Hydrant cap leak detector with oriented sensor
A nozzle cap includes a cap body, the cap body defining a cap axis extending from a first body end of the cap body to a second body end of the cap body; and a vibration sensor attached to the cap body, the vibration sensor defining a sensor axis extending from a first sensor end of the vibration sensor to a second sensor end of the vibration sensor, the sensor axis aligned perpendicular to the cap axis.
Latest Mueller International, LLC Patents:
This disclosure relates to fire hydrants. More specifically, this disclosure relates to a vibration sensor for detecting leaks in a water system connected to a fire hydrant.
BACKGROUNDFire hydrants are commonly connected to fluid systems, such as municipal water infrastructure systems and water mains, through stand pipes. Because these fluid systems are typically partially or entirely located underground, it can be difficult to detect leaks within the fluid systems. Additionally, it can be difficult to access these fluid systems for monitoring. Fire hydrants can provide convenient above-ground access to the fluid systems. Leaks within the fluid systems can send vibrations through the fluid system and up stand pipes to the fire hydrants. These vibrations propagating through the stand pipes and fire hydrants can be monitored to detect leaks within the connected fluid system. However, fire hydrants can be subjected to other sources of vibration such as wind, rain, ambient noise from loud passing vehicles, or direct contact such as pedestrians bumping into fire hydrants or bicyclists leaning their bicycles against fire hydrants. These sources of background noise can trigger false alarms or make it more difficult for a potential leak to be detected.
SUMMARYIt is to be understood that this summary is not an extensive overview of the disclosure. This summary is exemplary and not restrictive, and it is intended to neither identify key or critical elements of the disclosure nor delineate the scope thereof. The sole purpose of this summary is to explain and exemplify certain concepts of the disclosure as an introduction to the following complete and extensive detailed description.
Disclosed is a nozzle cap comprising a cap body, the cap body defining a cap axis extending from a first body end of the cap body to a second body end of the cap body; and a vibration sensor attached to the cap body, the vibration sensor defining a sensor axis extending from a first sensor end of the vibration sensor to a second sensor end of the vibration sensor, the sensor axis aligned perpendicular to the cap axis.
Also disclosed is a hydrant assembly comprising a fire hydrant comprising a barrel, the barrel defining a barrel axis extending from a top barrel end of the barrel to a bottom barrel end of the barrel; and a vibration sensor enclosed within the fire hydrant, the vibration sensor defining a sensor axis extending from a first sensor end of the vibration sensor to a second sensor end of the vibration sensor, the sensor axis defining an angle relative to the barrel axis, the angle less than ninety degrees.
Also disclosed is a method for detecting leaks in a fluid system, the method comprising enclosing a vibration sensor within a fire hydrant, the fire hydrant connected in fluid communication with the fluid system; and positioning a sensor axis of the vibration sensor at an angle of less than ninety degrees to a barrel axis of the fire hydrant.
Various implementations described in the present disclosure may include additional systems, methods, features, and advantages, which may not necessarily be expressly disclosed herein but will be apparent to one of ordinary skill in the art upon examination of the following detailed description and accompanying drawings. It is intended that all such systems, methods, features, and advantages be included within the present disclosure and protected by the accompanying claims. The features and advantages of such implementations may be realized and obtained by means of the systems, methods, features particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims, or may be learned by the practice of such exemplary implementations as set forth hereinafter.
The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. The drawings are not necessarily drawn to scale. Corresponding features and components throughout the figures may be designated by matching reference characters for the sake of consistency and clarity.
The present disclosure can be understood more readily by reference to the following detailed description, examples, drawings, and claims, and the previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this disclosure is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, and, as such, can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
The following description is provided as an enabling teaching of the present devices, systems, and/or methods in its best, currently known aspect. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various aspects of the present devices, systems, and/or methods described herein, while still obtaining the beneficial results of the present disclosure. It will also be apparent that some of the desired benefits of the present disclosure can be obtained by selecting some of the features of the present disclosure without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present disclosure are possible and can even be desirable in certain circumstances and are a part of the present disclosure. Thus, the following description is provided as illustrative of the principles of the present disclosure and not in limitation thereof.
As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “an element” can include two or more such elements unless the context indicates otherwise.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
For purposes of the current disclosure, a material property or dimension measuring about X or substantially X on a particular measurement scale measures within a range between X plus an industry-standard upper tolerance for the specified measurement and X minus an industry-standard lower tolerance for the specified measurement. Because tolerances can vary between different materials, processes and between different models, the tolerance for a particular measurement of a particular component can fall within a range of tolerances.
As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
The word “or” as used herein means any one member of a particular list and also includes any combination of members of that list. Further, one should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain aspects include, while other aspects do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular aspects or that one or more particular aspects necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular aspect.
Disclosed are components that can be used to perform the disclosed methods and systems. These and other components are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these components are disclosed that while specific reference of each various individual and collective combinations and permutation of these may not be explicitly disclosed, each is specifically contemplated and described herein, for all methods and systems. This applies to all aspects of this application including, but not limited to, steps in disclosed methods. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific aspect or combination of aspects of the disclosed methods.
Disclosed is a hydrant assembly and associated methods, systems, devices, and various apparatus. The hydrant assembly can comprise a fire hydrant and a vibration sensor. It would be understood by one of skill in the art that the disclosed hydrant assembly is described in but a few exemplary aspects among many. No particular terminology or description should be considered limiting on the disclosure or the scope of any claims issuing therefrom.
The barrel 120 can comprise a top flange 126 disposed at the top barrel end 122 and a base flange 128 disposed at the bottom barrel end 124. The base flange 128 can be fastened to a stand pipe flange 199 of a stand pipe 198 of a fluid system (not shown), such as a water main for example and without limitation. The base flange 128 can be fastened to the stand pipe flange 199 by a plurality of fasteners 130. A bonnet flange 182 of the bonnet 180 can be attached to the top flange 126 of the barrel 120, such as with a plurality of fasteners (not shown) similar to the fasteners 130. The bonnet 180 can comprise an operation nut 184, or “op nut”, which can be rotated to open and close a main valve (not shown) positioned at the bottom barrel end 124 or below in the stand pipe 198 in order to respectively supply or cut off pressurized water flow to the fire hydrant 110.
The barrel 120 can define one or more nozzles 140a,b. The nozzle cap 150 can be screwed onto the nozzle 140a to seal the nozzle 140a. With the nozzle cap 150 sealing the nozzle 140a, pressurized water cannot escape through the nozzle 140a when the main valve (not shown) is in an open position. The nozzle cap 150 can define a cap nut 152 which can be turned, such as with a wrench, to tighten or loosen the nozzle cap 150 on the nozzle 140a.
The threaded bore 216 can define internal threading 218, and the threaded bore 216 can be screwed onto the nozzle 140a (shown in
The circumferential wall 312 can define external scallops 316a,b. The external scallops 316a,b can extend radially inward into the circumferential wall 312 relative to the cap axis 201. Each of the external scallops 316a,b can respectively be enclosed by an antenna cover 318a,b, and an antenna strip 320a,b can be enclosed within each of the external scallops 316a,b between the respective antenna cover 318a,b and the circumferential wall 312.
The nozzle cap 150 can comprise a battery pack 360 and a printed circuit board (“PCB”) 362, each disposed within the cavity 310. The PCB 362 can be attached to a mounting bracket 364 which can be secured within the cavity 310 by a pair of fasteners 366.
