CTGCGCAGCCCCCCCAAGAAAGGCCTGGGCTCCCCCACCGTGCACAAGATCTCCC GCTTCCCGCTCAAGCGACAGGTGTCCCTGGAGTCCAACGCGTCCATGAGCTCCAA CACACCACTGGTGCGCATCGCAAGGCTGTCCTCAGGGGAGGGCCCCACGCTGGC CAATGTCTCCGAGCTCGAGCTGCCTGCCGACCCCAAATGGGAGCTGTCTCGGGCC CGGCTGACCCTGGGCAAGCCCCTTGGGGAGGGCTGCTTCGGCCAGGTGGTCATG GCGGAGGCCATCGGCATTGACAAGGACCGGGCCGCCAAGCCTGTCACCGTAGCC GTGAAGATGCTGAAAGACGATGCCACTGACAAGGACCTGTCGGACCTGGTGTCT GAGATGGAGATGATGAAGATGATCGGGAAACACAAAAACATCATCAACCTGCTG GGCGCCTGCACGCAGGGCGGGCCCCTGTACGTGCTGGTGGAGTACGCGGCCAAG GGTAACCTGCGGGAGTTTCTGCGGGCGCGGCGGCCCCCGGGCCTGGACTACTCCT TCGACACCTGCAAGCCGCCCGAGGAGCAGCTCACCTTCAAGGACCTGGTGTCCTG TGCCTACCAGGTGGCCCGGGGCATGGAGTACTTGGCCTCCCAGAAGTGCATCCAC AGGGACCTGGCTGCCCGCAATGTGCTGGTGACCGAGGACAACGTGATGAAGATC GCAGACTTCGGGCTGGCCCGGGACGTGCACAACCTCGACTACTACAAGAAGACG ACCAACGGCCGGCTGCCCGTGAAGTGGATGGCGCCTGAGGCCTTGTTTGACCGA GTCTACACTCACCAGAGTGACGTCTGGTCCTTTGGGGTCCTGCTCTGGGAGATCT TCACGCTGGGGGGCTCCCCGTACCCCGGCATCCCTGTGGAGGAGCTCTTCAAGCT GCTGAAGGAGGGCCACCGCATGGACAAGCCCGCCAACTGCACACACGACCTGTA CATGATCATGCGGGAGTGCTGGCATGCCGCGCCCTCCCAGAGGCCCACCTTCAAG CAGCTGGTGGAGGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACGTGCCAG GCCCACCCCCAGGTGTTCCCGCGCCTGGGGGCCCACCCCTGTCCACCGGACCTAT AGTGGACCTGCTCCAGTACAGCCAGAAGGACCTGGATGCAGTGGTAAAGGCGAC ACAGGAGGAGAACCGGGAGCTGAGGAGCAGGTGTGAGGAGCTCCACGGGAAGA ACCTGGAACTGGGGAAGATCATGGACAGGTTCGAAGAGGTTGTGTACCAGGCCA TGGAGGAAGTTCAGAAGCAGAAGGAACTTTCCAAAGCTGAAATCCAGAAAGTTC TAAAAGAAAAAGACCAACTTACCACAGATCTGAACTCCATGGAGAAGTCCTTCT CCGACCTCTTCAAGCGTTTTGAGAAACAGAAAGAGGTGATCGAGGGCTACCGCA AGAACGAAGAGTCACTGAAGAAGTGCGTGGAGGATTACCTGGCAAGGATCACCC AGGAGGGCCAGAGGTACCAAGCCCTGAAGGCCCACGCGGAGGAGAAGCTGCAG CTGGCAAACGAGGAGATCGCCCAGGTCCGGAGCAAGGCCCAGGCGGAAGCGTTG GCCCTCCAGGCCAGCCTGAGGAAGGAGCAGATGCGCATCCAGTCGCTGGAGAAG ACAGTGGAGCAGAAGACTAAAGAGAACGAGGAGCTGACCAGGATCTGCGACGA CCTCATCTCCAAGATGGAGAAGATCTGA FGFR3 <ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGTGGCC Intron:TACC3 GGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGCGAGCGGCA (4462 base pairs) GAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTCTTCGGCAGCGGG (SEQ ID NO: 21) GATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGGTCCCATGGGGCCCACTG TCTGGGTCAAGGATGGCACAGGGCTGGTGCCCTCGGAGCGTGTCCTGGTGGGGC CCCAGCGGCTGCAGGTGCTGAATGCCTCCCACGAGGACTCCGGGGCCTACAGCT GCCGGCAGCGGCTCACGCAGCGCGTACTGTGCCACTTCAGTGTGCGGGTGACAG ACGCTCCATCCTCGGGAGATGACGAAGACGGGGAGGACGAGGCTGAGGACACA GGTGTGGACACAGGGGCCCCTTACTGGACACGGCCCGAGCGGATGGACAAGAAG CTGCTGGCCGTGCCGGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCA ACCCCACTCCCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGC ACCGCATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAA GCGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGTTTG GCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCGCACCGGC CCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCTGGGCAGCGACG TGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCCACATCCAGTGGCTCA AGCACGTGGAGGTGAATGGCAGCAAGGTGGGCCCGGACGGCACACCCTACGTTA CCGTGCTCAAGACGGCGGGCGCTAACACCACCGACAAGGAGCTAGAGGTTCTCT CCTTGCACAACGTCACCTTTGAGGACGCCGGGGAGTACACCTGCCTGGCGGGCA ATTCTATTGGGTTTTCTCATCACTCTGCGTGGCTGGTGGTGCTGCCAGCCGAGGA GGAGCTGGTGGAGGCTGACGAGGCGGGCAGTGTGTATGCAGGCATCCTCAGCTA CGGGGTGGGCTTCTTCCTGTTCATCCTGGTGGTGGCGGCTGTGACGCTCTGCCGC CTGCGCAGCCCCCCCAAGAAAGGCCTGGGCTCCCCCACCGTGCACAAGATCTCCC GCTTCCCGCTCAAGCGACAGGTGTCCCTGGAGTCCAACGCGTCCATGAGCTCCAA CACACCACTGGTGCGCATCGCAAGGCTGTCCTCAGGGGAGGGCCCCACGCTGGC CAATGTCTCCGAGCTCGAGCTGCCTGCCGACCCCAAATGGGAGCTGTCTCGGGCC CGGCTGACCCTGGGCAAGCCCCTTGGGGAGGGCTGCTTCGGCCAGGTGGTCATG GCGGAGGCCATCGGCATTGACAAGGACCGGGCCGCCAAGCCTGTCACCGTAGCC GTGAAGATGCTGAAAGACGATGCCACTGACAAGGACCTGTCGGACCTGGTGTCT GAGATGGAGATGATGAAGATGATCGGGAAACACAAAAACATCATCAACCTGCTG GGCGCCTGCACGCAGGGCGGGCCCCTGTACGTGCTGGTGGAGTACGCGGCCAAG GGTAACCTGCGGGAGTTTCTGCGGGCGCGGCGGCCCCCGGGCCTGGACTACTCCT TCGACACCTGCAAGCCGCCCGAGGAGCAGCTCACCTTCAAGGACCTGGTGTCCTG TGCCTACCAGGTGGCCCGGGGCATGGAGTACTTGGCCTCCCAGAAGTGCATCCAC AGGGACCTGGCTGCCCGCAATGTGCTGGTGACCGAGGACAACGTGATGAAGATC GCAGACTTCGGGCTGGCCCGGGACGTGCACAACCTCGACTACTACAAGAAGACG ACCAACGGCCGGCTGCCCGTGAAGTGGATGGCGCCTGAGGCCTTGTTTGACCGA GTCTACACTCACCAGAGTGACGTCTGGTCCTTTGGGGTCCTGCTCTGGGAGATCT TCACGCTGGGGGGCTCCCCGTACCCCGGCATCCCTGTGGAGGAGCTCTTCAAGCT GCTGAAGGAGGGCCACCGCATGGACAAGCCCGCCAACTGCACACACGACCTGTA CATGATCATGCGGGAGTGCTGGCATGCCGCGCCCTCCCAGAGGCCCACCTTCAAG CAGCTGGTGGAGGACCTGGACCGTGTCCTTACCGTGACGTCCACCGACgtgagtgctgg ctctggcctggtgccacccgcctatgcccctccccctgccgtccccggccatcctgcccc ccagagtgctgaggtgtggggcgggccttTCTGGCCCAGGTGCCCTGGCTGACCTGGACT GCTCAAGCTCTTCCCAGAGCCCAGGAAGTTCTGAGAACCAAATGGTGTCTCCAGGAAAAG TGTCTGGCAGCCCTGAGCAAGCCGTGGAGGAAAACCTTAGTTCCTATTCCTTAGACAGAA GAGTGACACCCGCCTCTGAGACCCTAGAAGACCCTTGCAGGACAGAGTCCCAGCACAAAG CGGAGACTCCGCACGGAGCCGAGGAAGAATGCAAAGCGGAGACTCCGCACGGAGCCGA GGAGGAATGCCGGCACGGTGGGGTCTGTGCTCCCGCAGCAGTGGCCACTTCGCC TCCTGGTGCAATCCCTAAGGAAGCCTGCGGAGGAGCACCCCTGCAGGGTCTGCCT GGCGAAGCCCTGGGCTGCCCTGCGGGTGTGGGCACCCCCGTGCCAGCAGATGGC ACTCAGACCCTTACCTGTGCACACACCTCTGCTCCTGAGAGCACAGCCCCAACCA ACCACCTGGTGGCTGGCAGGGCCATGACCCTGAGTCCTCAGGAAGAAGTGGCTG CAGGCCAAATGGCCAGCTCCTCGAGGAGCGGACCTGTAAAACTAGAATTTGATG TATCTGATGGCGCCACCAGCAAAAGGGCACCCCCACCAAGGAGACTGGGAGAGA GGTCCGGCCTCAAGCCTCCCTTGAGGAAAGCAGCAGTGAGGCAGCAAAAGGCCC CGCAGGAGGTGGAGGAGGACGACGGTAGGAGCGGAGCAGGAGAGGACCCCCCC ATGCCAGCTTCTCGGGGCTCTTACCACCTCGACTGGGACAAAATGGATGACCCAA ACTTCATCCCGTTCGGAGGTGACACCAAGTCTGGTTGCAGTGAGGCCCAGCCCCC AGAAAGCCCTGAGACCAGGCTGGGCCAGCCAGCGGCTGAACAGTTGCATGCTGG GCCTGCCACGGAGGAGCCAGGTCCCTGTCTGAGCCAGCAGCTGCATTCAGCCTCA GCGGAGGACACGCCTGTGGTGCAGTTGGCAGCCGAGACCCCAACAGCAGAGAGC AAGGAGAGAGCCTTGAACTCTGCCAGCACCTCGCTTCCCACAAGCTGTCCAGGC AGTGAGCCAGTGCCCACCCATCAGCAGGGGCAGCCTGCCTTGGAGCTGAAAGAG GAGAGCTTCAGAGACCCCGCTGAGGTTCTAGGCACGGGCGCGGAGGTGGATTAC CTGGAGCAGTTTGGAACTTCCTCGTTTAAGGAGTCGGCCTTGAGGAAGCAGTCCT TATACCTCAAGTTCGACCCCCTCCTGAGGGACAGTCCTGGTAGACCAGTGCCCGT GGCCACCGAGACCAGCAGCATGCACGGTGCAAATGAGACTCCCTCAGGACGTCC GCGGGAAGCCAAGCTTGTGGAGTTCGATTTCTTGGGAGCACTGGACATTCCTGTG CCAGGCCCACCCCCAGGTGTTCCCGCGCCTGGGGGCCCACCCCTGTCCACCGGAC CTATAGTGGACCTGCTCCAGTACAGCCAGAAGGACCTGGATGCAGTGGTAAAGG CGACACAGGAGGAGAACCGGGAGCTGAGGAGCAGGTGTGAGGAGCTCCACGGG AAGAACCTGGAACTGGGGAAGATCATGGACAGGTTCGAAGAGGTTGTGTACCAG GCCATGGAGGAAGTTCAGAAGCAGAAGGAACTTTCCAAAGCTGAAATCCAGAAA GTTCTAAAAGAAAAAGACCAACTTACCACAGATCTGAACTCCATGGAGAAGTCC TTCTCCGACCTCTTCAAGCGTTTTGAGAAACAGAAAGAGGTGATCGAGGGCTACC GCAAGAACGAAGAGTCACTGAAGAAGTGCGTGGAGGATTACCTGGCAAGGATCA CCCAGGAGGGCCAGAGGTACCAAGCCCTGAAGGCCCACGCGGAGGAGAAGCTG CAGCTGGCAAACGAGGAGATCGCCCAGGTCCGGAGCAAGGCCCAGGCGGAAGC GTTGGCCCTCCAGGCCAGCCTGAGGAAGGAGCAGATGCGCATCCAGTCGCTGGA GAAGACAGTGGAGCAGAAGACTAAAGAGAACGAGGAGCTGACCAGGATCTGCG ACGACCTCATCTCCAAGATGGAGAAGATCTGA FGFR3:BAIAP2L1 >ATGGGCGCCCCTGCCTGCGCCCTCGCGCTCTGCGTGGCCGTGGCCATCGTGGCC (3765 base pairs) GGCGCCTCCTCGGAGTCCTTGGGGACGGAGCAGCGCGTCGTGGGGCGAGCGGCA (SEQ ID NO: 