Hydrant cap leak detector with oriented sensor

A nozzle cap includes a cap body, the cap body defining a cap axis extending from a first body end of the cap body to a second body end of the cap body; and a vibration sensor attached to the cap body, the vibration sensor defining a sensor axis extending from a first sensor end of the vibration sensor to a second sensor end of the vibration sensor, the sensor axis aligned perpendicular to the cap axis.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

This disclosure relates to fire hydrants. More specifically, this disclosure relates to a vibration sensor for detecting leaks in a water system connected to a fire hydrant.

BACKGROUND

Fire hydrants are commonly connected to fluid systems, such as municipal water infrastructure systems and water mains, through stand pipes. Because these fluid systems are typically partially or entirely located underground, it can be difficult to detect leaks within the fluid systems. Additionally, it can be difficult to access these fluid systems for monitoring. Fire hydrants can provide convenient above-ground access to the fluid systems. Leaks within the fluid systems can send vibrations through the fluid system and up stand pipes to the fire hydrants. These vibrations propagating through the stand pipes and fire hydrants can be monitored to detect leaks within the connected fluid system. However, fire hydrants can be subjected to other sources of vibration such as wind, rain, ambient noise from loud passing vehicles, or direct contact such as pedestrians bumping into fire hydrants or bicyclists leaning their bicycles against fire hydrants. These sources of background noise can trigger false alarms or make it more difficult for a potential leak to be detected.

SUMMARY

It is to be understood that this summary is not an extensive overview of the disclosure. This summary is exemplary and not restrictive, and it is intended to neither identify key or critical elements of the disclosure nor delineate the scope thereof. The sole purpose of this summary is to explain and exemplify certain concepts of the disclosure as an introduction to the following complete and extensive detailed description.

Disclosed is a nozzle cap comprising a cap body, the cap body defining a cap axis extending from a first body end of the cap body to a second body end of the cap body; and a vibration sensor attached to the cap body, the vibration sensor defining a sensor axis extending from a first sensor end of the vibration sensor to a second sensor end of the vibration sensor, the sensor axis aligned perpendicular to the cap axis.

Also disclosed is a hydrant assembly comprising a fire hydrant comprising a barrel, the barrel defining a barrel axis extending from a top barrel end of the barrel to a bottom barrel end of the barrel; and a vibration sensor enclosed within the fire hydrant, the vibration sensor defining a sensor axis extending from a first sensor end of the vibration sensor to a second sensor end of the vibration sensor, the sensor axis defining an angle relative to the barrel axis, the angle less than ninety degrees.

Also disclosed is a method for detecting leaks in a fluid system, the method comprising enclosing a vibration sensor within a fire hydrant, the fire hydrant connected in fluid communication with the fluid system; and positioning a sensor axis of the vibration sensor at an angle of less than ninety degrees to a barrel axis of the fire hydrant.

Various implementations described in the present disclosure may include additional systems, methods, features, and advantages, which may not necessarily be expressly disclosed herein but will be apparent to one of ordinary skill in the art upon examination of the following detailed description and accompanying drawings. It is intended that all such systems, methods, features, and advantages be included within the present disclosure and protected by the accompanying claims. The features and advantages of such implementations may be realized and obtained by means of the systems, methods, features particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims, or may be learned by the practice of such exemplary implementations as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. The drawings are not necessarily drawn to scale. Corresponding features and components throughout the figures may be designated by matching reference characters for the sake of consistency and clarity.

FIG. 1 is a perspective view of a hydrant assembly in accordance with one aspect of the present disclosure.

FIG. 2 is a perspective rear view of a nozzle cap of the hydrant assembly of FIG. 1.

FIG. 3 is a front view of the nozzle cap of FIG. 2 shown with a cap cover 280 of the nozzle cap removed.

FIG. 4 is a perspective view of one example aspect of a vibration sensor in accordance with one aspect of the present disclosure.

FIG. 5 is a front detail view of the hydrant assembly of FIG. 1 focusing on the nozzle cap with the cap cover shown in transparency and the underlying components shown in dashed lines.

FIG. 6 is a front detail view of the hydrant assembly of FIG. 1 focusing on the nozzle the nozzle cap, which demonstrates various potential positions for the vibration sensor of FIG. 4.

FIG. 7 is a cross-sectional side view of a barrel and the nozzle cap of FIG. 1 taken along line 7-7 shown in FIG. 6.

DETAILED DESCRIPTION

The present disclosure can be understood more readily by reference to the following detailed description, examples, drawings, and claims, and the previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this disclosure is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, and, as such, can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.

The following description is provided as an enabling teaching of the present devices, systems, and/or methods in its best, currently known aspect. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various aspects of the present devices, systems, and/or methods described herein, while still obtaining the beneficial results of the present disclosure. It will also be apparent that some of the desired benefits of the present disclosure can be obtained by selecting some of the features of the present disclosure without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present disclosure are possible and can even be desirable in certain circumstances and are a part of the present disclosure. Thus, the following description is provided as illustrative of the principles of the present disclosure and not in limitation thereof.

As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “an element” can include two or more such elements unless the context indicates otherwise.

Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.

For purposes of the current disclosure, a material property or dimension measuring about X or substantially X on a particular measurement scale measures within a range between X plus an industry-standard upper tolerance for the specified measurement and X minus an industry-standard lower tolerance for the specified measurement. Because tolerances can vary between different materials, processes and between different models, the tolerance for a particular measurement of a particular component can fall within a range of tolerances.

As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.

The word “or” as used herein means any one member of a particular list and also includes any combination of members of that list. Further, one should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain aspects include, while other aspects do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular aspects or that one or more particular aspects necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular aspect.

Disclosed are components that can be used to perform the disclosed methods and systems. These and other components are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these components are disclosed that while specific reference of each various individual and collective combinations and permutation of these may not be explicitly disclosed, each is specifically contemplated and described herein, for all methods and systems. This applies to all aspects of this application including, but not limited to, steps in disclosed methods. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific aspect or combination of aspects of the disclosed methods.

Disclosed is a hydrant assembly and associated methods, systems, devices, and various apparatus. The hydrant assembly can comprise a fire hydrant and a vibration sensor. It would be understood by one of skill in the art that the disclosed hydrant assembly is described in but a few exemplary aspects among many. No particular terminology or description should be considered limiting on the disclosure or the scope of any claims issuing therefrom.

FIG. 1 is a perspective view of a hydrant assembly 100 comprising a fire hydrant 110 and a vibration sensor 380 (shown in FIG. 3) in accordance with one aspect of the present disclosure. The fire hydrant 110 can comprise a barrel 120, a nozzle cap 150, and a bonnet 180. The barrel 120 can define a top barrel end 122 and a bottom barrel end 124 disposed opposite from the top barrel end 122. The barrel 120 can be substantially tubular, and the barrel 120 can define a barrel axis 101 extending from the top barrel end 122 to the bottom barrel end 124. In the present aspect, the barrel axis 101 can be substantially vertically aligned wherein the barrel axis 101 is aligned with the force of gravity.

The barrel 120 can comprise a top flange 126 disposed at the top barrel end 122 and a base flange 128 disposed at the bottom barrel end 124. The base flange 128 can be fastened to a stand pipe flange 199 of a stand pipe 198 of a fluid system (not shown), such as a water main for example and without limitation. The base flange 128 can be fastened to the stand pipe flange 199 by a plurality of fasteners 130. A bonnet flange 182 of the bonnet 180 can be attached to the top flange 126 of the barrel 120, such as with a plurality of fasteners (not shown) similar to the fasteners 130. The bonnet 180 can comprise an operation nut 184, or “op nut”, which can be rotated to open and close a main valve (not shown) positioned at the bottom barrel end 124 or below in the stand pipe 198 in order to respectively supply or cut off pressurized water flow to the fire hydrant 110.

The barrel 120 can define one or more nozzles 140a,b. The nozzle cap 150 can be screwed onto the nozzle 140a to seal the nozzle 140a. With the nozzle cap 150 sealing the nozzle 140a, pressurized water cannot escape through the nozzle 140a when the main valve (not shown) is in an open position. The nozzle cap 150 can define a cap nut 152 which can be turned, such as with a wrench, to tighten or loosen the nozzle cap 150 on the nozzle 140a.

FIG. 2 is a perspective rear view of the nozzle cap 150 of the fire hydrant 110 of FIG. 1. The nozzle cap 150 can comprise a cap body 210 and a cap cover 280. The cap body 210 can define a first body end 212 and a second body end 214 disposed opposite from the first body end 212. The cap cover 280 can be attached to the first body end 212 of the cap body 210. The cap body 210 can define a threaded bore 216 extending into the cap body 210 from the second body end 214 to an inner wall 220 of the cap body 210. The threaded bore 216 can define a cap axis 201 of the cap body 210, and the cap axis 201 can extend from the first body end 212 to the second body end 214.