As shown, the nozzle cap 150 of the fire hydrant 110 can also comprise the vibration sensor 380 of the hydrant assembly 100, and the vibration sensor 380 can be disposed within the cavity 310. The vibration sensor 380 can define a sensor axis 301 which can be perpendicular to the cap axis 201. The vibration sensor 380 can be attached to the circumferential wall 312, and the vibration sensor 380 can extend radially inward from the circumferential wall 312 and into the cavity 310 with respect to the cap axis 201.
The battery pack 360, the PCB 362, the vibration sensor 380, and the antenna strips 320a,b can be connected together in electrical communication. The vibration sensor 380 can be configured to detect leaks within the fluid system (not shown) by monitoring vibrations travelling up the stand pipe 198 (shown in
The vibration sensor 380 can comprise a base 400, at least one piezoelectric crystal 402, and a plurality of calibration masses 406. The calibration masses 406 can be distributed circumferentially around the base 400. In the present aspect, the calibration masses 406 can be integrally formed with the base 400; however in other aspects, the calibration masses 406 can be separate components which can be attached to the base 400, such as with a glue, adhesive, mastic, epoxy, or another method such as welding, brazing, soldering, or any other attachment method for example and without limitation. In the present aspect, the calibration masses 406 can extend axially outward from each side of the base 400 with respect to the sensor axis 301. A notch 432 can be defined between each pair of adjacent calibration masses 406, and the calibration masses 406 can vibrate independently from one another.
The piezoelectric crystal 402 can be attached to the base 400, and the piezoelectric crystal 402 can be disposed radially inward from the calibration masses 406 with respect to the sensor axis 301. In some aspects, an additional piezoelectric crystal (not shown) can be attached to the opposite side of the base 400. In the present aspect, the piezoelectric crystals 402 can be bonded to the base 400 with a conductive adhesive. In other aspects, the piezoelectric crystals 402 can be attached to the base 400 through other suitable means such as double-sided tape, various glues, various coatings including elastomeric and silicon coatings among others, pure adhesives, or by a fastener.
In the present aspect, a fastener 408 can extend through the base 400 and piezoelectric crystals 402. The fastener 408 can define a threaded end 410, and a spacer 404 can be fit over the fastener 408 between the base 400 and the threaded end 410. In the present aspect, the threaded end 410 can define a first sensor end 412 of the vibration sensor 380, and a second sensor end 414 can be defined by the calibration masses 406, opposite from the first sensor end 412. The sensor axis 301 can extend through the fastener 408 and the vibration sensor 380 as a whole from the first sensor end 412 to the second sensor end 414.
The threaded end 410 can threadedly engage a threaded hole 780 (shown in
The cap cover 280 can define indicia 501, which can align with the circumferential placement of the vibration sensor around the circumferential wall 312. For example, in the present aspect, the vibration sensor 380 can be positioned in a six-o-clock position wherein the sensor axis 301 is vertically aligned, and the vibration sensor 380 is positioned at the bottom of the nozzle cap 150. The indicia 501 can also be positioned in the six-o-clock position so that the indicia 501 is approximately centered over the vibration sensor 380. In the present aspect, the indicia 501 can be the ECHOLOGICS logo which can be approximately centered over the vibration sensor 380; however, in other aspects, the indicia 501 can define any combination of words, numbers, and/or symbols to indicate the circumferential position of the vibration sensor 380 along the circumferential wall 312. For example, in some aspects, the indicia could be a line extending across the cap cover 280 which can be positioned parallel to the sensor axis 301 or an arrow indicating the preferred vertical alignment. Because a user cannot see into the cavity 310 in the present aspect, the indicia 501 can be configured to notify a user of the placement of the vibration sensor 380 along the circumferential wall so that the nozzle cap 150 can be optimally oriented when attaching the nozzle cap 150 to the nozzle 140a. In other aspects, some or all of the cap cover 280 can comprise a transparent material configured to provide a view of the orientation of the vibration sensor 380 within the cavity 310.
Sensor axis 301a can correspond to the vertical orientations of the twelve-o-clock position 600a and the six-o-clock position 600e. In these positions, the sensor axis 301a is vertically aligned in parallel to the barrel axis 101 of the fire hydrant 110. These positions generally provide an optimal signal-to-noise ratio, as described above. In these positions, an angle defined between the sensor axis 301a and the barrel axis 101 can equal zero degrees, and therefore, this angle is not shown or labelled.
Sensor axis 301c corresponds to the horizontal orientations of the three-o-clock position 600c and the nine-o-clock position 600g. In these positions, the sensor axis 301c is horizontally aligned, and the sensor axis 301c can be perpendicular to the barrel axis 101. An angle Ac defined between the sensor axis 301c and the barrel axis 101 can equal ninety degrees. Experimentation generally shows that the signal-to-noise ratio is least desirable when the vibration sensor 380 (shown in
The sensor axis 301b corresponds to the positions 600b,f, and the sensor axis 301d corresponds to the positions 600d,h. The sensor axes 301b,d can be oblique to the barrel axis 101. The sensor axis 301b can define an angle Ab with the barrel axis 101, and the sensor axis 301d can define an angle Ad. In these positions, the angles Ab,Ad can be acute angles measuring less than ninety degrees. In these aspects, the signal-to-noise ratio is generally superior to that of the horizontal orientations of positions 600c,g but generally inferior to the signal-to-noise ratio of the vertical orientations of positions 600a,e. The signal-to-noise ratio improves as the angles Ab,Ad decrease to zero degrees, wherein the sensor axes 301b,d align with the barrel axis 101.
The demonstrated positions 600a-h are merely exemplary and should not be viewed as limiting. The vibration sensor 380 (shown in
Rotational indexing of the nozzle cap 150 relative to the nozzle 140a can be primarily dictated by the torque required to form a seal between the nozzle cap 150 and the nozzle 140a via the gasket 222 (shown in
One solution is to alter a gasket thickness T (shown in
Conversely, a thinner gasket 222 can be used to rotate the rotational indexing of the nozzle cap 150 in the clockwise direction about the cap axis 201 with respect to the viewing angle shown. For example, if the vibration sensor 380 is in position 600d when the nozzle cap 150 is torqued to the required specification to seal the nozzle 140a, the nozzle cap 150 can be removed, and the gasket 222 can be replaced with another gasket 222 having a smaller gasket thickness T so that the vibration sensor 380 can be placed in the six-o-clock position 600e when the nozzle cap 150 is torqued to the required specification.
Rather than changing the gasket thickness T of the gasket 222, similar results can be achieved by positioning shims between the gasket 222 and the inner wall 220 (shown in FIG. 2), and a pack of shims of varying thicknesses can be included with an installation kit for the nozzle cap 150. In some aspects, the shim could be attached to the inner wall 220 with an adhesive sealant to prevent leaks between the shim and the inner wall 220. In other aspects, two gaskets 222 can be utilized, and the shim can be positioned between the two gaskets 222 to prevent leaks between the shim and the inner wall 220. The necessary thickness of the shims can be calculated based on the thread pitch of the internal threading 218 (shown in
wherein θ equals the desired angle of rotational correction in degrees, TPI is the threads-per-inch pitch of the internal threading 218, and shim thickness is measured in inches. For example and without limitation, if the internal threading 218 defines a thread pitch of 5 TPI, then each clockwise 360-degree rotation of the nozzle cap 150 translates the nozzle cap 150 0.20″ along the cap axis 201 towards the nozzle 140a. In order to alter the rotational indexing of the nozzle cap 150 counterclockwise by ninety degrees, a 0.05″ shim can be added between the gasket 222 and the inner wall 220. The same formula can be utilized to determine the necessary increase or decrease in gasket thickness T (shown in
In some aspects of the nozzle cap 150, two vibration sensors 380 can be attached to the nozzle cap 150 at a ninety-degree offset from one another along the circumferential wall 312 (shown in
As shown and previously described, the gasket 222 can define the gasket thickness T, and the gasket 222 can be positioned between the inner wall 220 of the cap body 210 and a nozzle end 740 of the nozzle 140a. The vibration sensor 380 can also be screwed into the threaded hole 780 defined by the circumferential wall 312 to secure the vibration sensor 380 to the circumferential wall 312.