22) GAAGTCCCGGGCCCAGAGCCCGGCCAGCAGGAGCAGTTGGTCTTCGGCAGCGGG GATGCTGTGGAGCTGAGCTGTCCCCCGCCCGGGGGTGGTCCCATGGGGCCCACTG TCTGGGTCAAGGATGGCACAGGGCTGGTGCCCTCGGAGCGTGTCCTGGTGGGGC CCCAGCGGCTGCAGGTGCTGAATGCCTCCCACGAGGACTCCGGGGCCTACAGCT GCCGGCAGCGGCTCACGCAGCGCGTACTGTGCCACTTCAGTGTGCGGGTGACAG ACGCTCCATCCTCGGGAGATGACGAAGACGGGGAGGACGAGGCTGAGGACACA GGTGTGGACACAGGGGCCCCTTACTGGACACGGCCCGAGCGGATGGACAAGAAG CTGCTGGCCGTGCCGGCCGCCAACACCGTCCGCTTCCGCTGCCCAGCCGCTGGCA ACCCCACTCCCTCCATCTCCTGGCTGAAGAACGGCAGGGAGTTCCGCGGCGAGC ACCGCATTGGAGGCATCAAGCTGCGGCATCAGCAGTGGAGCCTGGTCATGGAAA GCGTGGTGCCCTCGGACCGCGGCAACTACACCTGCGTCGTGGAGAACAAGTTTG GCAGCATCCGGCAGACGTACACGCTGGACGTGCTGGAGCGCTCCCCGCACCGGC CCATCCTGCAGGCGGGGCTGCCGGCCAACCAGACGGCGGTGCTGGGCAGCGACG TGGAGTTCCACTGCAAGGTGTACAGTGACGCACAGCCCCACATCCAGTGGCTCA AGCACGTGGAGGTGAATGGCAGCAAGGTGGGCCCGGACGGCACACCCTACGTTA CCGTGCTCAAGTCCTGGATCAGTGAGAGTGTGGAGGCCGACGTGCGCCTCCGCCT GGCCAATGTGTCGGAGCGGGACGGGGGCGAGTACCTCTGTCGAGCCACCAATTT CATAGGCGTGGCCGAGAAGGCCTTTTGGCTGAGCGTTCACGGGCCCCGAGCAGC CGAGGAGGAGCTGGTGGAGGCTGACGAGGCGGGCAGTGTGTATGCAGGCATCCT CAGCTACGGGGTGGGCTTCTTCCTGTTCATCCTGGTGGTGGCGGCTGTGACGCTC TGCCGCCTGCGCAGCCCCCCCAAGAAAGGCCTGGGCTCCCCCACCGTGCACAAG ATCTCCCGCTTCCCGCTCAAGCGACAGGTGTCCCTGGAGTCCAACGCGTCCATGA GCTCCAACACACCACTGGTGCGCATCGCAAGGCTGTCCTCAGGGGAGGGCCCCA CGCTGGCCAATGTCTCCGAGCTCGAGCTGCCTGCCGACCCCAAATGGGAGCTGTC TCGGGCCCGGCTGACCCTGGGCAAGCCCCTTGGGGAGGGCTGCTTCGGCCAGGT GGTCATGGCGGAGGCCATCGGCATTGACAAGGACCGGGCCGCCAAGCCTGTCAC CGTAGCCGTGAAGATGCTGAAAGACGATGCCACTGACAAGGACCTGTCGGACCT GGTGTCTGAGATGGAGATGATGAAGATGATCGGGAAACACAAAAACATCATCAA CCTGCTGGGCGCCTGCACGCAGGGCGGGCCCCTGTACGTGCTGGTGGAGTACGC GGCCAAGGGTAACCTGCGGGAGTTTCTGCGGGCGCGGCGGCCCCCGGGCCTGGA CTACTCCTTCGACACCTGCAAGCCGCCCGAGGAGCAGCTCACCTTCAAGGACCTG GTGTCCTGTGCCTACCAGGTGGCCCGGGGCATGGAGTACTTGGCCTCCCAGAAGT GCATCCACAGGGACCTGGCTGCCCGCAATGTGCTGGTGACCGAGGACAACGTGA TGAAGATCGCAGACTTCGGGCTGGCCCGGGACGTGCACAACCTCGACTACTACA AGAAGACGACCAACGGCCGGCTGCCCGTGAAGTGGATGGCGCCTGAGGCCTTGT TTGACCGAGTCTACACTCACCAGAGTGACGTCTGGTCCTTTGGGGTCCTGCTCTG GGAGATCTTCACGCTGGGGGGCTCCCCGTACCCCGGCATCCCTGTGGAGGAGCTC TTCAAGCTGCTGAAGGAGGGCCACCGCATGGACAAGCCCGCCAACTGCACACAC GACCTGTACATGATCATGCGGGAGTGCTGGCATGCCGCGCCCTCCCAGAGGCCC ACCTTCAAGCAGCTGGTGGAGGACCTGGACCGTGTCCTTACCGTGACGTCCACCG ACAATGTTATGGAACAGTTCAATCCTGGGCTGCGAAATTTAATAAACCTGGGGA AAAATTATGAGAAAGCTGTAAACGCTATGATCCTGGCAGGAAAAGCCTACTACG ATGGAGTGGCCAAGATCGGTGAGATTGCCACTGGGTCCCCCGTGTCAACTGAACT GGGACATGTCCTCATAGAGATTTCAAGTACCCACAAGAAACTCAACGAGAGTCT TGATGAAAATTTTAAAAAATTCCACAAAGAGATTATCCATGAGCTGGAGAAGAA GATAGAACTTGACGTGAAATATATGAACGCAACTCTAAAAAGATACCAAACAGA ACACAAGAATAAATTAGAGTCTTTGGAGAAATCCCAAGCTGAGTTGAAGAAGAT CAGAAGGAAAAGCCAAGGAAGCCGAAACGCACTCAAATATGAACACAAAGAAA TTGAGTATGTGGAGACCGTTACTTCTCGTCAGAGTGAAATCCAGAAATTCATTGC AGATGGTTGCAAAGAGGCTCTGCTTGAAGAGAAGAGGCGCTTCTGCTTTCTGGTT GATAAGCACTGTGGCTTTGCAAACCACATACATTATTATCACTTACAGTCTGCAG AACTACTGAATTCCAAGCTGCCTCGGTGGCAGGAGACCTGTGTTGATGCCATCAA AGTGCCAGAGAAAATCATGAATATGATCGAAGAAATAAAGACCCCAGCCTCTAC CCCCGTGTCTGGAACTCCTCAGGCTTCACCCATGATCGAGAGAAGCAATGTGGTT AGGAAAGATTACGACACCCTTTCTAAATGCTCACCAAAGATGCCCCCCGCTCCTT CAGGCAGAGCATATACCAGTCCCTTGATCGATATGTTTAATAACCCAGCCACGGC TGCCCCGAATTCACAAAGGGTAAATAATTCAACAGGTACTTCCGAAGATCCCAGT TTACAGCGATCAGTTTCGGTTGCAACGGGACTGAACATGATGAAGAAGCAGAAA GTGAAGACCATCTTCCCGCACACTGCGGGCTCCAACAAGACCTTACTCAGCTTTG CACAGGGAGATGTCATCACGCTGCTCATCCCCGAGGAGAAGGATGGCTGGCTCT ATGGAGAACACGACGTGTCCAAGGCGAGGGGTTGGTTCCCGTCGTCGTACACGA AGTTGCTGGAAGAAAATGAGACAGAAGCAGTGACCGTGCCCACGCCAAGCCCCA CACCAGTGAGAAGCATCAGCACCGTGAACTTGTCTGAGAATAGCAGTGTTGTCAT CCCCCCACCCGACTACTTGGAATGCTTGTCCATGGGGGCAGCTGCCGACAGGAG AGCAGATTCGGCCAGGACGACATCCACCTTTAAGGCCCCAGCGTCCAAGCCCGA GACCGCGGCTCCTAACGATGCCAACGGGACTGCAAAGCCGCCTTTTCTCAGCGG AGAAAACCCCTTTGCCACTGTGAAACTCCGCCCGACTGTGACGAATGATCGCTCG GCACCCATCATTCGATGA FGFR2:BICC1 >ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCAACCTTGT (4989 base pairs) CCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACATTAGAGCCAGAAGA (SEQ ID NO: 23) GCCACCAACCAAATACCAAATCTCTCAACCAGAAGTGTACGTGGCTGCGCCAGG GGAGTCGCTAGAGGTGCGCTGCCTGTTGAAAGATGCCGCCGTGATCAGTTGGACT AAGGATGGGGTGCACTTGGGGCCCAACAATAGGACAGTGCTTATTGGGGAGTAC TTGCAGATAAAGGGCGCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCA GTAGGACTGTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCAT CTCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTCAGTGA GAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAAAAGATGGAAA AGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAGTTTCGCTGCCCAGCCGG GGGGAACCCAATGCCAACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCA GGAGCATCGCATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCATTAT GGAAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTAGTGGAGAATGA ATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCAC CGGCCCATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATCCAGTGGA TCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGACGGGCTGCCCTACC TCAAGGTTCTCAAGGCCGCCGGTGTTAACACCACGGACAAAGAGATTGAGGTTC TCTATATTCGGAATGTAACTTTTGAGGACGCTGGGGAATATACGTGCTTGGCGGG TAATTCTATTGGGATATCCTTTCACTCTGCATGGTTGACAGTTCTGCCAGCGCCTG GAAGAGAAAAGGAGATTACAGCTTCCCCAGACTACCTGGAGATAGCCATTTACT GCATAGGGGTCTTCTTAATCGCCTGTATGGTGGTAACAGTCATCCTGTGCCGAAT GAAGAACACGACCAAGAAGCCAGACTTCAGCAGCCAGCCGGCTGTGCACAAGCT GACCAAACGTATCCCCCTGCGGAGACAGGTAACAGTTTCGGCTGAGTCCAGCTCC TCCATGAACTCCAACACCCCGCTGGTGAGGATAACAACACGCCTCTCTTCAACGG CAGACACCCCCATGCTGGCAGGGGTCTCCGAGTATGAACTTCCAGAGGACCCAA AATGGGAGTTTCCAAGAGATAAGCTGACACTGGGCAAGCCCCTGGGAGAAGGTT GCTTTGGGCAAGTGGTCATGGCGGAAGCAGTGGGAATTGACAAAGACAAGCCCA AGGAGGCGGTCACCGTGGCCGTGAAGATGTTGAAAGATGATGCCACAGAGAAAG ACCTTTCTGATCTGGTGTCAGAGATGGAGATGATGAAGATGATTGGGAAACACA AGAATATCATAAATCTTCTTGGAGCCTGCACACAGGATGGGCCTCTCTATGTCAT AGTTGAGTATGCCTCTAAAGGCAACCTCCGAGAATACCTCCGAGCCCGGAGGCC ACCCGGGATGGAGTACTCCTATGACATTAACCGTGTTCCTGAGGAGCAGATGACC TTCAAGGACTTGGTGTCATGCACCTACCAGCTGGCCAGAGGCATGGAGTACTTGG CTTCCCAAAAATGTATTCATCGAGATTTAGCAGCCAGAAATGTTTTGGTAACAGA AAACAATGTGATGAAAATAGCAGACTTTGGACTCGCCAGAGATATCAACAATAT AGACTATTACAAAAAGACCACCAATGGGCGGCTTCCAGTCAAGTGGATGGCTCC AGAAGCCCTGTTTGATAGAGTATACACTCATCAGAGTGATGTCTGGTCCTTCGGG GTGTTAATGTGGGAGATCTTCACTTTAGGGGGCTCGCCCTACCCAGGGATTCCCG TGGAGGAACTTTTTAAGCTGCTGAAGGAAGGACACAGAATGGATAAGCCAGCCA ACTGCACCAACGAACTGTACATGATGATGAGGGACTGTTGGCATGCAGTGCCCTC CCAGAGACCAACGTTCAAGCAGTTGGTAGAAGACTTGGATCGAATTCTCACTCTC ACAACCAATGAGATCATGGAGGAAACAAATACGCAGATTGCTTGGCCATCAAAA CTGAAGATCGGAGCCAAATCCAAGAAAGATCCCCATATTAAGGTTTCTGGAAAG AAAGAAGATGTTAAAGAAGCCAAGGAAATGATCATGTCTGTCTTAGACACAAAA AGCAATCGAGTCACACTGAAGATGGATGTTTCACATACAGAACATTCACATGTA ATCGGCAAAGGTGGCAACAATATTAAAAAAGTGATGGAAGAAACCGGATGCCAT ATCCACTTTCCAGATTCCAACAGGAATAACCAAGCAGAAAAAAGCAACCAGGTA TCTATAGCGGGACAACCAGCAGGAGTAGAATCTGCCCGAGTTAGAATTCGGGAG CTGCTTCCTTTGGTGCTGATGTTTGAGCTACCAATTGCTGGAATTCTTCAACCGGT TCCTGATCCTAATTCCCCCTCTATTCAGCATATATCACAAACGTACAATATTTCAG