Apparatus configured to discharge liquid
An apparatus configured to discharge liquid includes a plurality of liquid discharge modules arranged at different inclinations in the apparatus. Each of the plurality of liquid discharge modules includes a liquid discharge head, a containing member, and a holding member. The liquid discharge head is configured to discharge liquid. The containing member is configured to contain liquid to be supplied to the liquid discharge head. The holding member is configured to hold the containing member. The holding member of each of the plurality of liquid discharge modules includes a first adjuster configured to adjust a position of the containing member relative to the liquid discharge head in a vertical direction in the apparatus.
Latest Ricoh Company, Ltd. Patents:
- COMMUNICATION MANAGEMENT SYSTEM, COMMUNICATION SYSTEM, COMMUNICATION MANAGEMENT DEVICE, IMAGE PROCESSING METHOD, AND NON-TRANSITORY COMPUTER-READABLE MEDIUM
- IMAGE PROCESSING DEVICE, IMAGE FORMING APPARATUS, AND EDGE DETECTION METHOD
- IMAGE FORMING APPARATUS
- IMAGE READING DEVICE, IMAGE FORMING APPARATUS, AND IMAGE READING METHOD
- PRINT MANAGEMENT SYSTEM, PRINT MANAGEMENT METHOD, AND NON-TRANSITORY COMPUTER-EXECUTABLE MEDIUM
The present application claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2019-038924, filed on Mar. 4, 2019, and Japanese Patent Application No. 2020-023672, filed on Feb. 14, 2020. The contents of which are incorporated herein by reference in their entirety.
BACKGROUND OF THE INVENTION 1. Field of the InventionThe present invention relates to an apparatus configured to discharge liquid.
2. Description of the Related ArtConventionally, an inkjet recording apparatus forms an image by discharging ink liquid in the form of droplets from liquid discharge heads onto a conveyed recording sheet.
The ink liquid is supplied to each of the liquid discharge heads by generating negative pressure in a sub tank to which the ink liquid is supplied from a main tank. For example, Japanese Unexamined Patent Application Publication No. 2017-209844 discloses a configuration in which a sub tank is arranged for each of two head arrays that are arranged in a zig-zag manner on an array base such that orientations of head surfaces are aligned. In the configuration disclosed in Japanese Unexamined Patent Application Publication No. 2017-209844, if the head arrays are arranged so as to be inclined together with the array base, a hydraulic head difference occurs between the two arrays that are arranged in a zig-zag manner on the array base; therefore each of the sub tanks is arranged at an appropriate height position in a vertical direction.
However, when various droplets are to be discharged onto a recording sheet placed on a curved surface, such as a conveying drum, each of liquid discharge heads that are used for different kinds of liquid, such as different ink colors, to be discharged is arranged so as to face the curved surface at a different inclination in accordance with the curved surface. Therefore, the hydraulic head difference varies between heads that are arranged at different inclinations. Consequently, quality of images that are formed in accordance with the positions of the head arrays used to form the images vary, which is a problem.
The present invention has been conceived in view of the foregoing situations, and an object of the present invention is to provide an apparatus configured to discharge liquid, where the apparatus is capable of preventing, with a simple configuration, variation in quality of images that are formed in accordance with different inclinations of liquid discharge heads.
SUMMARY OF THE INVENTIONAccording to an aspect of the present invention, an apparatus configured to discharge liquid includes a plurality of liquid discharge modules arranged at different inclinations in the apparatus. Each of the plurality of liquid discharge modules includes a liquid discharge head, a containing member, and a holding member. The liquid discharge head is configured to discharge liquid. The containing member is configured to contain liquid to be supplied to the liquid discharge head. The holding member is configured to hold the containing member. The holding member of each of the plurality of liquid discharge modules includes a first adjuster configured to adjust a position of the containing member relative to the liquid discharge head in a vertical direction in the apparatus.
The accompanying drawings are intended to depict exemplary embodiments of the present invention and should not be interpreted to limit the scope thereof. Identical or similar reference numerals designate identical or similar components throughout the various drawings.
DESCRIPTION OF THE EMBODIMENTSThe terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
In describing preferred embodiments illustrated in the drawings, specific terminology may be employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that have the same function, operate in a similar manner, and achieve a similar result.
An embodiment of the present invention will be described in detail below with reference to the drawings.
Exemplary embodiments of an apparatus configured to discharge liquid will be described in detail below with reference to the drawings. The embodiments described below are mere examples and not limited thereto.