The threaded bore 216 can define internal threading 218, and the threaded bore 216 can be screwed onto the nozzle 140a (shown in FIG. 1) to mount the nozzle cap 150 on the nozzle 140a by rotating the nozzle cap 150 about the cap axis 201. In the present aspect, the internal threading 218 can be straight threading that does not taper from the second body end 214 towards the inner wall 220. In other aspects, the internal threading 218 can be tapered threading that tapers from the second body end 214 towards the inner wall 220. A gasket 222 can be positioned adjacent to the inner wall 220, and the gasket 222 can be configured to form a seal with the nozzle 140a (shown in FIG. 1) when the nozzle cap 150 is screwed onto the nozzle 140a in a sealed position. As described below with respect to FIGS. 6 and 7, the gasket 222 can be selected based on its thickness, measured axially along the cap axis 201, to alter a rotational indexing of the nozzle cap 150 relative to the nozzle 140a.

FIG. 3 is a front view of the nozzle cap 150 of FIG. 1 with the cap cover 280 (shown in FIG. 2) removed from the cap body 210. The cap body 210 can define a cavity 310 extending inwards into the cap body 210 from the first body end 212 to the inner wall 220. In the present aspect, the cavity 310 can extend axially inward relative to the cap axis 201, shown extending out of the page. The inner wall 220 can separate the cavity 310 from the threaded bore 216 (shown in FIG. 2). The cap body 210 can define a circumferential wall 312 which partially encloses the cavity 310 and extends circumferentially around the cavity 310 relative to the cap axis 201. A cavity opening 313 to the cavity 310 can be defined at the first body end 212, and a cavity gasket 314 can extend around the cavity opening 313. The cavity gasket 314 can be configured to seal with the cap cover 280 to enclose and seal the cavity 310.

The circumferential wall 312 can define external scallops 316a,b. The external scallops 316a,b can extend radially inward into the circumferential wall 312 relative to the cap axis 201. Each of the external scallops 316a,b can respectively be enclosed by an antenna cover 318a,b, and an antenna strip 320a,b can be enclosed within each of the external scallops 316a,b between the respective antenna cover 318a,b and the circumferential wall 312.

The nozzle cap 150 can comprise a battery pack 360 and a printed circuit board (“PCB”) 362, each disposed within the cavity 310. The PCB 362 can be attached to a mounting bracket 364 which can be secured within the cavity 310 by a pair of fasteners 366.

As shown, the nozzle cap 150 of the fire hydrant 110 can also comprise the vibration sensor 380 of the hydrant assembly 100, and the vibration sensor 380 can be disposed within the cavity 310. The vibration sensor 380 can define a sensor axis 301 which can be perpendicular to the cap axis 201. The vibration sensor 380 can be attached to the circumferential wall 312, and the vibration sensor 380 can extend radially inward from the circumferential wall 312 and into the cavity 310 with respect to the cap axis 201.

The battery pack 360, the PCB 362, the vibration sensor 380, and the antenna strips 320a,b can be connected together in electrical communication. The vibration sensor 380 can be configured to detect leaks within the fluid system (not shown) by monitoring vibrations travelling up the stand pipe 198 (shown in FIG. 1) and through the fire hydrant 110 (shown in FIG. 1) when the nozzle cap 150 is mounted on the nozzle 140a (shown in FIG. 1). Vibration patterns within the fluid system can indicate the presence of leaks within the fluid system. The vibration sensor 380 can produce voltage readings when the vibration sensor 380 experiences vibrations. These voltage readings can be processed by the PCB 362 to determine whether leaks are present, and a signal can be transmitted outwards from the nozzle cap 150 by the antenna strips 320a,b to convey whether leaks have been identified within the fluid system.

FIG. 4 is a perspective view of one example aspect of the vibration sensor 380 of FIG. 3 wherein the vibration sensor 380 is a piezoelectric vibration sensor. Piezoelectric vibration sensors are described in greater detail in U.S. Pat. No. 9,528,903, issued Dec. 27, 2016, which is hereby incorporated by reference in its entirety.

The vibration sensor 380 can comprise a base 400, at least one piezoelectric crystal 402, and a plurality of calibration masses 406. The calibration masses 406 can be distributed circumferentially around the base 400. In the present aspect, the calibration masses 406 can be integrally formed with the base 400; however in other aspects, the calibration masses 406 can be separate components which can be attached to the base 400, such as with a glue, adhesive, mastic, epoxy, or another method such as welding, brazing, soldering, or any other attachment method for example and without limitation. In the present aspect, the calibration masses 406 can extend axially outward from each side of the base 400 with respect to the sensor axis 301. A notch 432 can be defined between each pair of adjacent calibration masses 406, and the calibration masses 406 can vibrate independently from one another.

The piezoelectric crystal 402 can be attached to the base 400, and the piezoelectric crystal 402 can be disposed radially inward from the calibration masses 406 with respect to the sensor axis 301. In some aspects, an additional piezoelectric crystal (not shown) can be attached to the opposite side of the base 400. In the present aspect, the piezoelectric crystals 402 can be bonded to the base 400 with a conductive adhesive. In other aspects, the piezoelectric crystals 402 can be attached to the base 400 through other suitable means such as double-sided tape, various glues, various coatings including elastomeric and silicon coatings among others, pure adhesives, or by a fastener.

In the present aspect, a fastener 408 can extend through the base 400 and piezoelectric crystals 402. The fastener 408 can define a threaded end 410, and a spacer 404 can be fit over the fastener 408 between the base 400 and the threaded end 410. In the present aspect, the threaded end 410 can define a first sensor end 412 of the vibration sensor 380, and a second sensor end 414 can be defined by the calibration masses 406, opposite from the first sensor end 412. The sensor axis 301 can extend through the fastener 408 and the vibration sensor 380 as a whole from the first sensor end 412 to the second sensor end 414.

The threaded end 410 can threadedly engage a threaded hole 780 (shown in FIG. 7) defined by the circumferential wall 312 (shown in FIG. 3) to attached the vibration sensor 380 to the cap body 210 (shown in FIG. 3). With the vibration sensor 380 attached to the cap body 210, and the nozzle cap 150 (shown in FIG. 3) attached to the nozzle 140a (shown in FIG. 1), the vibration sensor 380 can detect vibrations from the fluid system (not shown) and convert the vibrations to a voltage signal. When the vibration sensor 380 is exposed to vibrations, the calibration masses 406 can oscillate axially relative to the base 400 which can produce internal stresses within the piezoelectric crystal 402. Stresses within the piezoelectric crystal 402 can produce a voltage signal which can then be interpreted by the PCB 362 (shown in FIG. 3) to determine if leaks are present within the fluid system.

FIG. 5 is a front detail view of the hydrant assembly 100 focusing on the nozzle 140a and the nozzle cap 150 with the cap cover 280 of the nozzle cap 150 shown in transparency with the underlying components shown in dashed lines. Experimentation has revealed that the signal-to-noise ratio detected by the vibration sensor 380 is generally optimized when the sensor axis 301 is aligned with the barrel axis 101 of the barrel 120 of the fire hydrant 110, such as when vertically aligned relative to the direction of gravity as shown in the present aspect.

The cap cover 280 can define indicia 501, which can align with the circumferential placement of the vibration sensor around the circumferential wall 312. For example, in the present aspect, the vibration sensor 380 can be positioned in a six-o-clock position wherein the sensor axis 301 is vertically aligned, and the vibration sensor 380 is positioned at the bottom of the nozzle cap 150. The indicia 501 can also be positioned in the six-o-clock position so that the indicia 501 is approximately centered over the vibration sensor 380. In the present aspect, the indicia 501 can be the ECHOLOGICS logo which can be approximately centered over the vibration sensor 380; however, in other aspects, the indicia 501 can define any combination of words, numbers, and/or symbols to indicate the circumferential position of the vibration sensor 380 along the circumferential wall 312. For example, in some aspects, the indicia could be a line extending across the cap cover 280 which can be positioned parallel to the sensor axis 301 or an arrow indicating the preferred vertical alignment. Because a user cannot see into the cavity 310 in the present aspect, the indicia 501 can be configured to notify a user of the placement of the vibration sensor 380 along the circumferential wall so that the nozzle cap 150 can be optimally oriented when attaching the nozzle cap 150 to the nozzle 140a. In other aspects, some or all of the cap cover 280 can comprise a transparent material configured to provide a view of the orientation of the vibration sensor 380 within the cavity 310.

FIG. 6 is a front detail view of the hydrant assembly 100 focusing on the nozzle 140a and the nozzle cap 150 which demonstrates various potential positions 600a-h for the vibration sensor 380 (shown in FIG. 5) and the sensor axis 301, as shown by the dashed lines in the shape of the vibration sensor 380. The cap cover 280 is shown without the indicia 501 (shown in FIG. 5) for clarity. The exemplary potential orientations for the sensor axis 301 are shown as 301a-d.