TATCATTTAAACAGCGTTCCCGAATGTATGGTGCTACTGTCATAGTACGAGGGTC TCAGAATAACACTAGTGCTGTGAAGGAAGGAACTGCCATGCTGTTAGAACATCTT GCTGGGAGCTTAGCATCAGCTATTCCTGTGAGCACACAACTAGATATTGCAGCTC AACATCATCTCTTTATGATGGGTCGAAATGGGAGCAACATCAAACATATCATGCA GAGAACAGGTGCTCAGATCCACTTTCCTGATCCCAGTAATCCACAAAAGAAATCT ACCGTCTACCTCCAGGGCACCATTGAGTCTGTCTGTCTTGCAAGGCAATATCTCA TGGGTTGTCTTCCTCTTGTGTTGATGTTTGATATGAAGGAAGAAATTGAAGTAGA TCCACAATTCATTGCGCAGTTGATGGAACAGCTTGATGTCTTCATCAGTATTAAA CCAAAGCCCAAACAGCCAAGCAAGTCTGTGATTGTGAAAAGTGTTGAGCGAAAT GCCTTAAATATGTATGAAGCAAGGAAATGTCTCCTCGGACTTGAAAGCAGTGGG GTTACCATAGCAACCAGTCCATCCCCAGCATCCTGCCCTGCCGGCCTGGCATGTC CCAGCCTGGATATCTTAGCTTCAGCAGGCCTTGGACTCACTGGACTAGGTCTTTT GGGACCCACCACCTTATCTCTGAACACTTCAACAACCCCAAACTCACTCTTGAAT GCTCTTAATAGCTCAGTCAGTCCTTTGCAAAGTCCAAGTTCTGGTACACCCAGCC CCACATTATGGGCACCCCCACTTGCTAATACTTCAAGTGCCACAGGTTTTTCTGCT ATACCACACCTTATGATTCCATCTACTGCCCAAGCCACATTAACTAATATTTTGTT GTCTGGAGTGCCCACCTATGGGCACACAGCTCCATCTCCCCCTCCTGGCTTGACT CCTGTTGATGTCCATATCAACAGTATGCAGACCGAAGGCAAAAAAATCTCTGCTG CTTTAAATGGACATGCACAGTCTCCAGATATAAAATATGGTGCAATATCCACTTC ATCACTTGGAGAAAAAGTGCTGAGTGCAAATCACGGGGATCCGTCCATCCAGAC AAGTGGGTCTGAGCAGACATCTCCCAAATCAAGCCCCACTGAAGGTTGTAATGA TGCTTTTGTTGAAGTAGGCATGCCTCGAAGTCCTTCCCATTCTGGGAATGCTGGT GACTTGAAACAGATGATGTGTCCCTCCAAGGTTTCCTGTGCCAAAAGGCAGACA GTGGAACTATTGCAAGGCACGAAAAACTCACACTTACACAGCACTGACAGGTTG CTCTCAGACCCTGAACTGAGTGCTACCGAAAGCCCTTTGGCTGACAAGAAGGCTC CAGGGAGTGAGCGCGCTGCAGAGAGGGCAGCAGCTGCCCAGCAAAACTCCGAA AGGGCCCACCTTGCTCCACGGTCATCATATGTCAACATGCAGGCATTTGACTATG AACAGAAGAAGCTATTAGCCACCAAAGCTATGTTAAAGAAACCAGTGGTGACGG AGGTCAGAACGCCCACAAATACCTGGAGTGGCCTGGGTTTTTCTAAATCCATGCC AGCTGAAACTATCAAGGAGTTGAGAAGGGCCAATCATGTGTCCTATAAGCCCAC AATGACAACCACTTATGAGGGCTCATCCATGTCCCTTTCACGGTCCAACAGTCGT GAGCACTTGGGAGGTGGAAGCGAATCTGATAACTGGAGAGACCGAAATGGAATT GGACCTGGAAGTCATAGTGAATTTGCAGCTTCTATTGGCAGCCCTAAGCGTAAAC AAAACAAATCAACGGAACACTATCTCAGCAGTAGCAATTACATGGACTGCATTT CCTCGCTGACAGGAAGCAATGGCTGTAACTTAAATAGCTCTTTCAAAGGTTCTGA CCTCCCTGAGCTCTTCAGCAAACTGGGCCTGGGCAAATACACAGATGTTTTCCAG CAACAAGAGATCGATCTTCAGACATTCCTCACTCTCACAGATCAGGATCTGAAGG AGCTGGGAATAACTACTTTTGGTGCCAGGAGGAAAATGCTGCTTGCAATTTCAGA ACTAAATAAAAACCGAAGAAAGCTTTTTGAATCGCCAAATGCACGCACCTCTTTC CTGGAAGGTGGAGCGAGTGGAAGGCTACCCCGTCAGTATCACTCAGACATTGCT AGTGTCAGTGGCCGCTGGTAG FGFR2:AFF3 >ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCAACCTTGT (5109 base pairs) CCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACATTAGAGCCAGAAGA (SEQ ID NO: 24) GCCACCAACCAAATACCAAATCTCTCAACCAGAAGTGTACGTGGCTGCGCCAGG GGAGTCGCTAGAGGTGCGCTGCCTGTTGAAAGATGCCGCCGTGATCAGTTGGACT AAGGATGGGGTGCACTTGGGGCCCAACAATAGGACAGTGCTTATTGGGGAGTAC TTGCAGATAAAGGGCGCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCA GTAGGACTGTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCAT CTCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTCAGTGA GAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAAAAGATGGAAA AGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAGTTTCGCTGCCCAGCCGG GGGGAACCCAATGCCAACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCA GGAGCATCGCATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCATTAT GGAAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTAGTGGAGAATGA ATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCAC CGGCCCATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATCCAGTGGA TCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGACGGGCTGCCCTACC TCAAGGTTCTCAAGGCCGCCGGTGTTAACACCACGGACAAAGAGATTGAGGTTC TCTATATTCGGAATGTAACTTTTGAGGACGCTGGGGAATATACGTGCTTGGCGGG TAATTCTATTGGGATATCCTTTCACTCTGCATGGTTGACAGTTCTGCCAGCGCCTG GAAGAGAAAAGGAGATTACAGCTTCCCCAGACTACCTGGAGATAGCCATTTACT GCATAGGGGTCTTCTTAATCGCCTGTATGGTGGTAACAGTCATCCTGTGCCGAAT GAAGAACACGACCAAGAAGCCAGACTTCAGCAGCCAGCCGGCTGTGCACAAGCT GACCAAACGTATCCCCCTGCGGAGACAGGTAACAGTTTCGGCTGAGTCCAGCTCC TCCATGAACTCCAACACCCCGCTGGTGAGGATAACAACACGCCTCTCTTCAACGG CAGACACCCCCATGCTGGCAGGGGTCTCCGAGTATGAACTTCCAGAGGACCCAA AATGGGAGTTTCCAAGAGATAAGCTGACACTGGGCAAGCCCCTGGGAGAAGGTT GCTTTGGGCAAGTGGTCATGGCGGAAGCAGTGGGAATTGACAAAGACAAGCCCA AGGAGGCGGTCACCGTGGCCGTGAAGATGTTGAAAGATGATGCCACAGAGAAAG ACCTTTCTGATCTGGTGTCAGAGATGGAGATGATGAAGATGATTGGGAAACACA AGAATATCATAAATCTTCTTGGAGCCTGCACACAGGATGGGCCTCTCTATGTCAT AGTTGAGTATGCCTCTAAAGGCAACCTCCGAGAATACCTCCGAGCCCGGAGGCC ACCCGGGATGGAGTACTCCTATGACATTAACCGTGTTCCTGAGGAGCAGATGACC TTCAAGGACTTGGTGTCATGCACCTACCAGCTGGCCAGAGGCATGGAGTACTTGG CTTCCCAAAAATGTATTCATCGAGATTTAGCAGCCAGAAATGTTTTGGTAACAGA AAACAATGTGATGAAAATAGCAGACTTTGGACTCGCCAGAGATATCAACAATAT AGACTATTACAAAAAGACCACCAATGGGCGGCTTCCAGTCAAGTGGATGGCTCC AGAAGCCCTGTTTGATAGAGTATACACTCATCAGAGTGATGTCTGGTCCTTCGGG GTGTTAATGTGGGAGATCTTCACTTTAGGGGGCTCGCCCTACCCAGGGATTCCCG TGGAGGAACTTTTTAAGCTGCTGAAGGAAGGACACAGAATGGATAAGCCAGCCA ACTGCACCAACGAACTGTACATGATGATGAGGGACTGTTGGCATGCAGTGCCCTC CCAGAGACCAACGTTCAAGCAGTTGGTAGAAGACTTGGATCGAATTCTCACTCTC ACAACCAATGAGGAGAGTAGATCTGGAGAAACCAACAGCTGTGTTGAAGAAATA ATCCGGGAGATGACCTGGCTTCCACCACTTTCTGCTATTCAAGCACCTGGCAAAG TGGAACCAACCAAATTTCCATTTCCAAATAAGGACTCTCAGCTTGTATCCTCTGG ACACAATAATCCAAAGAAAGGTGATGCAGAGCCAGAGAGTCCAGACAGTGGCA CATCGAATACATCAATGCTGGAAGATGACCTTAAGCTAAGCAGTGATGAAGAGG AGAATGAACAGCAGGCAGCTCAGAGAACGGCTCTCCGCGCTCTCTCTGACAGCG CCGTGGTCCAGCAGCCCAACTGCAGAACCTCGGTGCCTTCCAGCAAGGGCAGCA GCAGCAGCAGCAGCAGCGGCAGCAGCAGCTCCTCCAGCGACTCAGAGAGCAGCT CCGGATCTGACTCGGAGACCGAGAGCAGCTCCAGCGAGAGTGAGGGCAGCAAGC CCCCCCACTTCTCCAGCCCCGAGGCTGAACCGGCATCCTCTAACAAGTGGCAGCT GGATAAATGGCTAAACAAAGTTAATCCCCACAAGCCTCCTATTCTGATCCAAAAT GAAAGCCACGGGTCAGAGAGCAATCAGTACTACAACCCGGTGAAAGAGGACGTC CAGGACTGTGGGAAAGTCCCCGACGTTTGCCAGCCCAGCCTGAGAGAGAAGGAG ATCAAGAGCACTTGCAAGGAGGAGCAAAGGCCAAGGACAGCCAACAAGGCCCC TGGGAGTAAAGGCGTGAAGCAGAAGTCCCCGCCCGCGGCCGTGGCCGTGGCGGT GAGCGCAGCCGCCCCGCCACCCGCAGTGCCCTGTGCGCCCGCGGAGAACGCGCC CGCGCCTGCCCGGAGGTCCGCGGGCAAGAAGCCCACCAGGCGCACCGAGAGGAC CTCAGCCGGGGACGGCGCCAACTGCCACCGGCCCGAGGAGCCCGCGGCCGCGGA CGCGCTGGGGACGAGCGTGGTGGTCCCCCCGGAGCCCACCAAAACCAGGCCCTG TGGCAACAACAGAGCGAGCCACCGCAAGGAGCTGCGCTCCTCCGTGACCTGCGA GAAGCGCCGCACGCGGGGGCTAAGCAGGATCGTCCCCAAATCCAAGGAGTTCAT TGAGACAGAGTCGTCATCTTCATCCTCCTCCTCGGACTCCGACCTGGAGTCCGAG CAGGAGGAGTACCCTCTGTCCAAAGCACAGACCGTGGCTGCCTCTGCCTCCTCCG GGAATGATCAGAGGCTGAAGGAGGCCGCTGCCAACGGGGGCAGTGGTCCTAGGG CCCCTGTAGGCTCCATCAACGCCAGGACCACCAGTGACATCGCCAAGGAGCTGG AGGAGCAGTTCTACACACTGGTCCCCTTTGGCCGGAACGAACTTCTCTCCCCTCT AAAGGACAGTGATGAGATCAGGTCTCTCTGGGTCAAAATCGACCTGACCCTCCTG TCCAGGATCCCAGAACACCTGCCCCAGGAGCCAGGGGTATTGAGCGCCCCTGCC ACCAAGGACTCTGAGAGCGCACCGCCCAGCCACACCTCGGACACACCTGCAGAA AAGGCTTTGCCAAAATCCAAGAGGAAACGCAAGTGTGACAACGAAGACGACTAC AGGGAGATCAAGAAGTCCCAGGGAGAGAAAGACAGCTCTTCAAGACTGGCCACC TCCACCAGTAATACTTTGTCTGCAAACCACTGCAACATGAACATCAACAGTGTGG CAATACCAATAAATAAAAATGAAAAAATGCTTCGGTCGCCCATCTCACCCCTCTC TGATGCATCTAAACACAAATACACCAGCGAGGACTTAACTTCTTCCAGCCGACCT AATGGCAACAGTTTGTTTACTTCAGCCTCTTCCAGCAAAAAGCCTAAGGCCGACA