EmbodimentIn the present application, a “liquid discharge head” is a functional component that discharges and ejects liquid from a nozzle. The liquid to be discharged is not specifically limited as long as the liquid has a viscosity and surface tension that allow the liquid to be discharged from the head; however, it is preferable that the liquid has a viscosity of 30 mPa/s or below when heated and cooled under normal temperature and normal pressure. More specifically, the liquid may be a solution, a suspension, an emulsion, or the like that contains a solvent such as water or an organic solvent, a colorant such as a dye or a pigment, a function providing material such as a polymerizable compound, a resin, or a surfactant, a biomaterial such as DNA, amino acid, protein, or calcium, or an edible material such as a natural pigment, and, the liquid may be used for uses such as ink for inkjet, a surface treatment liquid, a liquid for forming a constituent element of an electron element or a light-emitting element or for forming an electronic circuit resist pattern, and a material liquid for three-dimensional modeling.
In the present application, the “apparatus configured to discharge liquid” is an apparatus that includes a liquid discharge head or a liquid discharge unit, and drives the liquid discharge head to discharge liquid. The apparatus configured to discharge liquid includes not only an apparatus that is able to discharge liquid to a target to which liquid can adhere, but also an apparatus that discharges liquid into the air or liquid.
The “apparatus configured to discharge liquid” may further include means related to feed, convey, and eject a target to which liquid can adhere, and include a pre-processing apparatus, a post-processing apparatus, and the like.
For example, the “apparatus configured to discharge liquid” may be an image forming apparatus that is an apparatus for forming an image by discharging ink onto a sheet, and a stereoscopic modeling device (three-dimensional modeling device) that models a stereoscopic modeled object (three-dimensional modeled object) by discharging modeling liquid onto powder layers in which powders are laminated.
Further, the “apparatus configured to discharge liquid” is not limited to an apparatus by which a significant image, such as a character or a graphic, is visualized by discharged ink. For example, an apparatus that forms a pattern or the like that does not have a meaning in itself and an apparatus that models a three-dimensional image may be adopted.
The “target to which liquid can adhere (corresponding to a “discharge target”)” is an object to which liquid can adhere at least temporarily, and represents an object to which liquid adheres and sticks, an object to which liquid adheres and penetrates, and the like. Specifically, the target includes all of objects to which liquid adheres, such as a target recording medium including a sheet, a recording paper, a recording sheet, a film, a cloth, and the like, an electronic component including an electronic substrate, a piezoelectric element, and the like, and a medium including a powder layer (powdered layer), an organ model, an examination cell, and the like, unless specifically limited.
A material of the “target to which liquid can adhere” may be any material, such as paper, thread, fiber, fabric cloth, leather, metal, plastic, glass, wood, or ceramics, to which liquid can adhere at least temporarily.
Furthermore, the “apparatus configured to discharge liquid” is an apparatus in which the liquid discharge head and the target to which liquid can adhere move relative to each other, but is not limited thereto. Specifically, a serial-type apparatus that moves the liquid discharge head, a linear-type apparatus that does not move the liquid discharge head, and the like may be adopted.
Moreover, the “apparatus configured to discharge liquid” includes a treatment liquid applying apparatus that discharges treatment liquid onto a sheet to apply the treatment liquid to a surface of the sheet in order to modify the surface of the sheet, a jet granulation apparatus that ejects composition liquid that is obtained by dispersing raw materials in a solution, and forms fine grains of the raw materials through granulation.
The “liquid discharge unit” is a unit in which functional components/mechanisms are integrated with the liquid discharge head, and is an assembly of components related to discharging of liquid. The “liquid discharge unit” is constructed by combining at least a containing member, such as a sub tank, and a holding member for holding the containing member with the liquid discharge head. The containing member contains liquid to be supplied to the liquid discharge head.
Here, integration includes, for example, a state in which the liquid discharge head and the functional components/mechanisms are fixed together by fastening, bonding, engaging, or the like, and a state in which one of the liquid discharge head and the functional components/mechanisms is held so as to be movable relative to the other one of them. Furthermore, the liquid discharge head and the functional components/mechanisms may be configured so as to be detachably attached to each other.
The “apparatus configured to discharge liquid” according to the embodiments will be described below by taking an image forming apparatus as an example. Meanwhile, three-dimensional orthogonal coordinate axes (an X-axis, a Y-axis, and a Z-axis) set in each of the drawings will be appropriately referred to in the explanation.