Sensor axis 301a can correspond to the vertical orientations of the twelve-o-clock position 600a and the six-o-clock position 600e. In these positions, the sensor axis 301a is vertically aligned in parallel to the barrel axis 101 of the fire hydrant 110. These positions generally provide an optimal signal-to-noise ratio, as described above. In these positions, an angle defined between the sensor axis 301a and the barrel axis 101 can equal zero degrees, and therefore, this angle is not shown or labelled.

Sensor axis 301c corresponds to the horizontal orientations of the three-o-clock position 600c and the nine-o-clock position 600g. In these positions, the sensor axis 301c is horizontally aligned, and the sensor axis 301c can be perpendicular to the barrel axis 101. An angle Ac defined between the sensor axis 301c and the barrel axis 101 can equal ninety degrees. Experimentation generally shows that the signal-to-noise ratio is least desirable when the vibration sensor 380 (shown in FIG. 5) is in a horizontal orientation with the sensor axis 301c perpendicular to the barrel axis 101, which is vertical.

The sensor axis 301b corresponds to the positions 600b,f, and the sensor axis 301d corresponds to the positions 600d,h. The sensor axes 301b,d can be oblique to the barrel axis 101. The sensor axis 301b can define an angle Ab with the barrel axis 101, and the sensor axis 301d can define an angle Ad. In these positions, the angles Ab,Ad can be acute angles measuring less than ninety degrees. In these aspects, the signal-to-noise ratio is generally superior to that of the horizontal orientations of positions 600c,g but generally inferior to the signal-to-noise ratio of the vertical orientations of positions 600a,e. The signal-to-noise ratio improves as the angles Ab,Ad decrease to zero degrees, wherein the sensor axes 301b,d align with the barrel axis 101.

The demonstrated positions 600a-h are merely exemplary and should not be viewed as limiting. The vibration sensor 380 (shown in FIG. 5) can be oriented at any angle around the cap axis 201, shown extending out of the page. The sensor axis 301 can be perpendicular to the cap axis 201 regardless of potential orientation or rotational indexing of the nozzle cap 150.

Rotational indexing of the nozzle cap 150 relative to the nozzle 140a can be primarily dictated by the torque required to form a seal between the nozzle cap 150 and the nozzle 140a via the gasket 222 (shown in FIG. 2). For example, in an aspect wherein the internal threading 218 (shown in FIG. 2) of the threaded bore 216 (shown in FIG. 2) is right-handed threading, the nozzle cap 150 can be tightened onto the nozzle 140a by rotating the nozzle cap 150 in a clockwise direction about the cap axis 201 relative to the viewing angle shown. For example, in some aspects, the torque required to form a seal may naturally place the vibration sensor 380 (shown in FIG. 5) in one of the less desirable positions, such as position 600c. In such a case, if the nozzle cap 150 is backed off to place the vibration sensor 380 in the desirable twelve-o-clock position 600a, the seal between the nozzle cap 150 and the nozzle 140a may be compromised, and the nozzle cap 150 can leak. Conversely, a user can attempt to overtighten the nozzle cap 150 towards the desirable six-o-clock position 600e; however, the user may not be able to fully rotate the nozzle cap 150 to vertically align the vibration sensor 380 and achieve optimal signal-to-noise ratio. Additionally, overtightening the nozzle cap 150 can make the nozzle cap 150 difficult to remove, such as in the case of an emergency where firemen may need to open the nozzle 140a.

One solution is to alter a gasket thickness T (shown in FIG. 7) of the gasket 222 (shown in FIG. 7) to adjust the rotational indexing of the nozzle cap 150 relative to the nozzle 140a. By increasing the gasket thickness T of the gasket 222, the rotational indexing of the nozzle cap 150 can be rotated counter-clockwise about the cap axis 201 with respect to the viewing angle shown in aspects wherein the internal threading 218 (shown in FIG. 2) is right-handed threading. For example, if the vibration sensor 380 (shown in FIG. 7) is in position 600b when the nozzle cap 150 is torqued to the required specification to seal the nozzle 140a, the nozzle cap 150 can be removed, and the gasket 222 can be replaced with another gasket 222 having a larger gasket thickness T so that the vibration sensor 380 can be placed in the twelve-o-clock position 600a when the nozzle cap 150 is torqued to the required specification.

Conversely, a thinner gasket 222 can be used to rotate the rotational indexing of the nozzle cap 150 in the clockwise direction about the cap axis 201 with respect to the viewing angle shown. For example, if the vibration sensor 380 is in position 600d when the nozzle cap 150 is torqued to the required specification to seal the nozzle 140a, the nozzle cap 150 can be removed, and the gasket 222 can be replaced with another gasket 222 having a smaller gasket thickness T so that the vibration sensor 380 can be placed in the six-o-clock position 600e when the nozzle cap 150 is torqued to the required specification.

Rather than changing the gasket thickness T of the gasket 222, similar results can be achieved by positioning shims between the gasket 222 and the inner wall 220 (shown in FIG. 2), and a pack of shims of varying thicknesses can be included with an installation kit for the nozzle cap 150. In some aspects, the shim could be attached to the inner wall 220 with an adhesive sealant to prevent leaks between the shim and the inner wall 220. In other aspects, two gaskets 222 can be utilized, and the shim can be positioned between the two gaskets 222 to prevent leaks between the shim and the inner wall 220. The necessary thickness of the shims can be calculated based on the thread pitch of the internal threading 218 (shown in FIG. 2) using the following formula:

θ 360 × TPI = Shim Thickness or Change in Gasket Thickness T ;
wherein θ equals the desired angle of rotational correction in degrees, TPI is the threads-per-inch pitch of the internal threading 218, and shim thickness is measured in inches. For example and without limitation, if the internal threading 218 defines a thread pitch of 5 TPI, then each clockwise 360-degree rotation of the nozzle cap 150 translates the nozzle cap 150 0.20″ along the cap axis 201 towards the nozzle 140a. In order to alter the rotational indexing of the nozzle cap 150 counterclockwise by ninety degrees, a 0.05″ shim can be added between the gasket 222 and the inner wall 220. The same formula can be utilized to determine the necessary increase or decrease in gasket thickness T (shown in FIG. 7) to achieve the desired rotational indexing of the nozzle cap 150.

In some aspects of the nozzle cap 150, two vibration sensors 380 can be attached to the nozzle cap 150 at a ninety-degree offset from one another along the circumferential wall 312 (shown in FIG. 3). In such an aspect, the nozzle cap 150 would only have to be overtightened or backed off by a maximum of forty-five degrees to position one of the two vibration sensors 380 in one of the vertical orientations: the twelve-o-clock position 600a or the six-o-clock position 600e. In such aspects, the nozzle cap 150 can comprise an accelerometer to determine which of the two vibration sensors 380 is more optimally oriented when taking readings. In some aspects, the gasket 222 can comprise a soft, compressive material, such as a soft rubber like neoprene, which can allow for a greater range of adjustment to the rotational indexing compared to a harder material, such as a hard rubber.

FIG. 7 is a cross-sectional side view of the barrel 120 and nozzle cap 150 of FIG. 1 taken along line 7-7 shown in FIG. 6. In the aspect shown, the vibration sensor 380 can be in the six-o-clock position, and the sensor axis 301 can be vertically aligned in parallel with the barrel axis 101. Each of the barrel axis 101 and the sensor axis 301 can be perpendicular to the cap axis 201.

As shown and previously described, the gasket 222 can define the gasket thickness T, and the gasket 222 can be positioned between the inner wall 220 of the cap body 210 and a nozzle end 740 of the nozzle 140a. The vibration sensor 380 can also be screwed into the threaded hole 780 defined by the circumferential wall 312 to secure the vibration sensor 380 to the circumferential wall 312.

In other aspects, the vibration sensor 380 can be positioned within the bonnet 180 (shown in FIG. 1) of the fire hydrant 110 (shown in FIG. 1) or within the barrel 120 (shown in FIG. 1) of the fire hydrant 110. In such an aspect, the sensor axis 301 can be vertically aligned parallel with the barrel axis 101 of the barrel 120. Improvement in the signal-to-noise ratio for the vibration sensor 380 can be attributed to aligning the direction of oscillation of the calibration masses 406 (shown in FIG. 4) with the direction of vibration propagation. The calibration masses 406 can oscillate substantially axially along the sensor axis 301 of the vibration sensor 380. The vibrations can originate within the fluid system and then travel substantially vertically up the stand pipe 198 (shown in FIG. 1) to the fire hydrant 110. By vertically aligning the sensor axis 301 parallel to the barrel axis 101, the calibration masses 406 can be ideally positioned to oscillate upwards and downwards, which makes the vibration sensor 380 more sensitive to the vibrations propagating up the stand pipe 198 to the fire hydrant 110.

