Stator core and motor using the same

- LG Electronics

The present invention relates to a stator core for improving the fixing properties of a magnet wire, and a motor in which the same is applied. Provided is a stator core which comprises a protrusion pattern part for fixing the distal end portion of a magnet wire, and thus eliminates a process of fixing the wire using a separate member during a wiring process, thereby improving processability and preventing an insulating film of the magnet wire from being damaged by an external force such as vibration.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the U.S. national stage application of International Patent Application No. PCT/KR2015/014092, filed Dec. 22, 2015, which claims priority to Korean Application No. 10-2015-0001326, filed Jan. 6, 2015, the disclosures of each of which are incorporated herein by reference in their entirety.

TECHNICAL FIELD

The teachings in accordance with exemplary and non-limiting embodiments of this disclosure relate generally to a stator core improved in fixability of magnet wire and a motor using the same.

BACKGROUND ART

In general, a motor is mainly composed of a stator and a rotor, and the stator is wound with a coil, and the rotor is coupled with a magnet to cause rotating due to mutual electromagnetic action with the magnet. The stator is formed with a unit core and a coil, and recently, a plurality of divided coils is connected in a ring shape to be used as a stator. An insulator (hereinafter referred to simply as “insulator”) is inserted to insulation between the core and the coil.

Particularly, the insulator has a structure where a coil is wound, and when a wire, generally called a magnet wire, is wound on the insulator, an outermost coil is not fixed to generate damage or cut problem on an insulated film of the magnet wire due to trembling phenomenon caused by outside vibration.

DETAILED DESCRIPTION OF THE INVENTION Technical Subject

The teachings in accordance with exemplary and non-limiting embodiments of this disclosure are to provide solve the abovementioned problem by providing a protruding pattern part fixing a distal end of a magnet wire to remove a wire-fixing operation using a separate member during wiring operation, whereby a processability can be improved and a stator core preventing damage to insulated film of the magnet wire caused by outside force such as vibration can be provided.

Technical Solution

In one general aspect of the present invention, there is provided a stator coil, the stator coil comprising:

a unit stator core provided with a tooth protruded from a head part;

an insulation member coupled to the unit stator core and wound with a coil; and

a coil-fixing protrusion pattern part provided on a surface of the insulation member.

Preferably, but not necessarily, the insulation member may include a body part wound with a coil and provided with a winding guide groove, and an edge part extended from the body part and arranged with the protrusion pattern part.

Preferably, but not necessarily, the protrusion pattern part may be realized by an embossed 3D (dimensional) structure on a surface of the edge part.

Preferably, but not necessarily, a first bank angle may be provided on a surface of the 3D structure from an outermost marginal part of the protrusion pattern part to a body part side.

Preferably, but not necessarily, the protrusion pattern part may be arranged by being extended along a lengthwise direction of the insulation member.

Preferably, but not necessarily, the stator core may be further provided at an opposite surface realized with the first bank angle with a fixation groove pattern that is concaved to a center of the 3D structure.

Preferably, but not necessarily, the bank angle may be an acute angle formed by an extension line from surface of the edge part and an extension line from the 3D structure.

Preferably, but not necessarily, the protrusion pattern part may include a discrete part which is fixed at one end to the surface of the edge part, and which is discrete at the other end from the surface of the edge part.

Preferably, but not necessarily, a discrete width of the discrete part may be uniform.

Preferably, but not necessarily, the protrusion pattern part may be fixed at one end near to the body part to the surface of the edge part, and may be formed at the other end with a bank angle toward the body part.

Preferably, but not necessarily, the protrusion pattern part may be fixed at the other end distanced from the body part to the surface of the edge part, and the other end may form a bank angle toward the body part.

Preferably, but not necessarily, a second bank angle may be formed at a surface of an opposite 3D structure formed with the bank angle.

Preferably, but not necessarily, the second bank angle may have an angle greater than that of the bank angle.