Entire Configuration
An image forming apparatus 1 illustrated in
The sheet feed unit 20 includes a sheet feed tray 26 in which the recording sheets 22 are stacked, and a supply means that supplies the recording sheets 22 one by one to the registration adjusting unit 30. In
The registration adjusting unit 30 includes a registration roller 32. The registration roller 32 adjusts registration (adjusts timing) of the recording sheet 22 fed from the sheet feed unit 20, and feeds the recording sheet 22 to the image forming unit 10.
The image forming unit 10 includes a conveying drum 12 that adsorbs the recording sheet 22 and feeds the recording sheet 22 in a single direction, and a plurality of liquid discharge modules (one example of the “liquid ejection unit”) 14 that discharge droplets (described as ink droplets as one example) onto the recording sheet 22 to form an image.
The conveying drum 12 has a cylindrical shape, and a portion represented by a circular shape in
Each of the liquid discharge modules 14 includes a liquid discharge head that discharges liquid (ink liquid in this example), a containing member that contains ink liquid to be supplied to the liquid discharge head, and a holding member that holds the containing member. Each of the liquid discharge heads includes one or a plurality of arrays of nozzle holes (nozzle arrays) that are arranged in a line in the depth direction of the sheet surface in
The drying unit 40 includes a drier unit 42. The drier unit 42 dries the recording sheet 22 that carries the formed image and that is conveyed from the image forming unit 10, and prevents the recording sheet 22 from being curled. By causing the recording sheet 22 to pass through the drier unit 42, moisture of ink evaporates and the recording sheet 22 is dried.
In the example illustrated in
The paper ejection unit 50 includes a discharge tray 52 on which the recording sheet 22 ejected from the drying unit 40 is stacked. The discharge tray 52 includes a pair of side fences that control a width direction of the recording sheet 22 and an end fence that controls a leading end of the recording sheet 22.
Liquid Discharge Module of First Embodiment
A configuration of the liquid discharge module 14 according to the first embodiment will be described in detail below. The liquid discharge module 14 according to the first embodiment includes the liquid discharge head, the containing member that contains liquid to be supplied to the liquid discharge head, and a holding member 143 (see
In the liquid discharge module 14 illustrated in
A first sub tank 142a and a second sub tank 142b supply ink liquid into the liquid discharge head 141 from corresponding supply ports (a first supply port and a second supply port). The ink liquid is discharged in the form of droplets from different nozzle arrays (a first nozzle array and a second nozzle array) through flow paths, liquid chambers, or the like that are separated from each other inside the liquid discharge head 141.
The first sub tank 142a and the second sub tank 142b illustrated in
Sub Tank
A configuration of the sub tank will be described below. The first sub tank 142a and the second sub tank 142b have the same configuration. In the following, the configuration of a single sub tank will be described.
In the sub tank 142 illustrated in
An elastic member (for example, a spring or the like) 83 that biases the film member 82 outward is arranged between the main body 80 and the film member 82, i.e., inside the ink container 81. Here, the film member 82, the elastic member 83, and an air open valve mechanism 132 to be described later correspond to a “negative pressure generating means”. The principle of generation of negative pressure by the “negative pressure generating means” will be described later.
An ink supply port 84 is arranged in a lower part of the main body 80. A removable connection part is connected to the ink supply port 84, so that ink liquid that has been transmitted by pressure from the main tank to the connection part is transmitted and supplied to the ink container 81. A liquid transmission pump (liquid transmitting unit) that transmits the ink liquid by pressure from the main tank to the sub tank 142 is constructed between the main tank and the sub tank 142. The ink liquid is fed to the ink supply port 84 from the main tank by the liquid transmission pump.
An ink outlet 85 is arranged in an upper part of the main body 80. The ink outlet 85 discharges the ink liquid to be supplied to the liquid discharge head 141 from the sub tank 142 with the aid of generated negative pressure. The ink outlet 85 and the supply port of the liquid discharge head 141 are connected by an ink tube or the like, so that the ink liquid discharged from the sub tank 142 is supplied to the liquid discharge head 141.
The air open valve mechanism 132 (see
Furthermore, a storage unit that stores therein ink liquid is arranged inside the main body 80. If an apparatus main body is inclined or oscillated, it is more likely that ink enters the air flow path. Therefore, the storage unit is provided so that ink that has entered from the air flow path can be stored in the storage unit. With this configuration, it is possible to prevent ink from entering the air opening hole and the air open valve mechanism 132, and prevent the entered ink from being solidified and causing operation failure.