GCCAGCTGCAGCCTCACGGCGGAGACCTCACGAAAGCAGCTCACAACAATTCTG AAAACATTCCCCTCCACAAGTCACGGCCGCAGACGAAGCCGTGGTCTCCAGGCT CCAACGGCCACAGGGACTGCAAGAGGCAGAAACTTGTCTTCGATGATATGCCTC GCAGTGCCGATTATTTTATGCAAGAAGCTAAACGAATGAAGCATAAAGCAGATG CAATGGTGGAAAAGTTTGGAAAGGCTTTGAACTATGCTGAAGCAGCATTGTCGTT TATCGAGTGTGGAAATGCAATGGAACAAGGCCCCATGGAATCCAAATCTCCTTAT ACGATGTATTCAGAAACAGTAGAGCTCATCAGGTATGCTATGAGACTAAAAACC CACTCAGGCCCCAATGCCACACCAGAAGACAAACAACTGGCTGCATTATGTTAC CGATGCCTGGCCCTCCTGTACTGGCGGATGTTTCGACTCAAAAGGGACCACGCTG TAAAGTATTCAAAAGCACTAATCGACTATTTCAAGAACTCATCTAAAGCCGCCCA AGCCCCATCTCCGTGGGGGGCCAGTGGAAAGAGCACTGGAACCCCATCCCCCAT GTCTCCCAACCCCTCTCCCGCCAGCTCCGTGGGGTCTCAGGGCAGCCTCTCCAAC GCCAGCGCCCTGTCCCCGTCGACCATCGTCAGCATCCCACAGCGCATCCACCAGA TGGCGGCCAACCACGTCAGCATCACCAACAGCATCCTGCACAGCTACGACTACT GGGAGATGGCCGACAACCTGGCCAAGGAAAACCGAGAATTCTTCAACGACCTGG ATCTGCTCATGGGGCCGGTCACCCTGCACAGCAGCATGGAGCACCTGGTCCAGTA CTCCCAACAGGGCCTGCACTGGCTGCGGAACAGCGCCCACCTGTCATAG FGFR2:CASP7 >ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCAACCTTGT (3213 base pairs) CCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACATTAGAGCCAGAAGA (SEQ ID NO: 25) GCCACCAACCAAATACCAAATCTCTCAACCAGAAGTGTACGTGGCTGCGCCAGG GGAGTCGCTAGAGGTGCGCTGCCTGTTGAAAGATGCCGCCGTGATCAGTTGGACT AAGGATGGGGTGCACTTGGGGCCCAACAATAGGACAGTGCTTATTGGGGAGTAC TTGCAGATAAAGGGCGCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCA GTAGGACTGTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCAT CTCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTCAGTGA GAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAAAAGATGGAAA AGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAGTTTCGCTGCCCAGCCGG GGGGAACCCAATGCCAACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCA GGAGCATCGCATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCATTAT GGAAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTAGTGGAGAATGA ATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCAC CGGCCCATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATCCAGTGGA TCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGACGGGCTGCCCTACC TCAAGGTTCTCAAGGCCGCCGGTGTTAACACCACGGACAAAGAGATTGAGGTTC TCTATATTCGGAATGTAACTTTTGAGGACGCTGGGGAATATACGTGCTTGGCGGG TAATTCTATTGGGATATCCTTTCACTCTGCATGGTTGACAGTTCTGCCAGCGCCTG GAAGAGAAAAGGAGATTACAGCTTCCCCAGACTACCTGGAGATAGCCATTTACT GCATAGGGGTCTTCTTAATCGCCTGTATGGTGGTAACAGTCATCCTGTGCCGAAT GAAGAACACGACCAAGAAGCCAGACTTCAGCAGCCAGCCGGCTGTGCACAAGCT GACCAAACGTATCCCCCTGCGGAGACAGGTAACAGTTTCGGCTGAGTCCAGCTCC TCCATGAACTCCAACACCCCGCTGGTGAGGATAACAACACGCCTCTCTTCAACGG CAGACACCCCCATGCTGGCAGGGGTCTCCGAGTATGAACTTCCAGAGGACCCAA AATGGGAGTTTCCAAGAGATAAGCTGACACTGGGCAAGCCCCTGGGAGAAGGTT GCTTTGGGCAAGTGGTCATGGCGGAAGCAGTGGGAATTGACAAAGACAAGCCCA AGGAGGCGGTCACCGTGGCCGTGAAGATGTTGAAAGATGATGCCACAGAGAAAG ACCTTTCTGATCTGGTGTCAGAGATGGAGATGATGAAGATGATTGGGAAACACA AGAATATCATAAATCTTCTTGGAGCCTGCACACAGGATGGGCCTCTCTATGTCAT AGTTGAGTATGCCTCTAAAGGCAACCTCCGAGAATACCTCCGAGCCCGGAGGCC ACCCGGGATGGAGTACTCCTATGACATTAACCGTGTTCCTGAGGAGCAGATGACC TTCAAGGACTTGGTGTCATGCACCTACCAGCTGGCCAGAGGCATGGAGTACTTGG CTTCCCAAAAATGTATTCATCGAGATTTAGCAGCCAGAAATGTTTTGGTAACAGA AAACAATGTGATGAAAATAGCAGACTTTGGACTCGCCAGAGATATCAACAATAT AGACTATTACAAAAAGACCACCAATGGGCGGCTTCCAGTCAAGTGGATGGCTCC AGAAGCCCTGTTTGATAGAGTATACACTCATCAGAGTGATGTCTGGTCCTTCGGG GTGTTAATGTGGGAGATCTTCACTTTAGGGGGCTCGCCCTACCCAGGGATTCCCG TGGAGGAACTTTTTAAGCTGCTGAAGGAAGGACACAGAATGGATAAGCCAGCCA ACTGCACCAACGAACTGTACATGATGATGAGGGACTGTTGGCATGCAGTGCCCTC CCAGAGACCAACGTTCAAGCAGTTGGTAGAAGACTTGGATCGAATTCTCACTCTC ACAACCAATGAGATGGCAGATGATCAGGGCTGTATTGAAGAGCAGGGGGTTGAG GATTCAGCAAATGAAGATTCAGTGGATGCTAAGCCAGACCGGTCCTCGTTTGTAC CGTCCCTCTTCAGTAAGAAGAAGAAAAATGTCACCATGCGATCCATCAAGACCA CCCGGGACCGAGTGCCTACATATCAGTACAACATGAATTTTGAAAAGCTGGGCA AATGCATCATAATAAACAACAAGAACTTTGATAAAGTGACAGGTATGGGCGTTC GAAACGGAACAGACAAAGATGCCGAGGCGCTCTTCAAGTGCTTCCGAAGCCTGG GTTTTGACGTGATTGTCTATAATGACTGCTCTTGTGCCAAGATGCAAGATCTGCTT AAAAAAGCTTCTGAAGAGGACCATACAAATGCCGCCTGCTTCGCCTGCATCCTCT TAAGCCATGGAGAAGAAAATGTAATTTATGGGAAAGATGGTGTCACACCAATAA AGGATTTGACAGCCCACTTTAGGGGGGATAGATGCAAAACCCTTTTAGAGAAAC CCAAACTCTTCTTCATTCAGGCTTGCCGAGGGACCGAGCTTGATGATGGCATCCA GGCCGACTCGGGGCCCATCAATGACACAGATGCTAATCCTCGATACAAGATCCC AGTGGAAGCTGACTTCCTCTTCGCCTATTCCACGGTTCCAGGCTATTACTCGTGG AGGAGCCCAGGAAGAGGCTCCTGGTTTGTGCAAGCCCTCTGCTCCATCCTGGAGG AGCACGGAAAAGACCTGGAAATCATGCAGATCCTCACCAGGGTGAATGACAGAG TTGCCAGGCACTTTGAGTCTCAGTCTGATGACCCACACTTCCATGAGAAGAAGCA GATCCCCTGTGTGGTCTCCATGCTCACCAAGGAACTCTACTTCAGTCAATAG FGFR2:CCDC6 >ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCAACCTTGT (3423 base pairs) CCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACATTAGAGCCAGAAGA (SEQ ID NO: 26) GCCACCAACCAAATACCAAATCTCTCAACCAGAAGTGTACGTGGCTGCGCCAGG GGAGTCGCTAGAGGTGCGCTGCCTGTTGAAAGATGCCGCCGTGATCAGTTGGACT AAGGATGGGGTGCACTTGGGGCCCAACAATAGGACAGTGCTTATTGGGGAGTAC TTGCAGATAAAGGGCGCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCA GTAGGACTGTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCAT CTCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTCAGTGA GAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAAAAGATGGAAA AGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAGTTTCGCTGCCCAGCCGG GGGGAACCCAATGCCAACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCA GGAGCATCGCATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCATTAT GGAAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTAGTGGAGAATGA ATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCAC CGGCCCATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATCCAGTGGA TCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGACGGGCTGCCCTACC TCAAGGTTCTCAAGGCCGCCGGTGTTAACACCACGGACAAAGAGATTGAGGTTC TCTATATTCGGAATGTAACTTTTGAGGACGCTGGGGAATATACGTGCTTGGCGGG TAATTCTATTGGGATATCCTTTCACTCTGCATGGTTGACAGTTCTGCCAGCGCCTG GAAGAGAAAAGGAGATTACAGCTTCCCCAGACTACCTGGAGATAGCCATTTACT GCATAGGGGTCTTCTTAATCGCCTGTATGGTGGTAACAGTCATCCTGTGCCGAAT GAAGAACACGACCAAGAAGCCAGACTTCAGCAGCCAGCCGGCTGTGCACAAGCT GACCAAACGTATCCCCCTGCGGAGACAGGTAACAGTTTCGGCTGAGTCCAGCTCC TCCATGAACTCCAACACCCCGCTGGTGAGGATAACAACACGCCTCTCTTCAACGG CAGACACCCCCATGCTGGCAGGGGTCTCCGAGTATGAACTTCCAGAGGACCCAA AATGGGAGTTTCCAAGAGATAAGCTGACACTGGGCAAGCCCCTGGGAGAAGGTT GCTTTGGGCAAGTGGTCATGGCGGAAGCAGTGGGAATTGACAAAGACAAGCCCA AGGAGGCGGTCACCGTGGCCGTGAAGATGTTGAAAGATGATGCCACAGAGAAAG ACCTTTCTGATCTGGTGTCAGAGATGGAGATGATGAAGATGATTGGGAAACACA AGAATATCATAAATCTTCTTGGAGCCTGCACACAGGATGGGCCTCTCTATGTCAT AGTTGAGTATGCCTCTAAAGGCAACCTCCGAGAATACCTCCGAGCCCGGAGGCC ACCCGGGATGGAGTACTCCTATGACATTAACCGTGTTCCTGAGGAGCAGATGACC TTCAAGGACTTGGTGTCATGCACCTACCAGCTGGCCAGAGGCATGGAGTACTTGG CTTCCCAAAAATGTATTCATCGAGATTTAGCAGCCAGAAATGTTTTGGTAACAGA AAACAATGTGATGAAAATAGCAGACTTTGGACTCGCCAGAGATATCAACAATAT AGACTATTACAAAAAGACCACCAATGGGCGGCTTCCAGTCAAGTGGATGGCTCC AGAAGCCCTGTTTGATAGAGTATACACTCATCAGAGTGATGTCTGGTCCTTCGGG GTGTTAATGTGGGAGATCTTCACTTTAGGGGGCTCGCCCTACCCAGGGATTCCCG