In another general aspect of the present disclosure, there is provided a motor, the motor comprising:

a motor housing;

a stator coil mounted at the motor housing and including a plurality of unit stator coils each having a tooth protruded from a head part, an insulator and a coil;

a rotor rotatably mounted at a center of the stator, and including a through hole formed at a center and a magnet module; wherein

the stator core includes a unit stator coil provided with a tooth protruded from the head part, and

an insulation member coupled to the unit stator coil and wound with a coil, and wherein

a surface of the insulation member includes at least one coil fixation protrusion pattern part.

Advantageous Effects of the Invention

The advantageous effect according to exemplary embodiment of the present disclosure is that a protruding pattern part fixing a distal end of a magnet wire is provided to remove a wire-fixing operation using a separate member during wiring operation, whereby a processability can be improved, and damage to insulated film of the magnet wire caused by outside force such as vibration can be prevented.

Another advantageous effect is that prevention of short-circuit caused by friction between winding portions of a magnet wire from outside vibration allows short-circuit removal operation realized by using a separate member, and separate after treatment-process for preventing damage to insulated film of wire becomes unnecessary to thereby improve the processability.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a separable perspective view exemplifying a coupled state between structure of unit stator core and insulation member in stator core according to an exemplary embodiment of the present disclosure.

FIG. 2 is a schematic coupled perspective view of FIG. 1.

FIG. 3 is a schematic view illustrating an insulation member being coupled to a unit stator core and the insulation member being wound with a coil according to an exemplary embodiment of the present disclosure.

FIG. 4 is a plan view illustrating an insulation member of FIG. 3 seen from above.

FIG. 5 is an enlarged conceptual view illustrating an arrangement relationship of major elements between protrusion pattern part and a coil.

FIGS. 6 and 7 are schematic views illustrating a protrusion pattern part according to another exemplary embodiment of the present disclosure.

FIG. 8 is a schematic view illustrating a protrusion pattern part according to still another exemplary embodiment of the present disclosure.

FIG. 9 is a schematic conceptual view illustrating a structure of an EPS motor with a unit stator core according to an exemplary embodiment of the present disclosure.

BEST MODE

Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. Like reference numerals designate like elements throughout the specification, and any overlapping explanations that duplicate one another will be omitted. Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section.

FIG. 1 is a separable perspective view exemplifying a coupled state between structure of unit stator core and insulation member in stator core according to an exemplary embodiment of the present disclosure, and FIG. 2 is a schematic coupled perspective view of FIG. 1.

Referring to FIGS. 1 and 2, a stator core according to an exemplary embodiment of the present disclosure may include a unit stator core (110) provided with a tooth (112) protruded from a head part, an insulation member (200) coupled to the unit stator core (110) and wound with a coil, and at least one coil-fixing protrusion pattern part (230) provided on a surface of the insulation member (200).

When the protrusion pattern part (230) is wound with a coil later, an outermost part is prevented from being deviated to outside after the coil is wound, and an operation of temporarily fixing a coil using a separate member (tape and the like) or an operation of removing can be eliminated to improve the processability, whereby an entire coil can be stably fixed to thereby prevent a short-circuit caused by friction between coils.

Although drawings have exemplified a structure where the insulation member (200) is divided to two sections, the present disclosure is not limited thereto, and although the unit stator core has been exemplified, the stator core conventionally forms a ring-shaped structure by coupling a plurality of unit stator cores.

The insulation member (200) may be such that a pair of mechanisms provided at an inside with a space (S) accommodating the tooth (112) is arranged in a plate shape each mechanism facing the mechanism, and a connection part (222) connecting an upper surface of the pair of mechanisms is provided.

Hereinafter, a portion formed by the pair of mechanism with a winding guide groove (221) wound with a coil is defined as a “body part (220)”, and a portion extended to a lateral surface from the body part (220) is defined as an “edge part (210)”. In addition, a distal end of the body part (220) may be formed with a coupling part (223) provided by being process in thickness thinner than that of the mechanism. The coupling part (223) may be realized at a distal end of the body part at a lower surface of the insulation member in the same structure, as illustrated in the drawing. Thereafter, the coupling parts (223) formed at distal ends of an upper surface and a lower surface of the insulation member may be coupled by being overlapped.