In other aspects, the vibration sensor 380 can be positioned within the bonnet 180 (shown in
During experimentation, vibration sensors were installed on a fire hydrant attached to a 6-inch ductile iron water main at a test facility. Vibration sensors were positioned in both vertical and horizontal orientations, and the vibration sensors took readings while water was flowed from valves to simulate leaks in the water main. Across the frequency range 0-1200 Hz, the vertically oriented sensor demonstrated an average 3 dB increase in signal strength relative to the horizontally oriented sensor. Further testing was conducted wherein individuals clapped and yelled in proximity to the fire hydrant to measure sensitivity to airborne background noise, and the vibration sensors in the vertical orientation were found to be less sensitive to background noise. Across the frequency range 0-1200 Hz, the vertically oriented sensor demonstrated an average 8 dB increase in signal-to-noise ratio when comparing the leak simulation to airborne noise.
Further testing was conducted with fire hydrants to determine if the increase in signal-to-noise ratio would offer improved performance in detecting leaks. Vibration sensors in both horizontal and vertical orientations were attached to two separate fire hydrants while leaks of varying sizes were simulated by opening valves in the attached water infrastructure systems. In sixteen out of seventeen conditions tested, the vertically oriented sensors yielded correlations of higher strength than the horizontally oriented sensors, which demonstrates a higher likelihood that the vertically oriented sensors would detect the leak in a real world scenario.
One should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular embodiments or that one or more particular embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
It should be emphasized that the above-described embodiments are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the present disclosure. Any process descriptions or blocks in flow diagrams should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included in which functions may not be included or executed at all, may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those reasonably skilled in the art of the present disclosure. Many variations and modifications may be made to the above-described embodiment(s) without departing substantially from the spirit and principles of the present disclosure. Further, the scope of the present disclosure is intended to cover any and all combinations and sub-combinations of all elements, features, and aspects discussed above. All such modifications and variations are intended to be included herein within the scope of the present disclosure, and all possible claims to individual aspects or combinations of elements or steps are intended to be supported by the present disclosure.
Claims
1. A nozzle cap comprising:
- a cap body, the cap body defining a cap axis extending from a first body end of the cap body to a second body end of the cap body; and
- a vibration sensor attached to the cap body, the vibration sensor defining a sensor axis extending from a first sensor end of the vibration sensor to a second sensor end of the vibration sensor, the sensor axis aligned perpendicular to the cap axis; and
- wherein: the nozzle cap further comprises a cap cover; the cap cover encloses the vibration sensor; the vibration sensor is attached to a circumferential wall of the cap body; the cap cover defines indicia aligned with the vibration sensor; and the indicia are configured to notify a user of a placement of the vibration sensor along the circumferential wall.
2. The nozzle cap of claim 1, wherein:
- the cap body defines a cavity extending inwards into the cap body from the first body end towards the second body end; and
- the vibration sensor is positioned within the cavity.
3. The nozzle cap of claim 2, wherein:
- the cap body defines the circumferential wall;
- the circumferential wall at least partially encloses the cavity;
- the vibration sensor is attached to the circumferential wall; and
- the vibration sensor extends radially inwards from the circumferential wall with respect to the cap axis.
4. The nozzle cap of claim 1, wherein the nozzle cap is configured to be mounted on a nozzle with the sensor axis vertically aligned.
5. The nozzle cap of claim 1, wherein the cap body defines a threaded bore, and wherein the threaded bore is coaxial to the cap axis.
6. The nozzle cap of claim 1, wherein the vibration sensor is a piezoelectric sensor.
7. The nozzle cap of claim 1, wherein:
- the vibration sensor is a first vibration sensor;
- the sensor axis is a first sensor axis;
- the nozzle cap further comprises a second vibration sensor;
- the second vibration sensor defines a second sensor axis extending from a third sensor end of the second vibration sensor to a fourth sensor end of the second vibration sensor;
- the third sensor end is coupled to the cap body; and
- the second sensor axis is aligned perpendicular to the cap axis.
8. The nozzle cap of claim 7, wherein:
- an angle is defined between the first sensor axis and the second sensor axis; and
- the angle is between 45-degrees and 180-degrees.
9. The nozzle cap of claim 7, wherein the first sensor axis is perpendicular to the second sensor axis.
10. A nozzle cap comprising:
- a cap body, the cap body defining a cap axis extending from a first body end of the cap body to a second body end of the cap body; and
- a vibration sensor attached to the cap body, the vibration sensor defining a sensor axis extending from a first sensor end of the vibration sensor to a second sensor end of the vibration sensor, the first sensor end contacting the cap body, the sensor axis aligned perpendicular to the cap axis.
11. The nozzle cap of claim 10, wherein the first sensor end is received by a threaded hole defined by a circumferential wall of the cap body.
12. The nozzle cap of claim 10, wherein:
- the vibration sensor comprises a fastener coupled to a piezoelectric crystal; and
- the fastener defines the first sensor end.
13. The nozzle cap of claim 12, wherein the fastener defines a cylindrical surface, and wherein the cylindrical surface is coaxial with the sensor axis.
14. The nozzle cap of claim 12, wherein:
- the vibration sensor further comprises a base coupled to at least one calibration mass;
- the piezoelectric crystal is coupled to the base; and
- the at least one calibration mass defines the second sensor end.
15. The nozzle cap of claim 10, wherein:
- the vibration sensor is a first vibration sensor;
- the sensor axis is a first sensor axis;
- the nozzle cap further comprises a second vibration sensor;
- the second vibration sensor defines a second sensor axis extending from a third sensor end of the second vibration sensor to a fourth sensor end of the second vibration sensor;
- the third sensor end is coupled to the cap body; and
- the second sensor axis is aligned perpendicular to the cap axis.
16. The nozzle cap of claim 15, wherein:
- an angle is defined between the first sensor axis and the second sensor axis; and
- the angle is between 45-degrees and 180-degrees.
17. The nozzle cap of claim 15, wherein the first sensor axis is perpendicular to the second sensor axis.
18. The nozzle cap of claim 10, wherein:
- the cap body defines a cavity extending inwards into the cap body from the first body end towards the second body end; and
- the vibration sensor is positioned within the cavity.
19. The nozzle cap of claim 18, wherein:
- the cap body defines a circumferential wall;
- the circumferential wall at least partially encloses the cavity;
- the vibration sensor is attached to the circumferential wall; and
- the vibration sensor extends radially inwards from the circumferential wall with respect to the cap axis.
20. The nozzle cap of claim 10, wherein the cap body defines a threaded bore, and wherein the threaded bore is coaxial to the cap axis.