TGGAGGAACTTTTTAAGCTGCTGAAGGAAGGACACAGAATGGATAAGCCAGCCA ACTGCACCAACGAACTGTACATGATGATGAGGGACTGTTGGCATGCAGTGCCCTC CCAGAGACCAACGTTCAAGCAGTTGGTAGAAGACTTGGATCGAATTCTCACTCTC ACAACCAATGAGCAAGCCAGGGCTGAGCAGGAAGAAGAATTCATTAGTAACACT TTATTCAAGAAAATTCAGGCTTTGCAGAAGGAGAAAGAAACCCTTGCTGTAAATT ATGAGAAAGAAGAAGAATTCCTCACTAATGAGCTCTCCAGAAAATTGATGCAGT TGCAGCATGAGAAAGCCGAACTAGAACAGCATCTTGAACAAGAGCAGGAATTTC AGGTCAACAAACTGATGAAGAAAATTAAAAAACTGGAGAATGACACCATTTCTA AGCAACTTACATTAGAACAGTTGAGACGGGAGAAGATTGACCTTGAAAATACAT TGGAACAAGAACAAGAAGCACTAGTTAATCGCCTCTGGAAAAGGATGGATAAGC TTGAAGCTGAAAAGCGAATCCTGCAGGAAAAATTAGACCAGCCCGTCTCTGCTC CACCATCGCCTAGAGATATCTCCATGGAGATTGATTCTCCAGAAAATATGATGCG TCACATCAGGTTTTTAAAGAATGAAGTGGAACGGCTGAAGAAGCAACTGAGAGC TGCTCAGTTACAGCATTCAGAGAAAATGGCACAGTATCTGGAGGAGGAACGTCA CATGAGAGAAGAGAACTTGAGGCTCCAGAGGAAGCTGCAGAGGGAGATGGAGA GAAGAGAAGCCCTCTGTCGACAGCTCTCCGAGAGTGAGTCCAGCTTAGAAATGG ACGACGAAAGGTATTTTAATGAGATGTCTGCACAAGGATTAAGACCTCGCACTGT GTCCAGCCCGATCCCTTACACACCTTCTCCGAGTTCAAGCAGGCCTATATCACCT GGTCTATCATATGCAAGTCACACGGTTGGTTTCACGCCACCAACTTCACTGACTA GAGCTGGAATGTCTTATTACAATTCCCCGGGTCTTCACGTGCAGCACATGGGAAC ATCCCATGGTATCACAAGGCCTTCACCACGGAGAAGCAACAGTCCTGACAAATT CAAACGGCCCACGCCGCCTCCATCTCCCAACACACAGACCCCAGTCCAGCCACCT CCGCCTCCACCTCCGCCACCCATGCAGCCCACGGTCCCCTCAGCAGCCACCTCGC AGCCTACTCCTTCGCAACATTCGGCGCACCCCTCCTCCCAGCCTTAA FGFR2:OFD1 >ATGGTCAGCTGGGGTCGTTTCATCTGCCTGGTCGTGGTCACCATGGCAACCTTGT (5229 base pairs) CCCTGGCCCGGCCCTCCTTCAGTTTAGTTGAGGATACCACATTAGAGCCAGAAGA (SEQ ID NO: 27) GCCACCAACCAAATACCAAATCTCTCAACCAGAAGTGTACGTGGCTGCGCCAGG GGAGTCGCTAGAGGTGCGCTGCCTGTTGAAAGATGCCGCCGTGATCAGTTGGACT AAGGATGGGGTGCACTTGGGGCCCAACAATAGGACAGTGCTTATTGGGGAGTAC TTGCAGATAAAGGGCGCCACGCCTAGAGACTCCGGCCTCTATGCTTGTACTGCCA GTAGGACTGTAGACAGTGAAACTTGGTACTTCATGGTGAATGTCACAGATGCCAT CTCATCCGGAGATGATGAGGATGACACCGATGGTGCGGAAGATTTTGTCAGTGA GAACAGTAACAACAAGAGAGCACCATACTGGACCAACACAGAAAAGATGGAAA AGCGGCTCCATGCTGTGCCTGCGGCCAACACTGTCAAGTTTCGCTGCCCAGCCGG GGGGAACCCAATGCCAACCATGCGGTGGCTGAAAAACGGGAAGGAGTTTAAGCA GGAGCATCGCATTGGAGGCTACAAGGTACGAAACCAGCACTGGAGCCTCATTAT GGAAAGTGTGGTCCCATCTGACAAGGGAAATTATACCTGTGTAGTGGAGAATGA ATACGGGTCCATCAATCACACGTACCACCTGGATGTTGTGGAGCGATCGCCTCAC CGGCCCATCCTCCAAGCCGGACTGCCGGCAAATGCCTCCACAGTGGTCGGAGGA GACGTAGAGTTTGTCTGCAAGGTTTACAGTGATGCCCAGCCCCACATCCAGTGGA TCAAGCACGTGGAAAAGAACGGCAGTAAATACGGGCCCGACGGGCTGCCCTACC TCAAGGTTCTCAAGGCCGCCGGTGTTAACACCACGGACAAAGAGATTGAGGTTC TCTATATTCGGAATGTAACTTTTGAGGACGCTGGGGAATATACGTGCTTGGCGGG TAATTCTATTGGGATATCCTTTCACTCTGCATGGTTGACAGTTCTGCCAGCGCCTG GAAGAGAAAAGGAGATTACAGCTTCCCCAGACTACCTGGAGATAGCCATTTACT GCATAGGGGTCTTCTTAATCGCCTGTATGGTGGTAACAGTCATCCTGTGCCGAAT GAAGAACACGACCAAGAAGCCAGACTTCAGCAGCCAGCCGGCTGTGCACAAGCT GACCAAACGTATCCCCCTGCGGAGACAGGTAACAGTTTCGGCTGAGTCCAGCTCC TCCATGAACTCCAACACCCCGCTGGTGAGGATAACAACACGCCTCTCTTCAACGG CAGACACCCCCATGCTGGCAGGGGTCTCCGAGTATGAACTTCCAGAGGACCCAA AATGGGAGTTTCCAAGAGATAAGCTGACACTGGGCAAGCCCCTGGGAGAAGGTT GCTTTGGGCAAGTGGTCATGGCGGAAGCAGTGGGAATTGACAAAGACAAGCCCA AGGAGGCGGTCACCGTGGCCGTGAAGATGTTGAAAGATGATGCCACAGAGAAAG ACCTTTCTGATCTGGTGTCAGAGATGGAGATGATGAAGATGATTGGGAAACACA AGAATATCATAAATCTTCTTGGAGCCTGCACACAGGATGGGCCTCTCTATGTCAT AGTTGAGTATGCCTCTAAAGGCAACCTCCGAGAATACCTCCGAGCCCGGAGGCC ACCCGGGATGGAGTACTCCTATGACATTAACCGTGTTCCTGAGGAGCAGATGACC TTCAAGGACTTGGTGTCATGCACCTACCAGCTGGCCAGAGGCATGGAGTACTTGG CTTCCCAAAAATGTATTCATCGAGATTTAGCAGCCAGAAATGTTTTGGTAACAGA AAACAATGTGATGAAAATAGCAGACTTTGGACTCGCCAGAGATATCAACAATAT AGACTATTACAAAAAGACCACCAATGGGCGGCTTCCAGTCAAGTGGATGGCTCC AGAAGCCCTGTTTGATAGAGTATACACTCATCAGAGTGATGTCTGGTCCTTCGGG GTGTTAATGTGGGAGATCTTCACTTTAGGGGGCTCGCCCTACCCAGGGATTCCCG TGGAGGAACTTTTTAAGCTGCTGAAGGAAGGACACAGAATGGATAAGCCAGCCA ACTGCACCAACGAACTGTACATGATGATGAGGGACTGTTGGCATGCAGTGCCCTC CCAGAGACCAACGTTCAAGCAGTTGGTAGAAGACTTGGATCGAATTCTCACTCTC ACAACCAATGAGACACAACTTCGAAACCAGCTAATTCATGAGTTGATGCACCCT GTATTGAGTGGAGAACTGCAGCCTCGGTCCATTTCAGTAGAAGGGAGCTCCCTCT TAATAGGCGCCTCTAACTCTTTAGTGGCAGATCACTTACAAAGATGTGGCTATGA ATATTCACTTTCTGTTTTCTTTCCAGAAAGTGGTTTGGCAAAAGAAAAGGTATTTA CTATGCAGGATCTATTACAACTCATTAAAATCAACCCTACTTCCAGTCTCTACAA ATCACTGGTTTCAGGATCTGATAAAGAAAATCAAAAAGGTTTTCTTATGCATTTT TTAAAAGAATTGGCAGAATATCATCAAGCTAAAGAGAGTTGTAATATGGAAACT CAGACAAGTTCGACATTTAACAGAGATTCTCTGGCTGAGAAGCTTCAGCTTATTG ATGATCAGTTTGCAGATGCTTACCCTCAGCGTATCAAGTTCGAATCTTTAGAAAT AAAGCTAAATGAGTATAAGAGAGAAATAGAAGAGCAACTTCGGGCAGAAATGT GTCAAAAGTTGAAGTTTTTTAAAGATACCGAGATAGCAAAAATTAAAATGGAAG CAAAAAAAAAGTATGAAAAGGAGTTAACCATGTTCCAGAATGATTTTGAAAAAG CTTGTCAAGCAAAATCTGAAGCTCTCGTTCTTCGGGAAAAGAGTACCCTTGAAAG AATTCACAAGCACCAAGAGATTGAAACAAAAGAAATTTATGCTCAAAGGCAACT TTTACTAAAAGATATGGATTTGCTAAGAGGAAGAGAAGCAGAGCTGAAGCAAAG AGTTGAAGCTTTTGAATTGAACCAGAAGCTCCAGGAAGAAAAACATAAAAGCAT AACTGAGGCACTTAGGAGACAGGAGCAGAATATAAAGAGTTTTGAGGAGACCTA TGACCGAAAGCTCAAGAATGAACTTCTAAAGTATCAACTTGAACTGAAGGATGA CTACATCATTAGAACTAATCGACTGATTGAAGATGAAAGGAAGAATAAAGAAAA AGCTGTTCATTTGCAAGAGGAGCTCATAGCTATTAATTCAAAAAAGGAGGAACT CAATCAATCTGTAAATCGTGTGAAAGAACTTGAGCTTGAATTAGAGTCTGTCAAA GCCCAGTCTTTGGCAATAACAAAACAAAACCATATGCTGAATGAAAAGGTTAAA GAGATGAGTGATTATTCACTACTAAAAGAAGAGAAACTGGAGCTTCTGGCACAA AATAAATTACTTAAACAACAACTGGAAGAGAGTAGAAATGAAAACCTGCGTCTC CTAAACCGCCTAGCTCAGCCGGCTCCTGAACTTGCAGTCTTTCAGAAAGAACTAC GGAAAGCCGAAAAGGCTATAGTGGTTGAGCATGAGGAGTTCGAAAGCTGCAGGC AAGCTCTGCACAAACAACTGCAAGACGAAATTGAGCATTCTGCACAGCTGAAGG CCCAGATTCTAGGTTACAAAGCTTCTGTAAAGAGTTTAACTACTCAGGTTGCCGA TTTAAAATTGCAACTGAAGCAAACTCAGACAGCCCTAGAGAATGAAGTGTACTG CAATCCAAAGCAGTCTGTGATCGATCGTTCTGTCAATGGATTAATAAATGGCAAT GTGGTGCCTTGCAATGGTGAGATAAGTGGGGATTTCTTGAACAATCCTTTTAAAC AGGAAAACGTTCTAGCACGTATGGTTGCATCAAGGATCACAAATTATCCAACTGC ATGGGTGGAGGGTAGTTCCCCTGATTCTGACCTTGAGTTTGTAGCCAATACTAAG GCAAGGGTCAAAGAGCTTCAGCAAGAGGCCGAACGCTTGGAAAAGGCTTTCAGA AGTTACCATCGGAGAGTCATTAAAAACTCTGCCAAAAGCCCACTAGCAGCAAAG AGCCCACCATCTCTGCACTTGCTGGAAGCCTTCAAAAACATTACTTCCAGTTCCC CGGAAAGACATATTTTTGGAGAGGACAGAGTTGTCTCTGAGCAGCCTCAAGTGG GCACACTTGAAGAAAGGAATGACGTCGTGGAAGCACTGACAGGCAGTGCAGCCT CGAGGCTCCGCGGGGGCACTTCCTCCAGACGCCTCTCTTCCACACCCCTTCCAAA AGCAAAAAGAAGCCTCGAAAGTGAAATGTATCTGGAAGGTCTGGGCAGATCACA CATTGCTTCCCCCAGTCCTTGTCCTGACAGAATGCCCCTACCATCACCCACTGAGT CTAGGCACAGCCTCTCCATCCCTCCTGTCTCCAGCCCTCCGGAGCAGAAAGTGGG TCTTTATCGAAGACAAACTGAACTTCAAGACAAAAGTGAATTTTCAGATGTGGAC AAGCTAGCTTTTAAGGATAATGAGGAGTTTGAATCATCTTTTGAATCTGCAGGGA ACATGCCAAGGCAGTTGGAAATGGGCGGGCTTTCTCCTGCCGGGGATATGTCTCA TGTGGACGCTGCTGCAGCTGCTGTGCCCCTCTCATATCAGCACCCAAGTGTAGAT CAGAAACAAATTGAAGAACAAAAGGAAGAAGAAAAAATACGGGAACAGCAAGT GAAAGAACGAAGGCAGAGAGAAGAAAGAAGGCAGAGTAACCTACAAGAAGTTT TAGAAAGGGAACGAAGAGAACTAGAAAAACTGTATCAGGAAAGGAAGATGATT GAAGAATCACTGAAGATTAAAATAAAAAAGGAATTAGAAATGGAAAATGAATT AGAAATGAGTAATCAAGAAATAAAAGACAAATCTGCTCACAGTGAAAATCCTTT AGAGAAATACATGAAAATCATCCAGCAGGAGCAAGACCAGGAGTCGGCAGATA AGAGCTCAAAAAAGATGGTCCAAGAAGGCTCCCTAGTGGACACGCTGCAATCTA GTGACAAAGTCGAAAGTTTAACAGGCTTTTCTCATGAAGAACTAGACGACTCTTG GTAA