In particular, a protrusion pattern part (230) may be provided on a surfaced of the edge part (210) to fix a coil when the coil is wound later according to the exemplary embodiment of the present disclosure.

The protrusion pattern part (230) may be realized with a 3D (dimensional) structure in an embossed protruding shape, and may be arranged in one or in a plurality of numbers on the surface of the edge part (210) to fix the coil.

FIG. 3 is a schematic view illustrating an insulation member being coupled to a unit stator core and the insulation member being wound with a coil according to an exemplary embodiment of the present disclosure, FIG. 4 is a plan view illustrating an insulation member of FIG. 3 seen from above, and FIG. 5 is an enlarged conceptual view illustrating an arrangement relationship of major elements between protrusion pattern part and a coil.

Referring to FIGS. 3, 4 and 5, the protrusion pattern part (230) may be formed on the surface of the edge part (210) in an embossed 3D structure, as explained before. Furthermore, the protrusion pattern part (230) may be provided with a first bank angle (θ1) on one surface (231) from an outermost marginal area to a body part (220) side. The first bank angle (θ1) may function to perform as a guidance to allow the coil to easily slide when the coil (C) is wound on the body part, to allow the coil to be tightly attached to the body part, and to allow a winding of coil to be easily wound on the winding guide groove (221). The term “bank angle” as used herein refers to a bevel (e.g., in the surface of protrusion pattern part (230)), as depicted in FIGS. 5-8 (as θ, θ1, θ2, θ3, θ4, and θ5).

Overall, the protrusion pattern part (230), as illustrated in FIG. 3, may prevent a wire from being omitted or from being deviated after the coil (C) is wound by fixing the coils (C1, C2) protruding to the outermost area at an outer area. Furthermore, an opposite area where the first bank angle (θ1) is formed may be further provided with a second bank angle (θ2), where the second bank angle (θ2) may prevent the coil from being spread to outside by tightly holding the coil. In this case, the first bank angle (θ1) may be preferably formed with an acute angle to guide the smooth winding of the coil, and the second bank angle (θ2) may be formed at an angle greater than the first bank angle (θ1).

In addition, the protrusion pattern part (230) is not limited to a dot shape according to an exemplary embodiment of the present disclosure, and the protrusion pattern part (230) may be arranged by being extended along a lengthwise direction of the insulation member. In this case, the outermost coil may be fixed across the board to a lengthwise direction after finish of winding to enable a further increase in fixing power.

FIGS. 6 and 7 are schematic views illustrating a protrusion pattern part according to another exemplary embodiment of the present disclosure.

Referring to FIGS. 6 and 7, in furtherance to forming a protrusion pattern part (240) in a 3D structure, the structure may be formed in such a fashion that one distal end is fixed to a surface of the edge part, and the other distal end is discrete from the surface of the edge part. This discrete structure enables a discrete part to have a predetermined elasticity and to doubly increase the fixing power of the coil, and overall, motion of magnet wire can be prevented. The protrusion pattern part (240) may be injection molded with a same material as that of the insulation member (210), or may be realized by attachment of a separate structure.

To be more specific, as illustrated in FIG. 6, the protrusion pattern part (240) may be fixed, at one distal end nearer to the body part, to a surface of the edge part (210) while the other distal end (241) may be formed with a second bank angle (θ3) toward a body part side. The third bank angle (θ3) may be formed by an acute angle and may further easiness of winding, which has been already set out as above.

Furthermore, an opposite side (242) of the third bank angle (θ3) may be formed with a fourth bank angle (θ4) to strengthen the fixibility.

FIG. 7 is an exemplary embodiment realized in inverse manner from that of FIG. 6, where a protrusion pattern part (250) may be realized, and the other distal end distant from the body part may be fixed to a surface of the edge part (210), and the other distal end may be formed with a fifth bank angle (θ5) toward a body part side at an acute angle. In this structure, in the aspect of improving usage of elasticity similar to the structure in FIG. 6, fixibility can be more enhanced by way of possible application of a more direct pressure to a coil than that of FIG. 6.