During experimentation, vibration sensors were installed on a fire hydrant attached to a 6-inch ductile iron water main at a test facility. Vibration sensors were positioned in both vertical and horizontal orientations, and the vibration sensors took readings while water was flowed from valves to simulate leaks in the water main. Across the frequency range 0-1200 Hz, the vertically oriented sensor demonstrated an average 3 dB increase in signal strength relative to the horizontally oriented sensor. Further testing was conducted wherein individuals clapped and yelled in proximity to the fire hydrant to measure sensitivity to airborne background noise, and the vibration sensors in the vertical orientation were found to be less sensitive to background noise. Across the frequency range 0-1200 Hz, the vertically oriented sensor demonstrated an average 8 dB increase in signal-to-noise ratio when comparing the leak simulation to airborne noise.

Further testing was conducted with fire hydrants to determine if the increase in signal-to-noise ratio would offer improved performance in detecting leaks. Vibration sensors in both horizontal and vertical orientations were attached to two separate fire hydrants while leaks of varying sizes were simulated by opening valves in the attached water infrastructure systems. In sixteen out of seventeen conditions tested, the vertically oriented sensors yielded correlations of higher strength than the horizontally oriented sensors, which demonstrates a higher likelihood that the vertically oriented sensors would detect the leak in a real world scenario.

One should note that conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular embodiments or that one or more particular embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.

It should be emphasized that the above-described embodiments are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the present disclosure. Any process descriptions or blocks in flow diagrams should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included in which functions may not be included or executed at all, may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those reasonably skilled in the art of the present disclosure. Many variations and modifications may be made to the above-described embodiment(s) without departing substantially from the spirit and principles of the present disclosure. Further, the scope of the present disclosure is intended to cover any and all combinations and sub-combinations of all elements, features, and aspects discussed above. All such modifications and variations are intended to be included herein within the scope of the present disclosure, and all possible claims to individual aspects or combinations of elements or steps are intended to be supported by the present disclosure.

Claims

1. A nozzle cap comprising:

a cap body, the cap body defining a cap axis extending from a first body end of the cap body to a second body end of the cap body; and
a vibration sensor attached to the cap body, the vibration sensor defining a sensor axis extending from a first sensor end of the vibration sensor to a second sensor end of the vibration sensor, the sensor axis aligned perpendicular to the cap axis; and
wherein: the nozzle cap further comprises a cap cover; the cap cover encloses the vibration sensor; the vibration sensor is attached to a circumferential wall of the cap body; the cap cover defines indicia aligned with the vibration sensor; and the indicia are configured to notify a user of a placement of the vibration sensor along the circumferential wall.

2. The nozzle cap of claim 1, wherein:

the cap body defines a cavity extending inwards into the cap body from the first body end towards the second body end; and
the vibration sensor is positioned within the cavity.

3. The nozzle cap of claim 2, wherein:

the cap body defines the circumferential wall;
the circumferential wall at least partially encloses the cavity;
the vibration sensor is attached to the circumferential wall; and
the vibration sensor extends radially inwards from the circumferential wall with respect to the cap axis.

4. The nozzle cap of claim 1, wherein the nozzle cap is configured to be mounted on a nozzle with the sensor axis vertically aligned.

5. The nozzle cap of claim 1, wherein the cap body defines a threaded bore, and wherein the threaded bore is coaxial to the cap axis.

6. The nozzle cap of claim 1, wherein the vibration sensor is a piezoelectric sensor.

7. The nozzle cap of claim 1, wherein:

the vibration sensor is a first vibration sensor;
the sensor axis is a first sensor axis;
the nozzle cap further comprises a second vibration sensor;
the second vibration sensor defines a second sensor axis extending from a third sensor end of the second vibration sensor to a fourth sensor end of the second vibration sensor;
the third sensor end is coupled to the cap body; and
the second sensor axis is aligned perpendicular to the cap axis.

8. The nozzle cap of claim 7, wherein:

an angle is defined between the first sensor axis and the second sensor axis; and
the angle is between 45-degrees and 180-degrees.

9. The nozzle cap of claim 7, wherein the first sensor axis is perpendicular to the second sensor axis.

10. A nozzle cap comprising:

a cap body, the cap body defining a cap axis extending from a first body end of the cap body to a second body end of the cap body; and
a vibration sensor attached to the cap body, the vibration sensor defining a sensor axis extending from a first sensor end of the vibration sensor to a second sensor end of the vibration sensor, the first sensor end contacting the cap body, the sensor axis aligned perpendicular to the cap axis.

11. The nozzle cap of claim 10, wherein the first sensor end is received by a threaded hole defined by a circumferential wall of the cap body.

12. The nozzle cap of claim 10, wherein:

the vibration sensor comprises a fastener coupled to a piezoelectric crystal; and
the fastener defines the first sensor end.

13. The nozzle cap of claim 12, wherein the fastener defines a cylindrical surface, and wherein the cylindrical surface is coaxial with the sensor axis.

14. The nozzle cap of claim 12, wherein:

the vibration sensor further comprises a base coupled to at least one calibration mass;
the piezoelectric crystal is coupled to the base; and
the at least one calibration mass defines the second sensor end.

15. The nozzle cap of claim 10, wherein:

the vibration sensor is a first vibration sensor;
the sensor axis is a first sensor axis;
the nozzle cap further comprises a second vibration sensor;
the second vibration sensor defines a second sensor axis extending from a third sensor end of the second vibration sensor to a fourth sensor end of the second vibration sensor;
the third sensor end is coupled to the cap body; and
the second sensor axis is aligned perpendicular to the cap axis.

16. The nozzle cap of claim 15, wherein:

an angle is defined between the first sensor axis and the second sensor axis; and
the angle is between 45-degrees and 180-degrees.

17. The nozzle cap of claim 15, wherein the first sensor axis is perpendicular to the second sensor axis.

18. The nozzle cap of claim 10, wherein:

the cap body defines a cavity extending inwards into the cap body from the first body end towards the second body end; and
the vibration sensor is positioned within the cavity.

19. The nozzle cap of claim 18, wherein:

the cap body defines a circumferential wall;
the circumferential wall at least partially encloses the cavity;
the vibration sensor is attached to the circumferential wall; and
the vibration sensor extends radially inwards from the circumferential wall with respect to the cap axis.

20. The nozzle cap of claim 10, wherein the cap body defines a threaded bore, and wherein the threaded bore is coaxial to the cap axis.