Claims

1. A method of treating cancer in a patient comprising:

administering to the patient a pharmaceutically effective amount of an antibody that blocks the interaction between PD-1 and PD-L1;
monitoring the efficacy of the antibody; and
if the antibody is not efficacious, evaluating a biological sample from the patient for a presence of one or more FGFR variants, wherein the one or more FGFR variants comprise an FGFR fusion gene, and wherein the FGFR fusion gene is FGFR2:AFF3; FGFR2:BICC1; FGFR2:CASP7; FGFR2:CCDC6; FGFR2:OFD1; FGFR3:BAIAP2L1; FGFR3:TACC3-Intron; FGFR3:TACC3V1; FGFR3:TACC3V3; or a combination thereof; and administering to the patient a pharmaceutically effective amount of an FGFR inhibitor if the one or more FGFR variants are present in the sample, wherein the FGFR inhibitor is the compound of formula (I):
or a pharmaceutically acceptable salt thereof.

2. The method of claim 1, wherein the evaluating step further comprises measuring an expression level of PD-L1 in a biological sample and wherein the second administering step comprises administering the FGFR inhibitor if:

the biological sample has a PD-L1 expression corresponding to an H-score of about 0 to about 99; or
the biological sample has a PD-L1 expression level that is lower than a reference PD-L1 expression level.

3. The method of claim 1 or 2, wherein the biological sample is blood, lymph fluid, bone marrow, a solid tumor sample, or any combination thereof.

4. The method of claim 1, wherein the cancer is lung cancer, bladder cancer, gastric cancer, breast cancer, ovarian cancer, head and neck cancer, esophageal cancer, glioblastoma, or any combination thereof.

5. The method of claim 4, wherein the lung cancer is non-small cell lung cancer (NSCLC) adenocarcinoma, NSCLC squamous cell carcinoma, small cell lung cancer, or any combination thereof.

6. The method of claim 1, wherein the one or more FGFR variants further comprise an FGFR mutation, an FGFR amplification, or a combination thereof.

7. The method of claim 1, wherein the antibody that blocks an interaction between PD-1 and PD-L1 is an anti-PD-1 antibody, an anti-PD-L1 antibody, or a combination thereof.

8. The method of claim 2, wherein the cancer is lung cancer, bladder cancer, gastric cancer, breast cancer, ovarian cancer, head and neck cancer, esophageal cancer, glioblastoma, or any combination thereof.

9. The method of claim 8, wherein the lung cancer is non-small cell lung cancer (NSCLC) adenocarcinoma, NSCLC squamous cell carcinoma, small cell lung cancer, or any combination thereof.

10. The method of claim 2, wherein the one or more FGFR variants further comprise an FGFR mutation, an FGFR amplification, or a combination thereof.

11. The method of claim 2, wherein the antibody that blocks an interaction between PD-1 and PD-L1 is an anti-PD-1 antibody, an anti-PD-L1 antibody, or a combination thereof.

12. The method of claim 3, wherein the cancer is lung cancer, bladder cancer, gastric cancer, breast cancer, ovarian cancer, head and neck cancer, esophageal cancer, glioblastoma, or any combination thereof.

13. The method of claim 12, wherein the lung cancer is non-small cell lung cancer (NSCLC) adenocarcinoma, NSCLC squamous cell carcinoma, small cell lung cancer, or any combination thereof.

14. The method of claim 3, wherein the one or more FGFR variants further comprise an FGFR mutation, an FGFR amplification, or a combination thereof.

15. The method of claim 3, wherein the antibody that blocks an interaction between PD-1 and PD-L1 is an anti-PD-1 antibody, an anti-PD-L1 antibody, or a combination thereof.

16. The method of claim 1, wherein the biological sample:

has a PD-L1 expression corresponding to an H-score of less than 20; or
has a PD-L1 expression level that is lower than a reference PD-L1 expression level.

17. The method of claim 16, where the biological sample has a PD-L1 expression corresponding to an H-score of less than 20.