Furthermore, as elaborated in the previous exemplary embodiment, a sixth bank angle (θ6) may be also formed at the other distal end (252) of the protrusion pattern part (250), and therefore, the shape and effect of which will be omitted in further explanation thereto.

FIG. 8 is a schematic view illustrating a protrusion pattern part according to still another exemplary embodiment of the present disclosure.

The characteristic of FIG. 8 in terms of structure is that, although FIG. 8 may be similar to FIG. 5 in that FIG. 8 is also formed with a 3D structure with a bank angle, an opposite side where a seventh bank angle (θ7) is formed may be further realized with a fixation groove pattern (232) concaved to a center side of the 3D structure.

In this case where the fixation groove pattern (232) is further formed, it should be apparent that fixibility can be further enhanced by a distal end of an outermost coil being inserted into the fixation groove pattern (232) in the structure of FIG. 3. It should be apparent that this structure may be changed to allow the fixation groove pattern (232) to be realized even in the exemplary embodiment of FIG. 6.

Hereinafter, an exemplary embodiment of an EPS motor with a unit stator core according to an exemplary embodiment of the present disclosure will be described with reference to FIG. 9. FIG. 9 is a schematic conceptual view illustrating a structure of an EPS motor with a unit stator core according to an exemplary embodiment of the present disclosure.

However, it should be apparent that the stator core according to the exemplary embodiment may be applied to other various motors. An EPS motor will be exemplified and explained in the present exemplary embodiment.

Referring to FIG. 9, a motor housing (H) and a bracket (30) coupled with the motor housing (H) may be provided. The housing (H) may be opened at an upper surface, and may be protrusively formed at a center with a support pipe (11). Furthermore, the bracket (30) may be coupled to an upper surface of the housing (H) to form an inner space. The support pipe (11) may be mounted with a first bearing (31), and the bracket (30) may be mounted with a second bearing (32). The first and second bearings (31, 32) may be supportively contacted by a rotation shaft (400), and the rotation shaft (400) may be supported at an upper surface by the second bearing (32), and may be supported at a lower surface by the first bearing (31).

An upper end part of the rotation shaft (400) may be protruded to an upper side through the bracket (30), and the rotation shaft (400) may be coupled to a mechanism (60) connected to a steering shaft (not shown). The housing (H) may be mounted therein with a stator and a rotor. The rotor may include a rotor core (320) coupled to the rotation shaft (400) and a magnet (310) coupled to a periphery of the rotor core (320). Although the exemplary embodiment has explained and illustrated a structure in which a magnet is coupled to a periphery of a rotor core, unlike this structure, the exemplary embodiment may be realized by a structure in which a magnet is inserted into a rotor core. Furthermore, the stator may include a stator core (200) arranged between a magnet (310) and a housing (110), and a coil (C) wound on a stator core (200).

The stator core and an insulated structure forming the stator may be applied with the structure of the exemplary embodiment explained in FIGS. 1 to 4.

In the above structure, the magnetic field generated from the stator and an electric field generated from the motor may be interacted to each other to rotate the rotation shaft (400).

Meantime, the rotation shaft (400) may rotate along with a sensing plate (190) by being coupled to the rotation shaft (400), and the sensing plate (190) may be mounted with a sensing magnet (50). The bracket (30) may be mounted with a circuit board (10), the circuit board (10) may be mounted with a sensing element (20) opposite to the sensing magnet (50). The sensing element (20) may detect a degree of the sensing magnet (50) being rotated to allow the sensing magnet (50) to detect a degree of the sensing plate (190) coupled by the sensing magnet (50) and the rotation shaft (400) being rotated.

Thus, generation of detachment of magnet wire by vibrations generated from the above rotations can be mitigated by the insulation member provided with a protrusion pattern part according to the exemplary embodiments of the present disclosure, whereby the motor itself can be enhanced in its reliability.