Referenced Cited
U.S. Patent Documents
1738094 December 1929 Caldwell
2171173 August 1939 Coyer
3254528 June 1966 Michael
3592967 July 1971 Harris
3612922 October 1971 Furnival
3662600 May 1972 Rosano, Jr. et al.
3673856 July 1972 Panigati
3815129 June 1974 Sweany
4000753 January 4, 1977 Ellis
4056970 November 8, 1977 Sollish
4083229 April 11, 1978 Anway
4156156 May 22, 1979 Sweany et al.
4333028 June 1, 1982 Panton
4431873 February 14, 1984 Dunn et al.
4462249 July 31, 1984 Adams
4467236 August 21, 1984 Kolm et al.
4543817 October 1, 1985 Sugiyama
4796466 January 10, 1989 Farmer
4844396 July 4, 1989 Norton
4930358 June 5, 1990 Motegi et al.
4984498 January 15, 1991 Fishman
5038614 August 13, 1991 Bseisu
5052215 October 1, 1991 Lewis
5078006 January 7, 1992 Maresca et al.
5085082 February 4, 1992 Cantor et al.
5090234 February 25, 1992 Maresca et al.
5117676 June 2, 1992 Chang
5118464 June 2, 1992 Richardson et al.
5163314 November 17, 1992 Maresca et al.
5165280 November 24, 1992 Sternberg et al.
5170657 December 15, 1992 Maresca et al.
5174155 December 29, 1992 Sugimoto
5187973 February 23, 1993 Kunze et al.
5189904 March 2, 1993 Maresca et al.
5201226 April 13, 1993 John et al.
5203202 April 20, 1993 Spencer
5205173 April 27, 1993 Allen
5209125 May 11, 1993 Kalinoski et al.
5218859 June 15, 1993 Stenstrom et al.
5243862 September 14, 1993 Latimer
5254944 October 19, 1993 Holmes et al.
5272646 December 21, 1993 Farmer
5279160 January 18, 1994 Koch
5287884 February 22, 1994 Cohen
5298894 March 29, 1994 Cerny et al.
5303592 April 19, 1994 Livingston
5319956 June 14, 1994 Bogle et al.
5333501 August 2, 1994 Okada et al.
5335547 August 9, 1994 Nakajima et al.
5343737 September 6, 1994 Baumoel
5349568 September 20, 1994 Kupperman et al.
5351655 October 4, 1994 Nuspl
5361636 November 8, 1994 Farstad et al.
5367911 November 29, 1994 Jewell et al.
5385049 January 31, 1995 Hunt et al.
5396800 March 14, 1995 Drinon et al.
5408883 April 25, 1995 Clark et al.
5416724 May 16, 1995 Savic
5461906 October 31, 1995 Bogle et al.
5519184 May 21, 1996 Umlas
5526691 June 18, 1996 Latimer et al.
5531099 July 2, 1996 Russo
5548530 August 20, 1996 Baumoel
5581037 December 3, 1996 Kwun et al.
5591912 January 7, 1997 Spisak et al.
5602327 February 11, 1997 Torizuka et al.
5611948 March 18, 1997 Hawkins
5619423 April 8, 1997 Scrantz
5623203 April 22, 1997 Hosohara et al.
5633467 May 27, 1997 Paulson
5639958 June 17, 1997 Lange
5655561 August 12, 1997 Wendel et al.
5686828 November 11, 1997 Peterman et al.
5708211 January 13, 1998 Jepson et al.
5754101 May 19, 1998 Tsunetomi et al.
5760306 June 2, 1998 Wyatt et al.
5789720 August 4, 1998 Lagally et al.
5798457 August 25, 1998 Paulson
5838633 November 17, 1998 Sinha
5866820 February 2, 1999 Camplin et al.
5892163 April 6, 1999 Johnson
5907100 May 25, 1999 Cook
5965818 October 12, 1999 Wang
5970434 October 19, 1999 Brophy et al.
5974862 November 2, 1999 Lander
5987990 November 23, 1999 Worthington et al.
6000277 December 14, 1999 Smith
6000288 December 14, 1999 Kwun et al.
6003376 December 21, 1999 Burns et al.
6023986 February 15, 2000 Smith et al.
6035717 March 14, 2000 Carodiskey
6058957 May 9, 2000 Honigsbaum
6076407 June 20, 2000 Levesque et al.
6082193 July 4, 2000 Paulson
6104349 August 15, 2000 Cohen
6125703 October 3, 2000 MacLauchlan et al.
6127823 October 3, 2000 Atherton
6127987 October 3, 2000 Maruyama
6138512 October 31, 2000 Roberts
6138514 October 31, 2000 Iwamoto et al.
6164137 December 26, 2000 Hancock et al.
6170334 January 9, 2001 Paulson
6175380 January 16, 2001 Van Den Bosch
6192352 February 20, 2001 Alouani et al.
6243657 June 5, 2001 Tuck et al.
6267000 July 31, 2001 Harper et al.
6276213 August 21, 2001 Lee et al.
6296066 October 2, 2001 Terry
6343510 February 5, 2002 Neeson et al.
6363788 April 2, 2002 Gorman et al.
6389881 May 21, 2002 Yang et al.
6401525 June 11, 2002 Jamieson
6404343 June 11, 2002 Andou et al.
6442999 September 3, 2002 Baumoel
6453247 September 17, 2002 Hunaidi
6470749 October 29, 2002 Han et al.
6530263 March 11, 2003 Chana
6561032 May 13, 2003 Hunaidi
6567006 May 20, 2003 Lander et al.
6578422 June 17, 2003 Lam et al.
6595038 July 22, 2003 Williams et al.
6606059 August 12, 2003 Barabash
6624628 September 23, 2003 Kwun et al.
6647762 November 18, 2003 Roy
6651503 November 25, 2003 Bazarov et al.
6666095 December 23, 2003 Thomas et al.
6667709 December 23, 2003 Hansen et al.
6707762 March 16, 2004 Goodman et al.
6710600 March 23, 2004 Kopecki et al.
6725705 April 27, 2004 Huebler et al.
6734674 May 11, 2004 Struse
6745136 June 1, 2004 Lam et al.
6751560 June 15, 2004 Tingley et al.
6763730 July 20, 2004 Wray
6772636 August 10, 2004 Lam et al.
6772637 August 10, 2004 Bazarov et al.
6772638 August 10, 2004 Matney et al.
6781369 August 24, 2004 Paulson et al.
6782751 August 31, 2004 Linares et al.
6789427 September 14, 2004 Batzinger et al.
6791318 September 14, 2004 Paulson et al.
6799455 October 5, 2004 Neefeldt et al.
6799466 October 5, 2004 Chinn
6813949 November 9, 2004 Masaniello et al.
6813950 November 9, 2004 Glascock et al.
6816072 November 9, 2004 Zoratti
6820016 November 16, 2004 Brown et al.
6822742 November 23, 2004 Kalayeh et al.
6843131 January 18, 2005 Graff et al.
6848313 February 1, 2005 Krieg et al.
6851319 February 8, 2005 Ziola et al.
6889703 May 10, 2005 Bond
6904818 June 14, 2005 Harthorn et al.
6912472 June 28, 2005 Mizushina et al.
6920792 July 26, 2005 Flora et al.
6931931 August 23, 2005 Graff et al.
6935178 August 30, 2005 Prause
6945113 September 20, 2005 Siverling et al.
6957157 October 18, 2005 Lander
6968727 November 29, 2005 Kwun et al.
6978832 December 27, 2005 Gardner et al.
7051577 May 30, 2006 Komninos
7080557 July 25, 2006 Adnan
7109929 September 19, 2006 Ryken, Jr.
7111516 September 26, 2006 Bazarov et al.
7140253 November 28, 2006 Merki et al.
7143659 December 5, 2006 Stout et al.
7171854 February 6, 2007 Nagashima et al.
7231331 June 12, 2007 Davis
7234355 June 26, 2007 Dewangan et al.
7240574 July 10, 2007 Sapelnikov
7255007 August 14, 2007 Messer et al.
7261002 August 28, 2007 Gysling et al.
7266992 September 11, 2007 Shamout et al.
7274996 September 25, 2007 Lapinski
7284433 October 23, 2007 Ales et al.
7293461 November 13, 2007 Girndt
7299697 November 27, 2007 Siddu et al.
7310877 December 25, 2007 Cao et al.
7328618 February 12, 2008 Hunaidi
7331215 February 19, 2008 Bond
7356444 April 8, 2008 Blemel
7360462 April 22, 2008 Nozaki et al.
7373808 May 20, 2008 Zanker et al.
7380466 June 3, 2008 Deeg
7383721 June 10, 2008 Parsons et al.
7392709 July 1, 2008 Eckert
7405391 July 29, 2008 Ogisu et al.
7412882 August 19, 2008 Lazar et al.
7412890 August 19, 2008 Johnson et al.
7414395 August 19, 2008 Gao et al.
7426879 September 23, 2008 Nozaki et al.
7458267 December 2, 2008 McCoy
7475596 January 13, 2009 Hunaidi et al.
7493817 February 24, 2009 Germata
7523666 April 28, 2009 Thompson et al.
7526944 May 5, 2009 Sabata et al.
7530270 May 12, 2009 Nozaki et al.
7543500 June 9, 2009 Litzenberg et al.
7554345 June 30, 2009 Vokey
7564540 July 21, 2009 Paulson
7587942 September 15, 2009 Smith et al.
7590496 September 15, 2009 Blemel
7596458 September 29, 2009 Lander
7607351 October 27, 2009 Allison et al.
7623427 November 24, 2009 Jann et al.
7647829 January 19, 2010 Junker et al.
7650790 January 26, 2010 Wright
7657403 February 2, 2010 Stripf et al.
7668670 February 23, 2010 Lander
7680625 March 16, 2010 Trowbridge et al.
7690258 April 6, 2010 Minagi et al.
7694564 April 13, 2010 Brignac et al.
7696940 April 13, 2010 MacDonald
7711217 May 4, 2010 Takahashi et al.
7751989 July 6, 2010 Owens et al.
7810378 October 12, 2010 Hunaidi et al.
8018126 September 13, 2011 Umeki
8319508 November 27, 2012 Vokey
8353309 January 15, 2013 Embry et al.
8415860 April 9, 2013 Malkin
8614745 December 24, 2013 Wasmeyyah
8674830 March 18, 2014 Lanham et al.
8823509 September 2, 2014 Hyland et al.
8931505 January 13, 2015 Hyland et al.
9048419 June 2, 2015 Xu