1738094 | December 1929 | Caldwell |
2171173 | August 1939 | Coyer |
3254528 | June 1966 | Michael |
3592967 | July 1971 | Harris |
3612922 | October 1971 | Furnival |
3662600 | May 1972 | Rosano, Jr. et al. |
3673856 | July 1972 | Panigati |
3815129 | June 1974 | Sweany |
4000753 | January 4, 1977 | Ellis |
4056970 | November 8, 1977 | Sollish |
4083229 | April 11, 1978 | Anway |
4156156 | May 22, 1979 | Sweany et al. |
4333028 | June 1, 1982 | Panton |
4431873 | February 14, 1984 | Dunn et al. |
4462249 | July 31, 1984 | Adams |
4467236 | August 21, 1984 | Kolm et al. |
4543817 | October 1, 1985 | Sugiyama |
4796466 | January 10, 1989 | Farmer |
4844396 | July 4, 1989 | Norton |
4930358 | June 5, 1990 | Motegi et al. |
4984498 | January 15, 1991 | Fishman |
5038614 | August 13, 1991 | Bseisu |
5052215 | October 1, 1991 | Lewis |
5078006 | January 7, 1992 | Maresca et al. |
5085082 | February 4, 1992 | Cantor et al. |
5090234 | February 25, 1992 | Maresca et al. |
5117676 | June 2, 1992 | Chang |
5118464 | June 2, 1992 | Richardson et al. |
5163314 | November 17, 1992 | Maresca et al. |
5165280 | November 24, 1992 | Sternberg et al. |
5170657 | December 15, 1992 | Maresca et al. |
5174155 | December 29, 1992 | Sugimoto |
5187973 | February 23, 1993 | Kunze et al. |
5189904 | March 2, 1993 | Maresca et al. |
5201226 | April 13, 1993 | John et al. |
5203202 | April 20, 1993 | Spencer |
5205173 | April 27, 1993 | Allen |
5209125 | May 11, 1993 | Kalinoski et al. |
5218859 | June 15, 1993 | Stenstrom et al. |
5243862 | September 14, 1993 | Latimer |
5254944 | October 19, 1993 | Holmes et al. |
5272646 | December 21, 1993 | Farmer |
5279160 | January 18, 1994 | Koch |
5287884 | February 22, 1994 | Cohen |
5298894 | March 29, 1994 | Cerny et al. |
5303592 | April 19, 1994 | Livingston |
5319956 | June 14, 1994 | Bogle et al. |
5333501 | August 2, 1994 | Okada et al. |
5335547 | August 9, 1994 | Nakajima et al. |
5343737 | September 6, 1994 | Baumoel |
5349568 | September 20, 1994 | Kupperman et al. |
5351655 | October 4, 1994 | Nuspl |
5361636 | November 8, 1994 | Farstad et al. |
5367911 | November 29, 1994 | Jewell et al. |
5385049 | January 31, 1995 | Hunt et al. |
5396800 | March 14, 1995 | Drinon et al. |
5408883 | April 25, 1995 | Clark et al. |
5416724 | May 16, 1995 | Savic |
5461906 | October 31, 1995 | Bogle et al. |
5519184 | May 21, 1996 | Umlas |
5526691 | June 18, 1996 | Latimer et al. |
5531099 | July 2, 1996 | Russo |
5548530 | August 20, 1996 | Baumoel |
5581037 | December 3, 1996 | Kwun et al. |
5591912 | January 7, 1997 | Spisak et al. |
5602327 | February 11, 1997 | Torizuka et al. |
5611948 | March 18, 1997 | Hawkins |
5619423 | April 8, 1997 | Scrantz |
5623203 | April 22, 1997 | Hosohara et al. |
5633467 | May 27, 1997 | Paulson |
5639958 | June 17, 1997 | Lange |
5655561 | August 12, 1997 | Wendel et al. |
5686828 | November 11, 1997 | Peterman et al. |
5708211 | January 13, 1998 | Jepson et al. |
5754101 | May 19, 1998 | Tsunetomi et al. |
5760306 | June 2, 1998 | Wyatt et al. |
5789720 | August 4, 1998 | Lagally et al. |
5798457 | August 25, 1998 | Paulson |
5838633 | November 17, 1998 | Sinha |
5866820 | February 2, 1999 | Camplin et al. |
5892163 | April 6, 1999 | Johnson |
5907100 | May 25, 1999 | Cook |
5965818 | October 12, 1999 | Wang |
5970434 | October 19, 1999 | Brophy et al. |
5974862 | November 2, 1999 | Lander |
5987990 | November 23, 1999 | Worthington et al. |
6000277 | December 14, 1999 | Smith |
6000288 | December 14, 1999 | Kwun et al. |
6003376 | December 21, 1999 | Burns et al. |
6023986 | February 15, 2000 | Smith et al. |
6035717 | March 14, 2000 | Carodiskey |
6058957 | May 9, 2000 | Honigsbaum |
6076407 | June 20, 2000 | Levesque et al. |
6082193 | July 4, 2000 | Paulson |
6104349 | August 15, 2000 | Cohen |
6125703 | October 3, 2000 | MacLauchlan et al. |
6127823 | October 3, 2000 | Atherton |
6127987 | October 3, 2000 | Maruyama |
6138512 | October 31, 2000 | Roberts |
6138514 | October 31, 2000 | Iwamoto et al. |
6164137 | December 26, 2000 | Hancock et al. |
6170334 | January 9, 2001 | Paulson |
6175380 | January 16, 2001 | Van Den Bosch |
6192352 | February 20, 2001 | Alouani et al. |
6243657 | June 5, 2001 | Tuck et al. |
6267000 | July 31, 2001 | Harper et al. |
6276213 | August 21, 2001 | Lee et al. |
6296066 | October 2, 2001 | Terry |
6343510 | February 5, 2002 | Neeson et al. |
6363788 | April 2, 2002 | Gorman et al. |
6389881 | May 21, 2002 | Yang et al. |
6401525 | June 11, 2002 | Jamieson |
6404343 | June 11, 2002 | Andou et al. |
6442999 | September 3, 2002 | Baumoel |
6453247 | September 17, 2002 | Hunaidi |
6470749 | October 29, 2002 | Han et al. |
6530263 | March 11, 2003 | Chana |
6561032 | May 13, 2003 | Hunaidi |
6567006 | May 20, 2003 | Lander et al. |
6578422 | June 17, 2003 | Lam et al. |
6595038 | July 22, 2003 | Williams et al. |
6606059 | August 12, 2003 | Barabash |
6624628 | September 23, 2003 | Kwun et al. |
6647762 | November 18, 2003 | Roy |
6651503 | November 25, 2003 | Bazarov et al. |
6666095 | December 23, 2003 | Thomas et al. |
6667709 | December 23, 2003 | Hansen et al. |
6707762 | March 16, 2004 | Goodman et al. |
6710600 | March 23, 2004 | Kopecki et al. |
6725705 | April 27, 2004 | Huebler et al. |
6734674 | May 11, 2004 | Struse |
6745136 | June 1, 2004 | Lam et al. |
6751560 | June 15, 2004 | Tingley et al. |
6763730 | July 20, 2004 | Wray |
6772636 | August 10, 2004 | Lam et al. |
6772637 | August 10, 2004 | Bazarov et al. |
6772638 | August 10, 2004 | Matney et al. |
6781369 | August 24, 2004 | Paulson et al. |
6782751 | August 31, 2004 | Linares et al. |
6789427 | September 14, 2004 | Batzinger et al. |
6791318 | September 14, 2004 | Paulson et al. |
6799455 | October 5, 2004 | Neefeldt et al. |
6799466 | October 5, 2004 | Chinn |
6813949 | November 9, 2004 | Masaniello et al. |
6813950 | November 9, 2004 | Glascock et al. |
6816072 | November 9, 2004 | Zoratti |
6820016 | November 16, 2004 | Brown et al. |
6822742 | November 23, 2004 | Kalayeh et al. |
6843131 | January 18, 2005 | Graff et al. |
6848313 | February 1, 2005 | Krieg et al. |
6851319 | February 8, 2005 | Ziola et al. |
6889703 | May 10, 2005 | Bond |
6904818 | June 14, 2005 | Harthorn et al. |
6912472 | June 28, 2005 | Mizushina et al. |
6920792 | July 26, 2005 | Flora et al. |
6931931 | August 23, 2005 | Graff et al. |
6935178 | August 30, 2005 | Prause |
6945113 | September 20, 2005 | Siverling et al. |
6957157 | October 18, 2005 | Lander |