Referenced Cited
U.S. Patent Documents
2940972 June 1960 Roch
4666828 May 19, 1987 Gusella
4683202 July 28, 1987 Mullis
4801531 January 31, 1989 Frossard
5192659 March 9, 1993 Simons
5272057 December 21, 1993 Smulson et al.
5700823 December 23, 1997 Hirth et al.
5882864 March 16, 1999 An et al.
6218529 April 17, 2001 An et al.
6271231 August 7, 2001 Bergstrand et al.
6331555 December 18, 2001 Hirth et al.
7135311 November 14, 2006 David et al.
7432279 October 7, 2008 Green et al.
8409577 April 2, 2013 Thompson et al.
8895601 November 25, 2014 Saxty et al.
9067998 June 30, 2015 Clube
9145367 September 29, 2015 Tazi et al.
9221804 December 29, 2015 Leonard et al.
9290478 March 22, 2016 Saxty et al.
9303029 April 5, 2016 Woodhead et al.
9303030 April 5, 2016 Angibaud
9309241 April 12, 2016 Angibaud et al.
9309242 April 12, 2016 Berdini et al.
9399028 July 26, 2016 Tavazoie et al.
9439896 September 13, 2016 Berdini et al.
9447098 September 20, 2016 Saxty et al.
9464071 October 11, 2016 Saxty
9493426 November 15, 2016 Angibaud
9527844 December 27, 2016 Angibaud et al.
9737544 August 22, 2017 Angibaud
9757364 September 12, 2017 Angibaud
9850228 December 26, 2017 Saxty et al.
9856236 January 2, 2018 Saxty et al.
9902714 February 27, 2018 Vermeulen
10039759 August 7, 2018 Berdini et al.
10045982 August 14, 2018 Berdini et al.
10052320 August 21, 2018 Woodhead et al.
10085982 October 2, 2018 Jovcheva et al.
20030207886 November 6, 2003 Plücker et al.
20050261307 November 24, 2005 Cai et al.
20050272728 December 8, 2005 Altenbach et al.
20050272736 December 8, 2005 Altenbach et al.
20070123494 May 31, 2007 Seipelt et al.
20070149484 June 28, 2007 Claus et al.
20080116789 May 22, 2008 Yamaguchi et al.
20090054304 February 26, 2009 Herbert et al.
20090118261 May 7, 2009 Aquila et al.
20090221591 September 3, 2009 Hartmann et al.
20090263397 October 22, 2009 Buck et al.
20100228026 September 9, 2010 Yoshida et al.
20100234347 September 16, 2010 Dollinger et al.
20110123545 May 26, 2011 Marsh et al.
20120302572 November 29, 2012 Kan et al.
20130072457 March 21, 2013 Saxty
20130096021 April 18, 2013 Chinnaiyan et al.
20130267525 October 10, 2013 Saxty et al.
20130296326 November 7, 2013 Pollock
20140037642 February 6, 2014 McCaffery et al.
20140288053 September 25, 2014 Berdini et al.
20140296236 October 2, 2014 Berdini et al.
20150017637 January 15, 2015 Chinnaiyan et al.
20150031669 January 29, 2015 Woodhead et al.
20150031703 January 29, 2015 Suzuki
20150057293 February 26, 2015 Angibaud et al.
20150086584 March 26, 2015 Gilboa et al.
20150105368 April 16, 2015 Saxty et al.
20150183875 July 2, 2015 Cobbold et al.
20150191791 July 9, 2015 Shibata
20150203589 July 23, 2015 Iavarone
20150210769 July 30, 2015 Freeman
20150239883 August 27, 2015 Angibaud et al.
20150291589 October 15, 2015 Saxty et al.
20150307945 October 29, 2015 Nakanishi et al.
20160031856 February 4, 2016 Saxty
20160031990 February 4, 2016 Steele et al.
20160067336 March 10, 2016 Fandi et al.
20160075666 March 17, 2016 Angibaud et al.
20160090633 March 31, 2016 Platero
20160108034 April 21, 2016 Angibaud et al.
20160122410 May 5, 2016 Behrens et al.
20160213677 July 28, 2016 Angibaud et al.
20160220564 August 4, 2016 Woodhead et al.
20160235744 August 18, 2016 Berdini et al.
20160243228 August 25, 2016 Holash et al.
20160287699 October 6, 2016 Karkera et al.
20160311800 October 27, 2016 Saxty et al.
20160347836 December 1, 2016 Grosso
20170000781 January 5, 2017 Berdini et al.
20170000796 January 5, 2017 Saxty et al.
20170021019 January 26, 2017 Zibelman et al.
20170100406 April 13, 2017 Jovcheva et al.
20170101396 April 13, 2017 Vermeulen et al.
20170105978 April 20, 2017 Angibaud et al.
20170119763 May 4, 2017 Jovcheva et al.
20170145102 May 25, 2017 Pierce et al.
20170145103 May 25, 2017 Pierce et al.
20180021332 January 25, 2018 Broggini
20180127397 May 10, 2018 Saxty et al.
20180186775 July 5, 2018 Vermeulen et al.
20180296558 October 18, 2018 Jovcheva et al.
Foreign Patent Documents
2524525 December 2004 CA
2524948 December 2004 CA
1128496 August 1996 CN
102036963 April 2011 CN
0544445 June 1993 EP
1001946 May 2000 EP
1659175 May 2006 EP
1208231 January 2007 EP
1964837 September 2008 EP
1990342 November 2008 EP
2332939 June 2011 EP
2650293 October 2013 EP
3027210 June 2016 EP
3177321 June 2017 EP
3179992 June 2017 EP
2003213463 July 2003 JP
2006516561 July 2006 JP
2008530030 August 2008 JP
2008540535 November 2008 JP
2010514693 May 2010 JP
2377241 December 2009 RU
94/26723 November 1994 WO
95/19169 July 1995 WO
98/54156 December 1998 WO
99/17759 April 1999 WO
00/42026 July 2000 WO
01/19825 February 2001 WO
01/68047 September 2001 WO
02/076985 October 2002 WO
03/051833 June 2003 WO
03/055491 July 2003 WO
03/086394 October 2003 WO
2004/006355 January 2004 WO
2004/030635 April 2004 WO
2004/043950 May 2004 WO
2004/056822 July 2004 WO
2004065378 August 2004 WO
2004/098494 November 2004 WO
2004/110350 December 2004 WO
2005/007099 January 2005 WO
2005/009437 February 2005 WO
2005/012288 February 2005 WO
2005/039587 May 2005 WO
2005/047244 May 2005 WO
2005/054201 June 2005 WO
2005054231 June 2005 WO
2005/061463 July 2005 WO
2006/040052 April 2006 WO
2006/066361 June 2006 WO
2006084338 August 2006 WO
2006/092430 September 2006 WO
2006121168 November 2006 WO
2006124354 November 2006 WO
2007/003419 January 2007 WO
2007005874 January 2007 WO
2007/023186 March 2007 WO
2007054556 May 2007 WO
2007/075567 July 2007 WO
2007/125405 November 2007 WO
2007/132227 November 2007 WO
2008/003702 January 2008 WO
2008060907 May 2008 WO
2008/076278 June 2008 WO
2008/078091 July 2008 WO
2008/082198 July 2008 WO
2008079988 July 2008 WO
2008080015 July 2008 WO
2008109465 September 2008 WO
2008112408 September 2008 WO
2008/138878 November 2008 WO
2008/141065 November 2008 WO
2008/148867 December 2008 WO
2008/150827 December 2008 WO
2008/155378 December 2008 WO
2009/019518 February 2009 WO
2009/021083 February 2009 WO
2009020990 February 2009 WO
2009/064835 May 2009 WO
2009/137378 November 2009 WO
2009/141386 November 2009 WO
2010059771 May 2010 WO
2010/084152 July 2010 WO
2010088177 August 2010 WO
2010129570 November 2010 WO
2011/026579 March 2011 WO
2011/028947 March 2011 WO
2011/064250 June 2011 WO
2011/126903 October 2011 WO
2011/135376 November 2011 WO
2011/146591 November 2011 WO
2011/149937 December 2011 WO
2012/073017 June 2012 WO
2012/104776 August 2012 WO
2012106556 August 2012 WO
2012/118492 September 2012 WO
2012/148540 November 2012 WO
2013019906 February 2013 WO
2013/032951 March 2013 WO
2013/040515 March 2013 WO
2013/043935 March 2013 WO
2013/052699 April 2013 WO
2013/061074 May 2013 WO
2013/061077 May 2013 WO
2013/061080 May 2013 WO
2013/061081 May 2013 WO
2013/061305 May 2013 WO
2013/063217 May 2013 WO
2013076186 May 2013 WO
2013087725 June 2013 WO
2013089882 June 2013 WO
2013133351 September 2013 WO
2013173485 November 2013 WO
2013/179033 December 2013 WO
2013/179034 December 2013 WO
2014007369 January 2014 WO
2014018673 January 2014 WO
2014018841 January 2014 WO
2014051022 April 2014 WO
2014071419 May 2014 WO
2014113729 July 2014 WO
2014/165422 October 2014 WO
2014/174307 October 2014 WO
2014165710 October 2014 WO
2014193229 December 2014 WO
2015/016718 February 2015 WO
2015017607 February 2015 WO
2015/077717 May 2015 WO
2015/100257 July 2015 WO
2015/112900 July 2015 WO
2015144803 October 2015 WO
2015144804 October 2015 WO
2015144808 October 2015 WO
2016/004218 January 2016 WO
2016/004875 January 2016 WO
2016/019472 February 2016 WO
2016/024228 February 2016 WO
2016/024231 February 2016 WO
2016/040880 March 2016 WO
2016/040882 March 2016 WO
2016/044207 March 2016 WO
2016048833 March 2016 WO
2016/054555 April 2016 WO
2016/061142 April 2016 WO
2016/065409 May 2016 WO
2016/094309 June 2016 WO
2016/100882 June 2016 WO
2016/118654 July 2016 WO
2016/128912 August 2016 WO
2016128411 August 2016 WO
2016134234 August 2016 WO
2016/137850 September 2016 WO
2016/140717 September 2016 WO
2016/141209 September 2016 WO
2016/141218 September 2016 WO
2016/153839 September 2016 WO
2016/154068 September 2016 WO
2016/154473 September 2016 WO
2016/161239 October 2016 WO
2016/168716 October 2016 WO
2016/191751 December 2016 WO
2016/196389 December 2016 WO
2016/201425 December 2016 WO
2016/210108 December 2016 WO
2017/004192 January 2017 WO
2017/013436 January 2017 WO
2017/046746 March 2017 WO
2017/091577 June 2017 WO
2017/091580 June 2017 WO
2017/093942 June 2017 WO
Other references
  • International Search Report for PCT/US2016/025482 dated Aug. 5, 2016.
  • Moreira Da Silva, R., “Novolumab: Anti-PD-1 monoclonal antibody cancer immunotherapy”, Drugs of the Future, vol. 39, No. 1, pp. 15-24 (2014).
  • Ho, H.K., et al., “Current strategies for inhibiting FGFR activities in clinical applications: opportunities, challenges and toxicological considerations”, Drug Discovery Today, vol. 19, Issue 1, Abstract only (2014).
  • Yan, L., et al., “An efficient synthesis of quinoxaline derivatives from 4-chloro-4-deoxy-α-D-galactose and their cytotoxic activities”, Bioorganic & Medicinal Chemistry Letters, vol. 17, No. 3, 2006, pp. 609-612.
  • Thompson, A.M., et al. “Synthesis and Structure—Activity Relationships of 7-Substituted 3-(2,6-Dichlorophenyl)-1,6-napthyridin-2(1H)-ones as Selective Inhibitors of pp60c-src”, Journal of Medicinal Chemistry, vol. 43, No. 16, 2000, pp. 3134-3147.
  • Berge, S.M., et al. “Pharmaceutical Salts”, Journal of Pharmaceutical Sciences, vol. 66, No. 1, 1977, pp. 1-19.
  • Deady, L.W. “Ring Nitrogen Oxidation of Amino Substituted Nitrogen Heterocycles with m-Chloroperbenzoic Acid”, Synthetic Communications, vol. 7(8), 1977, pp. 509-514.
  • Knights, V., et al. “De-regulated FGF receptors as therapeutic targets in cancer”, Pharmacology & Therapeutics, 2010; vol. 125(1), pp. 105-117.
  • Korc, M., et al. “The Role of Fibroblast Growth Factors in Tumor Growth”, Current Cancer Drug Targets, vol. 9(5), 2009, pp. 639-651.
  • Angerer, L.M., et al. “Demonstration of Tissue-Specific Gene Expression by in Situ Hybridization”, Methods in Enzymology, vol. 152, 1987, pp. 649-661.
  • Deprimo, S.E., et al. “Expression profiling of blood samples from an SU5416 Phase III metastatic colorectal cancer clinical trial: a novel strategy for biomarker identification”, BMC Cancer, vol. 3, 2003; pp. 1-12.