9291520 March 22, 2016 Fleury, Jr.
9315973 April 19, 2016 Varman et al.
9496943 November 15, 2016 Parish et al.
9528903 December 27, 2016 Zusman
9593999 March 14, 2017 Fleury
9772250 September 26, 2017 Richarz et al.
9780433 October 3, 2017 Schwengler et al.
9799204 October 24, 2017 Hyland et al.
9849322 December 26, 2017 Hyland et al.
9861848 January 9, 2018 Hyland et al.
10175135 January 8, 2019 Dintakurt et al.
10283857 May 7, 2019 Ortiz et al.
10305178 May 28, 2019 Gibson et al.
10317384 June 11, 2019 Morrow et al.
10386257 August 20, 2019 Fleury, Jr. et al.
20010045129 November 29, 2001 Williams et al.
20020043549 April 18, 2002 Taylor et al.
20020124633 September 12, 2002 Yang
20020159584 October 31, 2002 Sindalovsky et al.
20030107485 June 12, 2003 Zoratti
20040173006 September 9, 2004 McCoy et al.
20050005680 January 13, 2005 Anderson
20050067022 March 31, 2005 Istre
20050072214 April 7, 2005 Cooper
20050121880 June 9, 2005 Santangelo
20050279169 December 22, 2005 Lander
20060174707 August 10, 2006 Zhang
20060201550 September 14, 2006 Blyth et al.
20060283251 December 21, 2006 Hunaidi
20060284784 December 21, 2006 Smith
20070044552 March 1, 2007 Huang
20070051187 March 8, 2007 McDearmon
20070113618 May 24, 2007 Yokoi et al.
20070130317 June 7, 2007 Lander
20080078567 April 3, 2008 Miller et al.
20080079640 April 3, 2008 Yang
20080168840 July 17, 2008 Seeley et al.
20080189056 August 7, 2008 Heidl et al.
20080281534 November 13, 2008 Hurley
20080307623 December 18, 2008 Furukawa
20080314122 December 25, 2008 Hunaidi
20090044628 February 19, 2009 Lotscher
20090133887 May 28, 2009 Garcia
20090139336 June 4, 2009 Trowbridge, Jr. et al.
20090182099 July 16, 2009 Noro et al.
20090214941 August 27, 2009 Buck et al.
20090278293 November 12, 2009 Yoshinaka et al.
20090301571 December 10, 2009 Ruhs
20100077234 March 25, 2010 Das
20100156632 June 24, 2010 Hyland et al.
20100236036 September 23, 2010 Stark
20100290201 November 18, 2010 Takeuchi et al.
20100295672 November 25, 2010 Hyland
20110063172 March 17, 2011 Podduturi
20110079402 April 7, 2011 Darby et al.
20110102281 May 5, 2011 Su
20110308638 December 22, 2011 Hyland
20120007743 January 12, 2012 Solomon
20120007744 January 12, 2012 Pal et al.
20120169560 July 5, 2012 Lee et al.
20120296580 November 22, 2012 Barkay
20120324985 December 27, 2012 Gu et al.
20130036796 February 14, 2013 Fleury
20130041601 February 14, 2013 Dintakurti et al.
20130049968 February 28, 2013 Fleury, Jr.
20130145826 June 13, 2013 Richarz et al.
20130229262 September 5, 2013 Bellows
20130321231 December 5, 2013 Flores-Cuadras
20140373941 December 25, 2014 Varman et al.
20150082868 March 26, 2015 Hyland
20150247777 September 3, 2015 Kondou
20160001114 January 7, 2016 Hyland
20160013565 January 14, 2016 Ortiz
20160018283 January 21, 2016 Fleury
20160097674 April 7, 2016 Zusman
20170121949 May 4, 2017 Fleury
20170237158 August 17, 2017 Gibson
20170237165 August 17, 2017 Ortiz et al.
20180080849 March 22, 2018 Showcatally
20180093117 April 5, 2018 Hyland
20180224349 August 9, 2018 Fleury, Jr. et al.
20190024352 January 24, 2019 Ozburn
20190214717 July 11, 2019 Gibson et al.
20190214718 July 11, 2019 Ortiz et al.
20190316983 October 17, 2019 Fleury, Jr. et al.
20200069987 March 5, 2020 Hyland et al.
20200212549 July 2, 2020 Gibson et al.
20200232863 July 23, 2020 Moreno et al.
20200232864 July 23, 2020 Moreno et al.
Foreign Patent Documents
2011265675 May 2015 AU
2015202550 November 2017 AU
2017248541 March 2019 AU
2154433 January 1997 CA
2397174 August 2008 CA
2634739 June 2015 CA
3010333 July 2020 CA
2766850 August 2020 CA
3023529 August 2020 CA
1831478 June 2013 CN
4211038 October 1993 DE
19757581 July 1998 DE
0711986 May 1996 EP
1052492 November 2000 EP
1077370 February 2001 EP
1077371 February 2001 EP
2439990 May 1980 FR
2776065 September 1999 FR
2250820 June 1992 GB
2269900 February 1994 GB
2367362 April 2002 GB
2421311 June 2006 GB
59170739 September 1984 JP
60111132 June 1985 JP
08250777 September 1996 JP
H10-2744 January 1998 JP
11201859 July 1999 JP
H11210028 August 1999 JP
2000131179 May 2000 JP
2002206965 July 2002 JP
2002310840 October 2002 JP
2005315663 November 2005 JP
2005321935 November 2005 JP
2006062414 March 2006 JP
2006062716 March 2006 JP
2007047139 February 2007 JP
2007300426 November 2007 JP
2010068017 March 2010 JP
2013528732 July 2013 JP
H5654124 November 2014 JP
9850771 November 1998 WO
0151904 July 2001 WO
03049528 June 2003 WO
2004073115 August 2004 WO
2009057214 May 2009 WO
2010135587 November 2010 WO
2011021039 February 2011 WO
2011058561 May 2011 WO
2011159403 December 2011 WO
2012000088 January 2012 WO
2012153147 November 2012 WO
2013025526 February 2013 WO
2014016625 January 2014 WO
2017139029 August 2017 WO
2017139030 August 2017 WO
2020050946 March 2020 WO
Other references
  • Dintakurti, Ganapathi Deva Varma; Issue Notification for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Dec. 19, 2018, 1 pg.
  • Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 15/401,457, filed Jan. 9, 2017, dated Apr. 16, 2019, 88 pgs.
  • Ortiz, Jorge Isaac; Issue Notification for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Apr. 17, 2019, 1 pg.
  • Gibson, Daryl Lee; Corrected Notice of Allowance for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Mar. 21, 2019, 6 pgs.
  • Ortiz, Jorge Isaac; Supplemental Notice of Allowance for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Mar. 13, 2019, 6 pgs.
  • Fleury, Leo W.; Office Action for Canadian application No. 2,842,042, filed Aug. 10, 2012, dated Feb. 28, 2019, 3 pgs.
  • Hyland, Gregory E., Non-Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Jul. 31, 2013; 57 pgs.
  • Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Feb. 20, 2014; 29 pgs.
  • Hyland, Gregory E.; Issue Notification for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Dec. 23, 2014, 1 pg.
  • Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Jun. 5, 2014, 29 pgs.
  • Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Sep. 11, 2014, 11 pgs.
  • Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 13/101,235, filed May 5, 2011, dated Nov. 25, 2014, 5 pgs.
  • Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Jun. 30, 2016, 24 pgs.
  • Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Jan. 19, 2016, 101 pgs.
  • Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Jul. 17, 2017, 14 pgs.
  • Hyland, Gregory E.; Notice of Decision from Post-Prosecution Pilot Program (P3) Conference for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Sep. 14, 2016, 4 pgs.
  • Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Oct. 20, 2017, 11 pgs.
  • Hyland, Gregory E.; Applicant-Initiated Interview Summary for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Apr. 19, 2017, 4 pgs.
  • Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Apr. 5, 2017, 23 pgs.
  • Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Nov. 8, 2016, 48 pgs.
  • Hyland, Gregory; Issue Notification for U.S. Appl. No. 14/557,754, filed Dec. 2, 2014, dated Dec. 20, 2017, 1 pg.
  • Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Dec. 13, 2016, 52 pgs.
  • Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Sep. 6, 2017, 12 pgs.
  • Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Nov. 27, 2017, 6 pgs.
  • Hyland, Gregory E.; Supplemental Notice of Allowability for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Sep. 19, 2017, 8 pgs.
  • Hyland, Gregory; Non-Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Mar. 4, 2016, 94 pgs.
  • Fleury Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Nov. 5, 2014, 30 pgs.
  • Fleury, Jr., Leo W.; Advisory Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Jul. 9, 2014, 3 pgs.
  • Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Mar. 12, 2014; 19 pgs.
  • Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Aug. 19, 2016; 20 pgs.
  • Hyland, Gregory; Final Office Action for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Jun. 7, 2017, 25 pgs.