6968727 | November 29, 2005 | Kwun et al. |
6978832 | December 27, 2005 | Gardner et al. |
7051577 | May 30, 2006 | Komninos |
7080557 | July 25, 2006 | Adnan |
7109929 | September 19, 2006 | Ryken, Jr. |
7111516 | September 26, 2006 | Bazarov et al. |
7140253 | November 28, 2006 | Merki et al. |
7143659 | December 5, 2006 | Stout et al. |
7171854 | February 6, 2007 | Nagashima et al. |
7231331 | June 12, 2007 | Davis |
7234355 | June 26, 2007 | Dewangan et al. |
7240574 | July 10, 2007 | Sapelnikov |
7255007 | August 14, 2007 | Messer et al. |
7261002 | August 28, 2007 | Gysling et al. |
7266992 | September 11, 2007 | Shamout et al. |
7274996 | September 25, 2007 | Lapinski |
7284433 | October 23, 2007 | Ales et al. |
7293461 | November 13, 2007 | Girndt |
7299697 | November 27, 2007 | Siddu et al. |
7310877 | December 25, 2007 | Cao et al. |
7328618 | February 12, 2008 | Hunaidi |
7331215 | February 19, 2008 | Bond |
7356444 | April 8, 2008 | Blemel |
7360462 | April 22, 2008 | Nozaki et al. |
7373808 | May 20, 2008 | Zanker et al. |
7380466 | June 3, 2008 | Deeg |
7383721 | June 10, 2008 | Parsons et al. |
7392709 | July 1, 2008 | Eckert |
7405391 | July 29, 2008 | Ogisu et al. |
7412882 | August 19, 2008 | Lazar et al. |
7412890 | August 19, 2008 | Johnson et al. |
7414395 | August 19, 2008 | Gao et al. |
7426879 | September 23, 2008 | Nozaki et al. |
7458267 | December 2, 2008 | McCoy |
7475596 | January 13, 2009 | Hunaidi et al. |
7493817 | February 24, 2009 | Germata |
7523666 | April 28, 2009 | Thompson et al. |
7526944 | May 5, 2009 | Sabata et al. |
7530270 | May 12, 2009 | Nozaki et al. |
7543500 | June 9, 2009 | Litzenberg et al. |
7554345 | June 30, 2009 | Vokey |
7564540 | July 21, 2009 | Paulson |
7587942 | September 15, 2009 | Smith et al. |
7590496 | September 15, 2009 | Blemel |
7596458 | September 29, 2009 | Lander |
7607351 | October 27, 2009 | Allison et al. |
7623427 | November 24, 2009 | Jann et al. |
7647829 | January 19, 2010 | Junker et al. |
7650790 | January 26, 2010 | Wright |
7657403 | February 2, 2010 | Stripf et al. |
7668670 | February 23, 2010 | Lander |
7680625 | March 16, 2010 | Trowbridge et al. |
7690258 | April 6, 2010 | Minagi et al. |
7694564 | April 13, 2010 | Brignac et al. |
7696940 | April 13, 2010 | MacDonald |
7711217 | May 4, 2010 | Takahashi et al. |
7751989 | July 6, 2010 | Owens et al. |
7810378 | October 12, 2010 | Hunaidi et al. |
8018126 | September 13, 2011 | Umeki |
8319508 | November 27, 2012 | Vokey |
8353309 | January 15, 2013 | Embry et al. |
8415860 | April 9, 2013 | Malkin |
8614745 | December 24, 2013 | Wasmeyyah |
8674830 | March 18, 2014 | Lanham et al. |
8823509 | September 2, 2014 | Hyland et al. |
8931505 | January 13, 2015 | Hyland et al. |
9048419 | June 2, 2015 | Xu |
9291520 | March 22, 2016 | Fleury, Jr. |
9315973 | April 19, 2016 | Varman et al. |
9496943 | November 15, 2016 | Parish et al. |
9528903 | December 27, 2016 | Zusman |
9593999 | March 14, 2017 | Fleury |
9772250 | September 26, 2017 | Richarz et al. |
9780433 | October 3, 2017 | Schwengler et al. |
9799204 | October 24, 2017 | Hyland et al. |
9849322 | December 26, 2017 | Hyland et al. |
9861848 | January 9, 2018 | Hyland et al. |
10175135 | January 8, 2019 | Dintakurt et al. |
10283857 | May 7, 2019 | Ortiz et al. |
10305178 | May 28, 2019 | Gibson et al. |
10317384 | June 11, 2019 | Morrow et al. |
10386257 | August 20, 2019 | Fleury, Jr. et al. |
20010045129 | November 29, 2001 | Williams et al. |
20020043549 | April 18, 2002 | Taylor et al. |
20020124633 | September 12, 2002 | Yang |
20020159584 | October 31, 2002 | Sindalovsky et al. |
20030107485 | June 12, 2003 | Zoratti |
20040173006 | September 9, 2004 | McCoy et al. |
20050005680 | January 13, 2005 | Anderson |
20050067022 | March 31, 2005 | Istre |
20050072214 | April 7, 2005 | Cooper |
20050121880 | June 9, 2005 | Santangelo |
20050279169 | December 22, 2005 | Lander |
20060174707 | August 10, 2006 | Zhang |
20060201550 | September 14, 2006 | Blyth et al. |
20060283251 | December 21, 2006 | Hunaidi |
20060284784 | December 21, 2006 | Smith |
20070044552 | March 1, 2007 | Huang |
20070051187 | March 8, 2007 | McDearmon |
20070113618 | May 24, 2007 | Yokoi et al. |
20070130317 | June 7, 2007 | Lander |
20080078567 | April 3, 2008 | Miller et al. |
20080079640 | April 3, 2008 | Yang |
20080168840 | July 17, 2008 | Seeley et al. |
20080189056 | August 7, 2008 | Heidl et al. |
20080281534 | November 13, 2008 | Hurley |
20080307623 | December 18, 2008 | Furukawa |
20080314122 | December 25, 2008 | Hunaidi |
20090044628 | February 19, 2009 | Lotscher |
20090133887 | May 28, 2009 | Garcia |
20090139336 | June 4, 2009 | Trowbridge, Jr. et al. |
20090182099 | July 16, 2009 | Noro et al. |
20090214941 | August 27, 2009 | Buck et al. |
20090278293 | November 12, 2009 | Yoshinaka et al. |
20090301571 | December 10, 2009 | Ruhs |
20100077234 | March 25, 2010 | Das |
20100156632 | June 24, 2010 | Hyland et al. |
20100236036 | September 23, 2010 | Stark |
20100290201 | November 18, 2010 | Takeuchi et al. |
20100295672 | November 25, 2010 | Hyland |
20110063172 | March 17, 2011 | Podduturi |
20110079402 | April 7, 2011 | Darby et al. |
20110102281 | May 5, 2011 | Su |
20110308638 | December 22, 2011 | Hyland |
20120007743 | January 12, 2012 | Solomon |
20120007744 | January 12, 2012 | Pal et al. |
20120169560 | July 5, 2012 | Lee et al. |
20120296580 | November 22, 2012 | Barkay |
20120324985 | December 27, 2012 | Gu et al. |
20130036796 | February 14, 2013 | Fleury |
20130041601 | February 14, 2013 | Dintakurti et al. |
20130049968 | February 28, 2013 | Fleury, Jr. |
20130145826 | June 13, 2013 | Richarz et al. |
20130229262 | September 5, 2013 | Bellows |
20130321231 | December 5, 2013 | Flores-Cuadras |
20140373941 | December 25, 2014 | Varman et al. |
20150082868 | March 26, 2015 | Hyland |
20150247777 | September 3, 2015 | Kondou |
20160001114 | January 7, 2016 | Hyland |
20160013565 | January 14, 2016 | Ortiz |
20160018283 | January 21, 2016 | Fleury |
20160097674 | April 7, 2016 | Zusman |
20170121949 | May 4, 2017 | Fleury |
20170237158 | August 17, 2017 | Gibson |
20170237165 | August 17, 2017 | Ortiz et al. |
20180080849 | March 22, 2018 | Showcatally |
20180093117 | April 5, 2018 | Hyland |
20180224349 | August 9, 2018 | Fleury, Jr. et al. |
20190024352 | January 24, 2019 | Ozburn |
20190214717 | July 11, 2019 | Gibson et al. |
20190214718 | July 11, 2019 | Ortiz et al. |
20190316983 | October 17, 2019 | Fleury, Jr. et al. |