  • Orre, M., et al., “VEGF, VEGFR-1, VEGFR-2, Microvessel Density and Endothelial Cell Proliferation in Tumours of the Ovary”, Int. J. Cancer (Pred. Oncol.), vol. 84(2), 1999, pp. 101-108.
  • Zhou, W., et al., “A Structure-Guided Approach to Creating Covalent FGFR Inhibitors”, Chemistry & Biology, vol. 17, pp. 285-295 (2010).
  • Avendaño, C., et al., “Drugs That Inhibit Signalling Pathways for Tumor Cell Growth and Proliferation”, Medicinal Chemistry of Anticancer Drugs, pp. 251-305 (2008).
  • Garuti, L., et al., Irreversible Protein Kinase Inhibitors, Current Medicinal Chemistry, vol. 18, No. 20, Jul. 1, 2011, pp. 2981-2994.
  • Vippagunta, S.R. et al., “Crystalline Solids”, Advanced Drug Delivery Reviews, vol. 48, pp. 3-26 (2001).
  • Jordan, V.C., “Tamoxifen: A Most Unlikely Pioneering Medicine”, Nature Reviews: Drug Discovery, vol. 2, pp. 205-213 (2003).
  • Hackam, D.G., et al., “Translation of Research Evidence From Animals to Humans”, JAMA, vol. 14, pp. 1731-1732 (2006).
  • “Himicheskaja jenciklopedija” tom 4, str. 990-993, izdatel'stvo “Sovetskaja jencklopedija”, Moskva, 1988 (In English: Chemical Encyclopedia, vol. 4, pp. 990-993, Publishing House “Soviet encyclopedia”, Moscow, 1988).
  • V. Hikkinvottom, “Reakcii Organicheskih Soedinenij” Gosudarstvennoe ob#eninennoe nauchno-technicheskoe izdatel'stvo, Redakcija himicheskoj literatury, Moskva, stranicy 360-362, 1939 (In English: V. Hikkinbottom, “Reactions of Organic Compounds”, State Associated Scientific-Technical Publishing House, Editor Office of Chemical Literature, pp. 360-362, Moscow, 1939).
  • “Himicheskaja jenciklopedija” tom. 1, stranicy 242-243, izdatel'stvo “Sovetskaja jencklopedija”, Moskva, 1988 (In English: Chemical Encyclopedia (thesaurus), vol. 1, pp. 242-243, publishing house “Soviet encyclopedia”, Moscow, 1988).
  • Dorwald, F.Z., “Side Reactions in Organic Synthesis: A Guide to Successful Synthesis Design”, Weinheim:WILEY-VCH Verlag GmbH & Co. KGaA, 2005, ISBN: 3-527-31021.5.
  • Lima, L.M., et al., “Bioisosterism: A Useful Strategy for Molecular Modification and Drug Design”, Current Medical Chemistry, vol. 12(1), pp. 23-49 (2005).
  • Patani, G.A., et al., “Bioisosterism: A Rational Approach in Drug Design”, Chem. Rev. vol. 96, pp. 3147-3176 (1996).
  • Dieci, M.V., et al., “Fibroblast Growth Factor Receptor Inhibitors as a Cancer Treatment: From a Biologic Rationale to Medical Perspectives”, Cancer Discovery, vol. 3, No. 3, pp. 264-279 (Feb. 2013).
  • Gallick, G.E., et al., “Small-molecule protein tyrosine kinase inhibitors for the treatment of metastatic prostate cancer”, Future Medicinal Chemistry, vol. 4, No. 1, pp. 107-119 (Jan. 2012).
  • Study to Assess the Relative Bioavailability of Orally Administered JNJ-42756493 Tablet Versus JNJ-42756493 Capsule in Healthy Participants, ClinicalTrials.gov, pp. 1-4 (2014).
  • Matsuda, Y., et al., “Fibroblast Growth Factor Receptor-2 IIIc as a Novel Molecular Target in Colorectal Cancer”, Current Colorectal Cancer Reports, vol. 10, No. 1, pp. 20-26 (2014).
  • Carneiro, B.A., et al., “Emerging therapeutic targets in bladder cancer”, Cancer Treatment Reviews, vol. 41, No. 2, pp. 170-178 (2015).
  • Fujita, M., et al., “Generation of Formaldehyde by Pharmaceutical Excipients and Its Absorption by Meglumine”, Chem. Pharm. Bull, vol. 57, No. 10, pp. 1096-1099 (2009).
  • Adcock, J., et al., “Diversity oriented synthesis: substitution at C5 in unreactive pyrimidines by Claisen rearrangement and reactivity in nucleophilic substitution at C2 and C4 in pteridines and pyrido[2,3-d]pyrimidines”, Tetrahedron, vol. 67, pp. 3226-3237 (2011).
  • Database Caplus, Grina, et al., “Preparation of oxohydroquinazolinylaminophenylpropanesulfonamide derivatives and analogs for use as Raf inhibitors”, Document No. 157:465574, Accession No. 2012:1301209 (2012).
  • Liang, G., et al., “Small molecule inhibition of fibroblast growth factor receptors in cancer”, Cytokine & Growth Factor Reviews, vol. 24, pp. 467-475 (2013).
  • Golub, T.R., et al., “Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring”, Science, vol. 286, pp. 531-537 (1999).
  • Greulich, H., et al., “Targeting mutant fibroblast growth factor receptors in cancer”, Trends in Molecular Medicine, vol. 17, No. 5, pp. 283-292 (2011).
  • Freshney, R.I., “Culture of Animal Cells, A Manual of Basic Technique”, Published by Alan R. Liss, Inc, New York, pp. 1-6 (1983).
  • Cohen, P., “The development and therapeutic potential of protein kinase inhibitors”, Current Opinion in Chemical Biology, vol. 3, pp. 459-465 (1999).
  • Cecil Textbook of Medicine, edited by Bennet, J.C., and Plum, F., 20th edition, vol. 1, pp. 1004-1010 (1996).
  • Hynes, N.E., et al., “Potential for Targeting the Fibroblast Growth Factor Receptors in Breast Cancer”, Cancer Research, vol. 70, pp. 5199-5202 (2010).
  • Neidle, S., “Cancer Drug Design and Discovery”, Elsevier/Academic Press, pp. 427-431 (2008).
  • Dermer, G.B., “Another Anniversary for the War on Cancer”, Biotechnology, vol. 12, p. 320 (1994).
  • Katoh, Y., et al., “FGFR2-related pathogenesis and FGFR2-targeted therapeutics (Review)”, International Journal of Molecular Medicine, vol. 23, pp. 307-311 (2009).
  • Jain, V.K., et al., “Challenges and opportunities in the targeting of fibroblast growth factor receptors in breast cancer”, Breast Cancer Research, vol. 14, No. 208, pp. 1-9 (2012).
  • Sonpavde, G., et al., “Fibroblast growth factor receptors as therapeutic targets in clear-cell renal cell carcinoma”, Expert Opinion on Investigational Drugs, vol. 23, Issue 3, pp. 305-315 (2014).
  • Rodriguez-Vida, A., et al., “Complexity of FGFR signaling in metastatic urothelial cancer,” Journal of Hematology & Oncology, vol. 8, No., pp. 119 et seq. (2015).
  • Angibaud et al., “Discovery of JNJ-42756493, A Potent Fibroblast Growth Factor Receptor (FGFR) Inhibitor Using a Fragment Based Approach,” AACR Minisymposium, Small Molecule Design and Optimization San Diego, CA, Apr. 8, 2014, 16 pp.
  • Bronte et al., “Nintedanib in NSCLC: Evidence to Date and Place in Therapy,” Therapeutic Advances in Medical Oncology, 2016, vol. 8[3], pp. 188-197.
  • Kathoh et al., “FGFR inhibitors: Effects on Cancer Cells, Tumor Microenvironment and Whole-Body Homeostasis (Review),” International Journal of Molecular Medicine 2016, 38(1), pp. 3-15.
  • D.A.Kharkevich, Farmakologiya (Pharmacology), 1996, M., Meditsina, p. 41, chapter 6.A (in Russian Only).
  • V.G.Belikov, Farmatsevticheskaya khimiya (Pharmaceutical Chemistry), M., Vysshaya shkola, 1993, p. 1, chapter 2.2, pp. 43-47) (in Russian only).
  • Amin et al., “Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastic renal cell carcinoma (mRCC),” Journal of Clinical Oncology 2014, vol. 32:15.
  • Phillips et al., “Therapeutic Uses of Anti-PD-1 and anti-PD-L1 Antibodies,” International Immunology, Oct. 2014, vol. 27, No. 1, pp. 39-46.
  • Dienstmann et al., “Genomic Aberrations in the FGFR Pathway: Opportunities for Targeted Therapies in Solid Tumors,” Annals of Oncology, vol. 25, Nov. 20, 2013, No. 3, pp. 552-563.
  • Parker et al., “Emergence of FGFR Family Gene Fusions as Therapeutic Targets in a Wide Spectrum of Solid Tumours,” Journal of Pathology, Oct. 29, 2013, vol. 232, No. 1, pp. 4-15.
  • Arai et al., “Fibroblast Growth Factor Receptor 2 Tyrosine Kinase Fusions Define a Unique Molecular Subtype of Cholangiocarcinoma,” Hepatology, Apr. 2014, vol. 59, No. 4, pp. 1427-1434.
  • Bahleda et al., “Phase 1 Study of JNJ-42756493, a Pan-Fibroblast Growth Factor Receptor (FGFR) Inhibitor, in patients with advanced Solid Tumors,” Journal of Clinical Oncology, May 2014, vol. 32, No. 15, pp. 2501-2501.
  • Di Siefano et al., “Detection, Characterization, and Inhibition of FGFR-TACC Fusions in IDH Wild-Type Glioma,” Clinical Cancer Research, Jan. 21, 2015, vol. 21, No. 14, pp. 3307-3317.
  • Parker, B.C., et al., “The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma,” The Journal of Clinical Investigation, 123 (2), pp. 855-865, Feb. 1, 2013.
  • Bello, et al., “E=3810 is a Potent Dual Inhibitor of VEGFR and FGFR that Exerts Antitumor Activity in Multiple Preclinical Models,” vol. 71(4), pp. 1396-1405 (2011).
  • Database, Geneseq [Online], “FGFR3-TACC3 gene fusion PCR primer, FGFR3-TACC3(F18T11)_qPCR_F SEQ: 15,” XP002753027, Database accession No. BAT14432 (2013).
  • Database, Geneseq [Online], “Human FGFR 2 mRNA target sequence for mdRNA, SEQ ID:3954,” XP055257043, Database accession no. ATM46802 (2008).
  • Gavine, et al., “AZD4547: An Orally Bioavailable, Potent, and Selective Inhibitor of the Fibroblast Growth Factor Receptor Tyrosine Kinase Family,” Cancer Research, vol. 72(8), pp. 2045-2056 (2012).
  • International Search Report from PCT/US2015/050996 dated Mar. 23, 2016.
  • Mengual, et al., BMC Research Notes 1:21, pp. 1-8 (Jun. 2008).
  • Millholland, et al., Research and Reports in Urology, 4: 33-40 (2012).
  • Sabnis, et al., “FGFR Fusions in the Driver's Seat,” Cancer Discovery, vol. 3 (6), pp. 607-609 (2013).
  • Shinmura, et al., “A novel somatic FGFR3 mutation in primary lung cancer,” Oncology Reports, vol. 31 (3), pp. (2014).
  • Singh, et al., “Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma, ” Science, vol. 337 (6099), pp. 1231-1235 (2012).
  • Trudel, et al., “Evaluation of XL999, a Potent Inhibitor of FGFR3, for the Potential Treatment of t(4;14) Positive Multiple Myeloma, ” Blood, vol. 110 (11), pp. 741A-742A (2007).
  • Williams, et al., “Oncogenic FGFR3 gene fusions in bladder cancer,” Human Molecular Genetics, vol. 22 (4), (2013). pp. 795-803.
  • Wu, et al., “Identification of Targetable FGFR Gene Fusions in Diverse Cancers,” Cancer Discovery, vol. 3 (6), pp. 636-647 (2013).
Patent History
Patent number: 10478494
Type: Grant
Filed: Mar 24, 2016
Date of Patent: Nov 19, 2019
Patent Publication Number: 20160287699
Assignee: ASTEX THERAPEUTICS LTD (Cambridge)
Inventors: Jayaprakash Karkera (Germantown, MD), Suso Jesus Platero (Washington Crossing, PA), Raluca Verona (Swarthmore, PA), Matthew V. Lorenzi (Philadelphia, PA)
Primary Examiner: Peter J Reddig
Application Number: 15/079,136
Classifications
Current U.S. Class: Polycylo Ring System Having A Ring Nitrogen In The System (514/80)
International Classification: A61K 45/06 (20060101); C07K 16/28 (20060101); A61K 31/498 (20060101); A61K 39/395 (20060101); C12Q 1/6886 (20180101); G01N 33/574 (20060101);