  • Fleury, Jr., Leo W.; Issue Notification for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Mar. 2, 2016, 1 pg.
  • Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Sep. 12, 2013; 37 pgs.
  • Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Feb. 2, 2016, 9 pgs.
  • Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated May 12, 2015, 9 pgs.
  • Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,790, filed Jun. 8, 2012, dated Sep. 23, 2015, 11 pgs.
  • Fleury, Leo W.; Applicant-Initiated Interview Summary for U.S. Appl. No. 14/870,070, filed Sep. 30, 2015, dated Feb. 28, 2018, 4 pgs.
  • Fleury, Leo W.; Final Office Action for U.S. Appl. No. 14/870,070, filed Sep. 30, 2015, dated Dec. 29, 2017, 24 pgs.
  • Fleury, Leo; Non-Final Office Action for U.S. Appl. No. 14/870,070, filed Sep. 30, 2015, dated Jun. 21, 2017, 88 pgs.
  • Richarz, Werner Guenther; Corrected Notice of Allowability for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Aug. 29, 2017, 6 pgs.
  • Richarz, Werner Guenther; Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Oct. 20, 2014, 17 pgs.
  • Richarz, Werner Guenther; Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 10, 2015, 20 pgs.
  • Richarz, Werner Guenther; Issue Notification for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 6, 2017, 1 pg.
  • Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Nov. 6, 2013, 39 pgs.
  • Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Jun. 4, 2014, 24 pgs.
  • Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Feb. 27, 2015, 15 pgs.
  • Richarz, Werner Guenther; Notice of Allowance for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Jun. 13, 2017, 31 pgs.
  • Richarz, Werner Guenther; Restriction Requirement for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 27, 2013; 5 pgs.
  • Richarz, Werner Guenther; Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Sep. 8, 2016, 36 pgs.
  • Richarz, Werner Guenther; Non-Final Office Action for U.S. Appl. No. 13/492,792, filed Jun. 8, 2012, dated Mar. 8, 2016, 27 pgs.
  • Chou, et al.; Article entitled: “Non-invasive Acceleration-based Methodology for Damage Detection and Assessment of Water Distribution System”, Mar. 2010, 17 pgs.
  • Dintakurti, Ganapathi Deva Varma; Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Oct. 18, 2017, 38 pgs.
  • Dintakurti, Ganapathi Deva Varma; Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Nov. 8, 2016, 31 pgs.
  • Dintakurti, Ganapathi Deva Varma; Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Jun. 22, 2018, 39 pgs.
  • Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Mar. 16, 2017, 30 pgs.
  • Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated May 17, 2016, 48 pgs.
  • Ortiz, Jorge Isaac; Final Office Action for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Dec. 12, 2018, 25 pgs.
  • Ortiz, Jorge Isaac; Notice of Allowance for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Feb. 19, 2019, 8 pgs.
  • Gibson, Daryl Lee; Notice of Allowance for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Jan. 17, 2019, 17 pgs.
  • J.A. Gallego-Juarez, G. Rodriguez-Corral and L. Gaete-Garreton, An ultrasonic transducer for high power applications in gases, Nov. 1978, Ultrasonics, published by IPC Business Press, p. 267-271.
  • “Non-Patent Literature Murata (entitled ““Piezoelectric Sounds Components””), accessed at http://web.archive.org/web/20030806141815/http://www.murata.com/catalog/p37e17.pdf, archived on Aug. 6, 2003.”, 39 pgs.
  • “Non-Patent Literature NerdKits, accessed at http://web.archive.org/web/20090510051850/http://www.nerdkits.com/videos/sound_meter/, archived on May 10, 2009.”, 6 pgs.
  • “Non-Patent Literature Bimorph (entitled ““Bimoprh actuators””), accessed at http://web.archive.org/web/20080122050424/http://www.elpapiezo.ru/eng/curve_e.shtml, archived on Jan. 22, 2008,”, 3 pgs.
  • Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Jan. 16, 2015, 60 pgs.
  • Dintakurti, Ganapathi Deva Varma; Notice of Allowance for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Sep. 24, 2018, 21 pgs.
  • Fleury Jr, Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Sep. 23, 2013; 35 pgs.
  • Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Apr. 23, 2014, 19 pgs.
  • Fleury, Jr., Leo W.; Advisory Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Jun. 18, 2014, 4 pgs.
  • Dintakurti, Ganapathi Deva Varma; Non-Final Office Action for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Jan. 11, 2018, 38 pgs.
  • Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Oct. 21, 2014, 37 pgs.
  • Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated May 22, 2015, 28 pgs.
  • Non-Patent Literature “Radiodetection Water Leak Detection Products”, 2008, Radiodetection Ltd.—SPX Corporation, 12 pgs.
  • Fleury, Jr., Leo W.; Advisory Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Sep. 9, 2015, 3 pgs.
  • Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Mar. 1, 2016, 42 pgs.
  • Fleury, Jr., Leo W.; Notice of Allowance for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Sep. 21, 2016, 18 pgs.
  • Fleury, Jr., Leo W.; Notice of Allowability for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Oct. 24, 2016, 13 pgs.
  • Fleury, Jr., Leo W.; Supplemental Notice of Allowance for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Nov. 22, 2016; 8 pgs.
  • Fleury, Jr., Leo W.; Corrected Notice of Allowability for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Feb. 14, 2017; 8 pgs.
  • Fleury, Jr., Leo W.; Issue Notification for U.S. Appl. No. 13/492,795, filed Jun. 8, 2012, dated Feb. 22, 2017; 1 page.
  • Hyland; International Search Report and Written Opinion for serial No. PCT/US2011/035374, filed May 5, 2011, dated Sep. 13, 2011; 7 pgs.
  • Hyland; International Preliminary Report on Patentability for serial No. PCT/US2011/035374, filed May 5, 2011, dated Dec. 19, 2012; 5 pgs.
  • Hyland, Gregory E..; Office Action for Canadian Patent Application No. 2,766,850, filed May 5, 2011, dated Mar. 13, 2017, 4 pgs.
  • Hyland, Gregory E.; Office Action for Canadian application No. 2,766,850, filed May 5, 2011, dated Aug. 16, 2018, 4 pgs.
  • Hyland, Gregory E.; Mexico Office Action for serial No. MX/a/2012/000347, filed May 5, 2011, dated May 30, 2016, 4 pgs.
  • Hyland, Gregory E.; Mexico Office Action for serial No. MX/a/2012/000347, filed May 5, 2011, dated Dec. 13, 2016, 5 pgs.
  • Hyland, Gregory E.; Mexico Office Action for serial No. MX/a/2012/000347, filed May 5, 2011, dated Aug. 31, 2016, 4 pgs.
  • Hyland, Gregory; Extended European Search Report for serial No. 11796120.1, filed May 5, 2011, dated Nov. 4, 2016, 8 pgs.
  • Hyland, Gregory E.; Office Action for European patent application No. 11796120.1, filed May 5, 2011, dated Feb. 9, 2018, 4 pgs.
  • Hyland, Gregory E.; Australian Patent Examination Report for serial No. 2011265675, filed Jan. 21, 2012, dated Oct. 1, 2014, 3 pgs.
  • Hyland, Gregory E.; Japanese Office Action for serial No. 2013515338, filed Jan. 30, 2012, dated Jun. 10, 2014, 8 pgs.
  • Hyland, Gregory E.; Japanese Office Action for serial No. 2014-234642, filed May 5, 2011, dated Jul. 7, 2015, 9 pgs.
  • Hyland, Gregory E.; Japanese Office Action for serial No. 2014-234642, filed May 5, 2011, dated Nov. 4, 2015,9 pgs.
  • Hyland, Gregory E.; Australian Examination Report for serial No. 2015202550, filed May 5, 2011, dated Aug. 12, 2016, 4 pgs.
  • Hyland, Gregory E.; Australian Examination Report for serial No. 2015202550, filed May 5, 2011, dated Feb. 9, 2017, 4 pgs.
  • Hyland, Gregory E.; Australian Examination Report for Serial No. 2015202550, filed May 5, 2011, dated May 16, 2017, 5 pgs.
  • Hyland, Gregory E.; Australian Examination Report for Serial No. 2015202550, filed May 5, 2011, dated Jul. 5, 2017, 4 pgs.
  • Hyland, Gregory E.; Office Action for Mexico Patent Application No. MX/a/2017/006090, filed May 5, 2011, dated Sep. 26, 2018, 4 pgs.