20200069987 | March 5, 2020 | Hyland et al. |
20200212549 | July 2, 2020 | Gibson et al. |
20200232863 | July 23, 2020 | Moreno et al. |
20200232864 | July 23, 2020 | Moreno et al. |
2011265675 | May 2015 | AU |
2015202550 | November 2017 | AU |
2017248541 | March 2019 | AU |
2154433 | January 1997 | CA |
2397174 | August 2008 | CA |
2634739 | June 2015 | CA |
3010333 | July 2020 | CA |
2766850 | August 2020 | CA |
3023529 | August 2020 | CA |
1831478 | June 2013 | CN |
4211038 | October 1993 | DE |
19757581 | July 1998 | DE |
0711986 | May 1996 | EP |
1052492 | November 2000 | EP |
1077370 | February 2001 | EP |
1077371 | February 2001 | EP |
2439990 | May 1980 | FR |
2776065 | September 1999 | FR |
2250820 | June 1992 | GB |
2269900 | February 1994 | GB |
2367362 | April 2002 | GB |
2421311 | June 2006 | GB |
59170739 | September 1984 | JP |
60111132 | June 1985 | JP |
08250777 | September 1996 | JP |
H10-2744 | January 1998 | JP |
11201859 | July 1999 | JP |
H11210028 | August 1999 | JP |
2000131179 | May 2000 | JP |
2002206965 | July 2002 | JP |
2002310840 | October 2002 | JP |
2005315663 | November 2005 | JP |
2005321935 | November 2005 | JP |
2006062414 | March 2006 | JP |
2006062716 | March 2006 | JP |
2007047139 | February 2007 | JP |
2007300426 | November 2007 | JP |
2010068017 | March 2010 | JP |
2013528732 | July 2013 | JP |
H5654124 | November 2014 | JP |
9850771 | November 1998 | WO |
0151904 | July 2001 | WO |
03049528 | June 2003 | WO |
2004073115 | August 2004 | WO |
2009057214 | May 2009 | WO |
2010135587 | November 2010 | WO |
2011021039 | February 2011 | WO |
2011058561 | May 2011 | WO |
2011159403 | December 2011 | WO |
2012000088 | January 2012 | WO |
2012153147 | November 2012 | WO |
2013025526 | February 2013 | WO |
2014016625 | January 2014 | WO |
2017139029 | August 2017 | WO |
2017139030 | August 2017 | WO |
2020050946 | March 2020 | WO |
- Dintakurti, Ganapathi Deva Varma; Issue Notification for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Dec. 19, 2018, 1 pg.
- Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 15/401,457, filed Jan. 9, 2017, dated Apr. 16, 2019, 88 pgs.
- Ortiz, Jorge Isaac; Issue Notification for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Apr. 17, 2019, 1 pg.
- Gibson, Daryl Lee; Corrected Notice of Allowance for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Mar. 21, 2019, 6 pgs.
- Ortiz, Jorge Isaac; Supplemental Notice of Allowance for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Mar. 13, 2019, 6 pgs.
- Fleury, Leo W.; Office Action for Canadian application No. 2,842,042, filed Aug. 10, 2012, dated Feb. 28, 2019, 3 pgs.
- Hyland, Gregory E., Non-Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Jul. 31, 2013; 57 pgs.
- Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Feb. 20, 2014; 29 pgs.
- Hyland, Gregory E.; Issue Notification for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Dec. 23, 2014, 1 pg.
- Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Jun. 5, 2014, 29 pgs.
- Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Sep. 11, 2014, 11 pgs.
- Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Nov. 25, 2014, 5 pgs.
- Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Jun. 30, 2016, 24 pgs.
- Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Jan. 19, 2016, 101 pgs.
- Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Jul. 17, 2017, 14 pgs.
- Hyland, Gregory E.; Notice of Decision from Post-Prosecution Pilot Program (P3) Conference for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Sep. 14, 2016, 4 pgs.
- Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Oct. 20, 2017, 11 pgs.
- Hyland, Gregory E.; Applicant-Initiated Interview Summary for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Apr. 19, 2017, 4 pgs.
- Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Apr. 5, 2017, 23 pgs.
- Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Nov. 8, 2016, 48 pgs.
- Hyland, Gregory; Issue Notification for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Dec. 20, 2017, 1 pg.
- Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Dec. 13, 2016, 52 pgs.
- Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Sep. 6, 2017, 12 pgs.
- Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Nov. 27, 2017, 6 pgs.
- Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Sep. 19, 2017, 8 pgs.
- Hyland, Gregory; Non-Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Mar. 4, 2016, 94 pgs.
- Fleury Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Nov. 5, 2014, 30 pgs.
- Fleury, Jr., Leo W.; Advisory Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Jul. 9, 2014, 3 pgs.
- Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Mar. 12, 2014; 19 pgs.
- Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Aug. 19, 2016; 20 pgs.
- Hyland, Gregory; Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Jun. 7, 2017, 25 pgs.
- Fleury, Jr., Leo W.; Issue Notification for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Mar. 2, 2016, 1 pg.
- Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Sep. 12, 2013; 37 pgs.
- Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Feb. 2, 2016, 9 pgs.
- Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated May 12, 2015, 9 pgs.
- Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Sep. 23, 2015, 11 pgs.
- Fleury, Leo W.; Applicant-Initiated Interview Summary for U.S. Appl. No. 14/870,070, filed Sep. 30, 2015, dated Feb. 28, 2018, 4 pgs.
- Fleury, Leo W.; Final Office Action for U.S. Appl. No. 14/870,070, filed Sep. 30, 2015, dated Dec. 29, 2017, 24 pgs.
- Fleury, Leo; Non-Final Office Action for U.S. Appl. No. 14/870,070, filed Sep. 30, 2015, dated Jun. 21, 2017, 88 pgs.
- Richarz, Werner Guenther; Corrected Notice of Allowability for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Aug. 29, 2017, 6 pgs.
- Richarz, Werner Guenther; Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Oct. 20, 2014, 17 pgs.
- Richarz, Werner Guenther; Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 10, 2015, 20 pgs.
- Richarz, Werner Guenther; Issue Notification for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 6, 2017, 1 pg.
- Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Nov. 6, 2013, 39 pgs.
- Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Jun. 4, 2014, 24 pgs.
- Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Feb. 27, 2015, 15 pgs.
- Richarz, Werner Guenther; Notice of Allowance for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Jun. 13, 2017, 31 pgs.