Although the abovementioned embodiments according to the present invention have been described in detail with reference to the above specific examples, the embodiments are, however, intended to be illustrative only, and thereby do not limit the scope of protection of the present invention. Thereby, it should be appreciated by the skilled in the art that changes, modifications and amendments to the above examples may be made without deviating from the scope of protection of the invention.

Claims

1. A stator core, the stator core comprising:

a unit stator core;
a coil wound on the unit stator core; and
an insulation member disposed between the unit stator core and the coil to insulate the unit stator core and the coil,
wherein the unit stator core includes a head part and a tooth protruded from the head part at an inner side of the head part towards a central direction of the unit stator core,
wherein the insulation member includes a body part disposed on an outside of the tooth to include a winding guide groove wound with the coil, an edge part extended from the body part along an inner circumferential surface of the head part, and a protrusion pattern part disposed on an inner surface of the edge part,
wherein the protrusion pattern part is realized by an embossed 3D (three-dimensional) structure on the inner surface of the edge part, and
wherein a first bank angle is provided on a surface of the 3D structure from an outermost marginal part of the protrusion pattern part to a body part side.

2. The stator core of claim 1, wherein the protrusion pattern part is disposed by being extended along a lengthwise direction of the insulation member.

3. The stator core of claim 1, wherein the protrusion pattern part is provided, at an opposite surface realized by the first bank angle, with a fixation groove pattern that is concaved to a center of the 3D structure.

4. The stator core of claim 1, wherein the first bank angle is an angle formed by an extension line on a surface of the 3D structure, based on a surface of the edge part, and wherein the angle is an acute angle.

5. The stator core of claim 1, wherein the protrusion pattern part is formed with a discrete part fixed at one end to a surface of the edge part, and distanced at an other end from the surface of the edge part.

6. The stator core of claim 5, wherein each discrete width in the discrete part is same and uniform.

7. The stator core of claim 5, wherein the protrusion pattern part is fixed at the other end distanced from the body part to the surface of the edge part and is formed at the other end with a fifth bank angle toward the body part,

wherein the fifth bank angle is an angle formed by an extension line from a surface of the 3D structure, based on the discrete part, and wherein the fifth bank angle is an acute angle.

8. The stator core of claim 1, wherein a second bank angle is realized on a surface of the 3D structure at an opposite side from that formed with the first bank angle.

9. The stator core of claim 8, wherein the second bank angle is an angle greater than the first bank angle.

10. A stator core, the stator core comprising:

a unit stator core;
a coil wound on the unit stator core; and
an insulation member disposed between the unit stator core and the coil to insulate the unit stator core and the coil,
wherein the unit stator core includes a head part and a tooth protruded from the head part at an inner side of the head part towards a central direction of the unit stator core,
wherein the insulation member includes a body part disposed on an outside of the tooth to include a winding guide groove wound with the coil, an edge part extended from the body part along an inner circumferential surface of the head part, and a protrusion pattern part disposed on an inner surface of the edge part,
wherein the protrusion pattern part is realized by an embossed 3D (three-dimensional) structure on the inner surface of the edge part, and
wherein the protrusion pattern part is formed with a discrete part fixed at one end to a surface of the edge part, and distanced at an other end from the surface of the edge part,
wherein the protrusion pattern part is fixed at one end near to the body part to the surface of the edge part and is formed at an other end with a third bank angle toward the body part, and
wherein the third bank angle is an angle formed by an extension line from a surface of the 3D structure, based on the discrete part, and wherein the third bank angle is an acute angle.

11. A motor, the motor comprising:

a housing;
a stator arranged at an inside of the housing to include a unit stator coil, a coil wound on the unit stator coil, and an insulation member disposed between the unit stator coil and the coil to insulate the unit stator core and the coil; and
a rotor rotatably installed at an inside of the stator and including a through hole formed at a center and a magnet module;
wherein the unit stator core includes a head part and a tooth protruded from the head part that an inner side of the head part towards a central direction of the unit stator core, and
wherein the insulation member comprises: a body part disposed on and in direct, physical contact with the tooth and comprising a winding guide groove wound with the coil; an edge part extended from the body part along an inner circumferential surface of the head part; and at least one protrusion pattern part disposed on the edge part and physically spaced apart from the body part.