  • Hyland, Gregory E.; Examination Report for Australian patent application No. 2017248541, filed Oct. 20, 2017, dated Apr. 20, 2018, 5 pgs.
  • Fleury, Leo W.; International Search Report and Written Opinion for serial No. PCT/US12/50390 filed Aug. 10, 2012, dated Dec. 17, 2012, 18 pgs.
  • Fleury, Leo W.; International Preliminary Report on Patentability for serial No. PCT/US12/50390 filed Aug. 10, 2012, dated Feb. 18, 2014, 14 pgs.
  • Fleury, et al.; Supplemental European Search Report for application No. 12823594.2, filed Aug. 20, 2012, dated Feb. 18, 2015, 6 pgs.
  • Fleury, Jr., Leo W.; European Search Report for serial No. 12823594, filed Aug. 10, 2012, dated Jun. 8, 2015, 11 pgs.
  • Fleury Jr., Leo W.; European Search Report for Serial No. 12823594, filed Aug. 10, 2012, dated May 10, 2017, 4 pgs.
  • Fleury Jr., Leo W.; European Search Report for Serial No. 12823594, filed Aug. 10, 2012, dated Dec. 21, 2017, 4 pgs.
  • Fleury, Leo W.; Office Action for Canadian application No. 2,842,042, filed Aug. 10, 2012, dated Apr. 24, 2018, 3 pgs.
  • Hyland; U.S. Provisional Patent Application entitled: Infrastructure Monitoring Devices, Systems, and Methods, having U.S. Appl. No. 61/355,468, filed Jun. 16, 2010.
  • Fleury, Leo W., U.S. Provisional Patent Application Entitled: Hydrant Leak Detector Communication Device, System, and Method under U.S. Appl. No. 61/523,274, filed Aug. 12, 2011; 35 pgs.
  • Hunaidi, Osama; Non-Final Office Action for U.S. Appl. No. 11/766,288, filed Jun. 21, 2007, dated Jan. 20, 2010, 50 pgs.
  • Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Sep. 25, 2019, 92 pgs.
  • Hyland, Gregory E.; Office Action for Canadian patent application No. 2,766,850, filed May 5, 2011, dated Jun. 19, 2019, 4 pgs.
  • Ortiz, Jorge Isaac; Extended European Search Report for serial No. 16890114.8, filed Dec. 20, 2016, dated Sep. 26, 2019, 11 pgs.
  • Fleury, Jr., Leo W.; Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated Feb. 19, 2020, 29 pgs.
  • Oritz, Jorge Isaac; Office Action for Canadian patent application No. 3,070,690, filed Dec. 20, 2016, dated Mar. 10, 2020, 3 pgs.
  • Gibson, Daryl Lee; Extended European Search Report for 16890115.5, filed Dec. 20, 2016, dated Jan. 24, 2020, 10 pgs.
  • Zusman, George V.; Issue Notification for U.S. Appl. No. 14/503,951, filed Oct. 1, 2014, dated Dec. 7, 2016, 1 pg.
  • Zusman, George V.; Notice of Allowance for U.S. Appl. No. 14/503,951, filed Oct. 1, 2014, dated Sep. 21, 2016, 18 pgs.
  • Zusman, George, V.; Applicant Initiated Interview Summary for U.S. Appl. No. 14/503,951, filed Oct. 1, 2014, dated Jul. 12, 2016, 3 pgs.
  • Zusman, George, V.; Non-Final Office Action for U.S. Appl. No. 14/503,951, filed Oct. 1, 2014, dated Jun. 13, 2016, 77 pgs.
  • Zusman, George V.; Extended European Search Report for serial No. 15188004.4, filed Oct. 1, 2015, dated Feb. 22, 2016, 9 pgs.
  • Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Jan. 28, 2020, 18 pgs.
  • Hyland, Gregory E.; Office Action for Canadian patent application No. 3,023,529, filed May 5, 2011, dated Nov. 26, 2019, 4 pgs.
  • Fleury, Leo W.; Office Action for Canadian patent application No. 2,842,042, filed Aug. 10, 2012, dated Dec. 5, 82019, 3 pgs.
  • Ortiz, Jorge Isaac; Office Action for Canadian patent application No. 3,010,333, filed Dec. 20, 2016, dated Dec. 6, 2019, 4 pgs.
  • Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,010,345, filed Dec. 20, 2016, dated Dec. 16, 2019, 4 pgs.
  • Gibson, Daryl Lee; International Search Report and Written Opinion for PCT Application No. PCT/US19/45451, filed Aug. 7, 2019, dated Feb. 3, 2020, 11 pgs.
  • Gibson, Daryl Lee; Office Action for Canadian application No. 3,057,202, filed Oct. 1, 2019, dated Dec. 19, 2019, 3 pgs.
  • Hunaidi, Osama; Notice of Allowance for U.S. Appl. No. 11/766,288, filed Jun. 21, 2007, dated Jun. 24, 2010, 8 pgs.
  • Hunaidi, Osama; Issue Notification for U.S. Appl. No. 11/766,288, filed Jun. 21, 2007, dated Sep. 22, 2010, 1 pg.
  • Hunaidi, Osama; Non-final Office Action for U.S. Appl. No. 09/482,317, filed Jan. 14, 2000, dated Dec. 17, 2001, 6 pgs.
  • Hunaidi, Osama; Notice of Allowance for U.S. Appl. No. 09/482,317, filed Jan. 14, 2000, dated May 13, 2002, 4 pgs.
  • Peter, Russo Anthony; European Search Report for Patent Application No. EP95307807, filed Nov. 1, 1995, dated Jul. 22, 1998, 5 pgs.
  • Ortiz, Jorge Isaac; Non-Final Office Action for U.S. Appl. No. 15/043,057, filed Feb. 12, 2016, dated Jun. 4, 2018, 94 pgs.
  • Ortiz, Jorge; International Search Report and Written Opinion for PCT/US16/67689, filed Dec. 20, 2016, dated Mar. 8, 2017, 9 pgs.
  • Ortiz, Jorge Isaac; International Preliminary Report on Patentability for PCT Application No. PCT/US2016/067689, filed Dec. 20, 2016, dated Aug. 23, 2018, 8 pgs.
  • Gibson, Daryl Lee; Non-Final Office Action for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Feb. 23, 2018, 86 pgs.
  • Gibson, Daryl Lee; Final Office Action for U.S. Appl. No. 15/255,795, filed Sep. 2, 2016, dated Aug. 31, 2018, 33 pgs.
  • Gibson, Daryl Lee; International Search Report and Written Opinion for PCT Application No. PCT/US2016/067692, filed Dec. 20, 2016, dated Mar. 2, 2017,10 pgs.
  • Gibson, Daryl Lee; International Preliminary Report on Patentability for PCT Application No. PCT/US2016/067692, filed Dec. 20, 2016, dated Aug. 23, 2018, 9 pgs.
  • Gibson, Daryl Lee; U.S. Provisional Application entitled: Nozzle Cap Multi-Band Antenna Assembly having U.S. Appl. No. 62/294,973, filed Feb. 12, 2016, 54 pgs.
  • Hyland, Gregory E.; Issue Notification for U.S. Appl. No. 14/848,676, filed Sep. 9, 2015, dated Dec. 6, 2017, 1 pg.
  • Dintakurti, Ganapathi Deva Varma; Corrected Notice of Allowance for U.S. Appl. No. 13/492,794, filed Jun. 8, 2012, dated Dec. 6, 2018, 6 pgs.
  • Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Dec. 17, 2019, 23 pgs.
  • Gibson, Daryl Lee; Invitation to Pay Additional Fees for PCT/US19/45451, filed Aug. 7, 2019, dated Oct. 10, 2019, 2 pgs.
  • Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,057,167, filed Aug. 7, 2019, dated Nov. 19, 2019, 7 pgs.
  • Hyland, Gregory E.; Non-Final Office Action for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Jul. 10, 2019, 74 pgs.
  • Fleury, Jr., Leo W.; Corrected Notice of Allowance for U.S. Appl. No. 15/401,457, filed Jan. 9, 2017, dated Jun. 26, 2019, 55 pgs.
  • Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Jun. 11, 2020, 33 pgs.
  • Fleury, Jr., Leo W.; Non-Final Office Action for U.S. Appl. No. 15/939,942, filed Mar. 29, 2018, dated May 27, 2020, 23 pgs.
  • Gibson, Daryl Lee; Office Action for Canadian patent application No. 3,057,167, filed Aug. 7, 2019, dated May 25, 2020, 3 pgs.
  • Gibson, Daryl Lee; Office Action for Canadian application No. 3,057,202, filed Oct. 1, 2019, dated Apr. 2, 2020, 4 pgs.
  • Keefe, Robert Paul, Office Action for Canadian application No. 3,060,512, filed May 5, 2011, dated Apr. 22, 2020, 5 pgs.
  • Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Aug. 21, 2020, 9 pgs.
  • Hyland, Gregory E.; Final Office Action for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Jun. 26, 2020, 70 pgs.
  • Hyland, Gregory; Supplemental Notice of Allowance for U.S. Appl. No. 15/817,172, filed Nov. 18, 2017, dated Oct. 9, 2020, 4 pgs.
  • Hyland, Gregory E.; Notice of Allowance for U.S. Appl. No. 16/675,507, filed Nov. 6, 2019, dated Oct. 23, 2020, 16 pgs.
Patent History
Patent number: 10859462
Type: Grant
Filed: Sep 4, 2018
Date of Patent: Dec 8, 2020
Patent Publication Number: 20200072697
Assignee: Mueller International, LLC (Atlanta, GA)
Inventors: Daryl Lee Gibson (Cleveland, TN), William Mark O'Brien (Toronto), Bruce Robertson (Toronto), Valentin Mircea Burtea (Toronto), Kevin Adam Laven (Toronto), Sebastien Perrier (Toronto)
Primary Examiner: David J Bolduc
Application Number: 16/121,136
Classifications
International Classification: E03B 9/06 (20060101); G01M 3/24 (20060101);