- Richarz, Werner Guenther; Restriction Requirement for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 27, 2013; 5 pgs.
- Richarz, Werner Guenther; Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 8, 2016, 36 pgs.
- Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Mar. 8, 2016, 27 pgs.
- Chou, et al.; Article entitled: “Non-invasive Acceleration-based Methodology for Damage Detection and Assessment of Water Distribution System”, Mar. 2010, 17 pgs.
- Dintakurti, Ganapathi Deva Varma; Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Oct. 18, 2017, 38 pgs.
- Dintakurti, Ganapathi Deva Varma; Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Nov. 8, 2016, 31 pgs.
- Dintakurti, Ganapathi Deva Varma; Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Jun. 22, 2018, 39 pgs.
- Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Mar. 16, 2017, 30 pgs.
- Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated May 17, 2016, 48 pgs.
- Ortiz, Jorge Isaac; Final Office Action for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Dec. 12, 2018, 25 pgs.
- Ortiz, Jorge Isaac; Notice of Allowance for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Feb. 19, 2019, 8 pgs.
- Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Jan. 17, 2019, 17 pgs.
- J.A. Gallego-Juarez, G. Rodriguez-Corral and L. Gaete-Garreton, An ultrasonic transducer for high power applications in gases, Nov. 1978, Ultrasonics, published by IPC Business Press, p. 267-271.
- “Non-Patent Literature Murata (entitled ““Piezoelectric Sounds Components””), accessed at http://web.archive.org/web/20030806141815/http://www.murata.com/catalog/p37e17.pdf, archived on Aug. 6, 2003.”, 39 pgs.
- “Non-Patent Literature NerdKits, accessed at http://web.archive.org/web/20090510051850/http://www.nerdkits.com/videos/sound_meter/, archived on May 10, 2009.”, 6 pgs.
- “Non-Patent Literature Bimorph (entitled ““Bimoprh actuators””), accessed at http://web.archive.org/web/20080122050424/http://www.elpapiezo.ru/eng/curve_e.shtml, archived on Jan. 22, 2008,”, 3 pgs.
- Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Jan. 16, 2015, 60 pgs.
- Dintakurti, Ganapathi Deva Varma; Notice of Allowance for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Sep. 24, 2018, 21 pgs.
- Fleury Jr, Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Sep. 23, 2013; 35 pgs.
- Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Apr. 23, 2014, 19 pgs.
- Fleury, Jr., Leo W.; Advisory Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Jun. 18, 2014, 4 pgs.
- Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Jan. 11, 2018, 38 pgs.
- Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Oct. 21, 2014, 37 pgs.
- Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated May 22, 2015, 28 pgs.
- Non-Patent Literature “Radiodetection Water Leak Detection Products”, 2008, Radiodetection Ltd.—SPX Corporation, 12 pgs.
- Fleury, Jr., Leo W.; Advisory Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Sep. 9, 2015, 3 pgs.
- Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Mar. 1, 2016, 42 pgs.
- Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Sep. 21, 2016, 18 pgs.
- Fleury, Jr., Leo W.; Notice of Allowability for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Oct. 24, 2016, 13 pgs.
- Fleury, Jr., Leo W.; Supplemental Notice of Allowance for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Nov. 22, 2016; 8 pgs.
- Fleury, Jr., Leo W.; Corrected Notice of Allowability for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Feb. 14, 2017; 8 pgs.
- Fleury, Jr., Leo W.; Issue Notification for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Feb. 22, 2017; 1 page.
- Hyland; International Search Report and Written Opinion for serial No. PCT/US2011/035374, filed May 5, 2011, dated Sep. 13, 2011; 7 pgs.
- Hyland; International Preliminary Report on Patentability for serial No. PCT/US2011/035374, filed May 5, 2011, dated Dec. 19, 2012; 5 pgs.
- Hyland, Gregory E..; Office Action for Canadian Patent Application No. 2,766,850, filed May 5, 2011, dated Mar. 13, 2017, 4 pgs.
- Hyland, Gregory E.; Office Action for Canadian application No. 2,766,850, filed May 5, 2011, dated Aug. 16, 2018, 4 pgs.
- Hyland, Gregory E.; Mexico Office Action for serial No. MX/a/2012/000347, filed May 5, 2011, dated May 30, 2016, 4 pgs.
- Hyland, Gregory E.; Mexico Office Action for serial No. MX/a/2012/000347, filed May 5, 2011, dated Dec. 13, 2016, 5 pgs.
- Hyland, Gregory E.; Mexico Office Action for serial No. MX/a/2012/000347, filed May 5, 2011, dated Aug. 31, 2016, 4 pgs.
- Hyland, Gregory; Extended European Search Report for serial No. 11796120.1, filed May 5, 2011, dated Nov. 4, 2016, 8 pgs.
- Hyland, Gregory E.; Office Action for European patent application No. 11796120.1, filed May 5, 2011, dated Feb. 9, 2018, 4 pgs.
- Hyland, Gregory E.; Australian Patent Examination Report for serial No. 2011265675, filed Jan. 21, 2012, dated Oct. 1, 2014, 3 pgs.
- Hyland, Gregory E.; Japanese Office Action for serial No. 2013515338, filed Jan. 30, 2012, dated Jun. 10, 2014, 8 pgs.
- Hyland, Gregory E.; Japanese Office Action for serial No. 2014-234642, filed May 5, 2011, dated Jul. 7, 2015, 9 pgs.
- Hyland, Gregory E.; Japanese Office Action for serial No. 2014-234642, filed May 5, 2011, dated Nov. 4, 2015,9 pgs.
- Hyland, Gregory E.; Australian Examination Report for serial No. 2015202550, filed May 5, 2011, dated Aug. 12, 2016, 4 pgs.
- Hyland, Gregory E.; Australian Examination Report for serial No. 2015202550, filed May 5, 2011, dated Feb. 9, 2017, 4 pgs.
- Hyland, Gregory E.; Australian Examination Report for Serial No. 2015202550, filed May 5, 2011, dated May 16, 2017, 5 pgs.
- Hyland, Gregory E.; Australian Examination Report for Serial No. 2015202550, filed May 5, 2011, dated Jul. 5, 2017, 4 pgs.
- Hyland, Gregory E.; Office Action for Mexico Patent Application No. MX/a/2017/006090, filed May 5, 2011, dated Sep. 26, 2018, 4 pgs.
- Hyland, Gregory E.; Examination Report for Australian patent application No. 2017248541, filed Oct. 20, 2017, dated Apr. 20, 2018, 5 pgs.
- Fleury, Leo W.; International Search Report and Written Opinion for serial No. PCT/US12/50390 filed Aug. 10, 2012, dated Dec. 17, 2012, 18 pgs.
- Fleury, Leo W.; International Preliminary Report on Patentability for serial No. PCT/US12/50390 filed Aug. 10, 2012, dated Feb. 18, 2014, 14 pgs.
- Fleury, et al.; Supplemental European Search Report for application No. 12823594.2, filed Aug. 20, 2012, dated Feb. 18, 2015, 6 pgs.
- Fleury, Jr., Leo W.; European Search Report for serial No. 12823594, filed Aug. 10, 2012, dated Jun. 8, 2015, 11 pgs.
- Fleury Jr., Leo W.; European Search Report for Serial No. 12823594, filed Aug. 10, 2012, dated May 10, 2017, 4 pgs.
- Fleury Jr., Leo W.; European Search Report for Serial No. 12823594, filed Aug. 10, 2012, dated Dec. 21, 2017, 4 pgs.
- Fleury, Leo W.; Office Action for Canadian application No. 2,842,042, filed Aug. 10, 2012, dated Apr. 24, 2018, 3 pgs.