12. The motor of claim 11, wherein the at least one protrusion pattern part is realized by an embossed 3D (three-dimensional) structure on a surface of the edge part.

13. The motor of claim 12, wherein a first bank angle is provided on a surface of the 3D structure from an outermost marginal part of the at least one protrusion pattern part to a body part side.

14. The stator core of claim 13, wherein the at least one protrusion pattern part is disposed by being extended along a lengthwise direction of the insulation member,

wherein the at least one protrusion pattern part is provided, at an opposite surface realized by the first bank angle, with a fixation groove pattern that is concaved towards a center of the 3D structure,
wherein the first bank angle is an angle formed by an extension line on a surface of the 3D structure, based on a surface of the edge part, and wherein the angle is an acute angle.

15. The motor of claim 12, wherein the at least one protrusion pattern part is formed with a discrete part fixed at one end to a surface of the edge part, and distanced at an other end from the surface of the edge part,

wherein the at least one protrusion pattern part is fixed at one end near to the body part to the surface of the edge part and is formed at an other end with a third bank angle toward the body part,
wherein the third bank angle is an angle formed by an extension line from a surface of the 3D structure, based on the discrete part, and wherein the third bank angle is an acute angle.

16. The motor of claim 14, wherein a second bank angle is realized on a surface of the 3D structure at an opposite side from that formed with the first bank angle.

17. The motor of claim 16, wherein the second bank angle is an angle greater than the first bank angle.

18. The motor of claim 12, wherein the at least one protrusion pattern part is formed with a discrete part fixed at one end to a surface of the edge part, and distanced at an other end from the surface of the edge part,

wherein the at least one protrusion pattern part is fixed at the other end distanced from the body part to the surface of the edge part and is formed at the other end with a fifth bank angle toward the body part,
wherein the fifth bank angle is an angle formed by an extension line from a surface of the 3D structure, based on the discrete part, and wherein the fifth bank angle is an acute angle.
Referenced Cited
U.S. Patent Documents
6414413 July 2, 2002 Arai
8546992 October 1, 2013 Hsu
9154010 October 6, 2015 Yokogawa
9467018 October 11, 2016 Kitta
9490675 November 8, 2016 Kim
9601959 March 21, 2017 Shirai
9705373 July 11, 2017 Azusawa
9722466 August 1, 2017 Tsuiki
10103594 October 16, 2018 Takimoto
20020130580 September 19, 2002 Arai
20100141079 June 10, 2010 Chu
20110109189 May 12, 2011 Taema
20120080976 April 5, 2012 Oka
20160111933 April 21, 2016 Takimoto
20170133901 May 11, 2017 Burch
20170222513 August 3, 2017 Lee
20180006511 January 4, 2018 Kong
20190249653 August 15, 2019 Suzuki
Foreign Patent Documents
2583870 October 2003 CN
104079086 October 2014 CN
2007-236057 September 2007 JP
2009-177985 August 2009 JP
2014-207755 October 2014 JP
10-2012-0066917 June 2012 KR
WO-2014-060950 April 2014 WO
Other references
  • International Search Report in International Application No. PCT/KR2015/014092, filed Dec. 22, 2015.
  • Office Action dated Dec. 3, 2018 in Chinese Application No. 201580072568.7.
Patent History
Patent number: 10622850
Type: Grant
Filed: Dec 22, 2015
Date of Patent: Apr 14, 2020
Patent Publication Number: 20180006511
Assignee: LG INNOTEK CO., LTD. (Seoul)
Inventor: Bong Bae Kong (Seoul)
Primary Examiner: Robert W Horn
Application Number: 15/541,673
Classifications
Current U.S. Class: Dynamoelectric Machine (29/596)
International Classification: H02K 1/16 (20060101); H02K 1/14 (20060101); H02K 3/34 (20060101); H02K 1/27 (20060101);