- Hyland; U.S. Provisional Patent Application entitled: Infrastructure Monitoring Devices, Systems, and Methods, having U.S. Appl. No. 61/355,468, filed Jun. 16, 2010.
- Fleury, Leo W., U.S. Provisional Patent Application Entitled: Hydrant Leak Detector Communication Device, System, and Method under U.S. Appl. No. 61/523,274, filed Aug. 12, 2011; 35 pgs.
- Hunaidi, Osama; Non-Final Office Action for U.S. Appl. No. 11/766,288, filed Jun. 21, 2007, dated Jan. 20, 2010, 50 pgs.
- Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Sep. 25, 2019, 92 pgs.
- Hyland, Gregory E.; Office Action for Canadian patent application No. 2,766,850, filed May 5, 2011, dated Jun. 19, 2019, 4 pgs.
- Ortiz, Jorge Isaac; Extended European Search Report for serial No. 16890114.8, filed Dec. 20, 2016, dated Sep. 26, 2019, 11 pgs.
- Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Feb. 19, 2020, 29 pgs.
- Oritz, Jorge Isaac; Office Action for Canadian patent application No. 3,070,690, filed Dec. 20, 2016, dated Mar. 10, 2020, 3 pgs.
- Gibson, Daryl Lee; Extended European Search Report for 16890115.5, filed Dec. 20, 2016, dated Jan. 24, 2020, 10 pgs.
- Zusman, George V.; Issue Notification for U.S. Appl. No. 14/503,951, filed Oct. 1, 2014, dated Dec. 7, 2016, 1 pg.
- Zusman, George V.; Notice of Allowance for U.S. Appl. No. 14/503,951, filed Oct. 1, 2014, dated Sep. 21, 2016, 18 pgs.
- Zusman, George, V.; Applicant Initiated Interview Summary for U.S. Appl. No. 14/503,951, filed Oct. 1, 2014, dated Jul. 12, 2016, 3 pgs.
- Zusman, George, V.; Non-Final Office Action for U.S. Appl. No. 14/503,951, filed Oct. 1, 2014, dated Jun. 13, 2016, 77 pgs.
- Zusman, George V.; Extended European Search Report for serial No. 15188004.4, filed Oct. 1, 2015, dated Feb. 22, 2016, 9 pgs.
- Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Jan. 28, 2020, 18 pgs.
- Hyland, Gregory E.; Office Action for Canadian patent application No. 3,023,529, filed May 5, 2011, dated Nov. 26, 2019, 4 pgs.
- Fleury, Leo W.; Office Action for Canadian patent application No. 2,842,042, filed Aug. 10, 2012, dated Dec. 5, 82019, 3 pgs.
- Ortiz, Jorge Isaac; Office Action for Canadian patent application No. 3,010,333, filed Dec. 20, 2016, dated Dec. 6, 2019, 4 pgs.
- Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,010,345, filed Dec. 20, 2016, dated Dec. 16, 2019, 4 pgs.
- Gibson, Daryl Lee; International Search Report and Written Opinion for PCT Application No. PCT/US19/45451, filed Aug. 7, 2019, dated Feb. 3, 2020, 11 pgs.
- Gibson, Daryl Lee; Office Action for Canadian application No. 3,057,202, filed Oct. 1, 2019, dated Dec. 19, 2019, 3 pgs.
- Hunaidi, Osama; Notice of Allowance for U.S. Appl. No. 11/766,288, filed Jun. 21, 2007, dated Jun. 24, 2010, 8 pgs.
- Hunaidi, Osama; Issue Notification for U.S. Appl. No. 11/766,288, filed Jun. 21, 2007, dated Sep. 22, 2010, 1 pg.
- Hunaidi, Osama; Non-final Office Action for U.S. Appl. No. 09/482,317, filed Jan. 14, 2000, dated Dec. 17, 2001, 6 pgs.
- Hunaidi, Osama; Notice of Allowance for U.S. Appl. No. 09/482,317, filed Jan. 14, 2000, dated May 13, 2002, 4 pgs.
- Peter, Russo Anthony; European Search Report for Patent Application No. EP95307807, filed Nov. 1, 1995, dated Jul. 22, 1998, 5 pgs.
- Ortiz, Jorge Isaac; Non-Final Office Action for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Jun. 4, 2018, 94 pgs.
- Ortiz, Jorge; International Search Report and Written Opinion for PCT/US16/67689, filed Dec. 20, 2016, dated Mar. 8, 2017, 9 pgs.
- Ortiz, Jorge Isaac; International Preliminary Report on Patentability for PCT Application No. PCT/US2016/067689, filed Dec. 20, 2016, dated Aug. 23, 2018, 8 pgs.
- Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Feb. 23, 2018, 86 pgs.
- Gibson, Daryl Lee; Final Office Action for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Aug. 31, 2018, 33 pgs.
- Gibson, Daryl Lee; International Search Report and Written Opinion for PCT Application No. PCT/US2016/067692, filed Dec. 20, 2016, dated Mar. 2, 2017,10 pgs.
- Gibson, Daryl Lee; International Preliminary Report on Patentability for PCT Application No. PCT/US2016/067692, filed Dec. 20, 2016, dated Aug. 23, 2018, 9 pgs.
- Gibson, Daryl Lee; U.S. Provisional Application entitled: Nozzle Cap Multi-Band Antenna Assembly having U.S. Appl. No. 62/294,973, filed Feb. 12, 2016, 54 pgs.
- Hyland, Gregory E.; Issue Notification for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Dec. 6, 2017, 1 pg.
- Dintakurti, Ganapathi Deva Varma; Corrected Notice of Allowance for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Dec. 6, 2018, 6 pgs.
- Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Dec. 17, 2019, 23 pgs.
- Gibson, Daryl Lee; Invitation to Pay Additional Fees for PCT/US19/45451, filed Aug. 7, 2019, dated Oct. 10, 2019, 2 pgs.
- Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,057,167, filed Aug. 7, 2019, dated Nov. 19, 2019, 7 pgs.
- Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Jul. 10, 2019, 74 pgs.
- Fleury, Jr., Leo W.; Corrected Notice of Allowance for U.S. Appl. No. 15/401,457, filed Jan. 9, 2017, dated Jun. 26, 2019, 55 pgs.
- Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Jun. 11, 2020, 33 pgs.
- Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated May 27, 2020, 23 pgs.
- Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,057,167, filed Aug. 7, 2019, dated May 25, 2020, 3 pgs.
- Gibson, Daryl Lee; Office Action for Canadian application No. 3,057,202, filed Oct. 1, 2019, dated Apr. 2, 2020, 4 pgs.
- Keefe, Robert Paul, Office Action for Canadian application No. 3,060,512, filed May 5, 2011, dated Apr. 22, 2020, 5 pgs.
- Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Aug. 21, 2020, 9 pgs.
- Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Jun. 26, 2020, 70 pgs.
- Hyland, Gregory; Supplemental Notice of Allowance for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Oct. 9, 2020, 4 pgs.
- Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Oct. 23, 2020, 16 pgs.
Type: Grant
Filed: Sep 4, 2018
Date of Patent: Dec 8, 2020
Patent Publication Number: 20200072697
Assignee: Mueller International, LLC (Atlanta, GA)
Inventors: Daryl Lee Gibson (Cleveland, TN), William Mark O'Brien (Toronto), Bruce Robertson (Toronto), Valentin Mircea Burtea (Toronto), Kevin Adam Laven (Toronto), Sebastien Perrier (Toronto)
Primary Examiner: David J Bolduc
Application Number: 16/121,136