Moreover, two detection electrodes 91 and 92 (see
Ink Liquid Replenishing Process
An ink liquid replenishing process in the sub tank 142 will be described. For example, an ink supply process may be started when it is detected that the amount of ink in the sub tank 142 is equal to or smaller than a lower limit threshold, and the ink supply process may be stopped when it is detected that the amount of ink in the sub tank 142 is equal to or larger than an upper limit threshold.
First, the air open valve mechanism 132 of the sub tank 142 is opened to achieve the air open state inside the sub tank 142. Then, ink is transmitted and supplied from the main tank to the sub tank 142 by the liquid transmission pump. In this case, air inside the sub tank 142 is discharged to the outside through the air opening hole. A biasing force of the elastic member 83 is applied to the film member 82, so that negative pressure is generated inside the sub tank 142.
In this manner, it is possible to generate negative pressure inside the sub tank 142 by the film member 82 and the elastic member 83, so that the negative pressure generation mechanism can be simplified.
Sub Tank Mounting Position
As illustrated in
Moreover,
For example, as illustrated in
In this manner, the positions of the sub tanks 142 in the vertical direction are adjusted such that the hydraulic head differences become equivalent among the liquid discharge modules 14. In each of the liquid discharge modules 14, if the sub tank 142 is mounted at the same distance in the direction of the perpendicular line of the discharge surface of the liquid discharge head 141, the hydraulic head differences vary among the liquid discharge modules 14 because the liquid discharge modules 14 are arranged at different inclinations. However, if the sub tanks 142 are adjusted with respect to the discharge surfaces in the direction of the perpendicular line, it is possible to set a height between each of the nozzle arrays and each of the negative pressure generation positions in the height direction to be approximately the same or a constant value L, so that it is possible to prevent variation in the hydraulic head difference among the liquid discharge modules 14.
The holding member 143 (see
Meanwhile, the liquid discharge module 14 including the holding member 143 (see
Further, an extendable/retractable direction indicates a direction in which the liquid discharge module 14 is separated away from (or comes close to) the outer periphery of the conveying drum 12 when the discharge surface 1400 of the liquid discharge head 141 is arranged so as to face the outer periphery of the conveying drum 12. For example, mounting portions are arranged as a first adjustment portion such that the sub tank 142 can be mounted by being moved to several positions in the vertical direction with respect to the discharge surface. In this case, the sub tank 142 can be moved to and mounted at a plurality of positions by the single holding member 143.
Furthermore, it may be possible to arrange a means that rotates the sub tank 142 in a circumferential direction about the negative pressure generation position. For example, structures (for example, structures for performing fastening with screws) that determine positions while changing orientation in the circumferential direction are arranged at a plurality of positions. In this case, it becomes possible to always locate the ink outlet 85 in an upper part regardless of the inclination of the liquid discharge module 14. With this configuration, it becomes easy to discharge air bubbles in an ink supply path extending to the sub tank 142, without leaving air bubbles inside the sub tank 142.
As described above, according to the first embodiment, it is possible to adjust the positions of the containing members in the vertical direction in the plurality of liquid discharge modules, and it is possible to prevent variation of discharging among the heads with a simple structure. For example, if a position at which a droplet is discharged onto a recording sheet is located on a curved surface, such as a conveying drum, the liquid discharge module is arranged so as to be inclined and face the curved surface for, for example, each of colors of ink liquid in accordance with the shape of the curved surface. Even in this case, it is possible to adjust the heights of the sub tanks by using the holding members such that the hydraulic head differences among head arrays at different inclinations become equivalent. Therefore, it is possible to prevent variation in quality of images that are formed in accordance with the positions of the head arrays used to form the images.
Liquid Discharge Module of Second Embodiment
As a liquid discharge module according to a second embodiment, a configuration of a liquid discharge module that is an inkjet head assembly will be described below. The liquid discharge module according to the second embodiment includes a liquid discharge head, a containing member that contains ink liquid to be supplied to the liquid discharge head, and a base bracket and an adjustment bracket that are one example of the holding member 143. The liquid discharge module as the head assembly is able to mount a large number of liquid discharge heads and supply liquid from a single sub tank to, for example, liquid discharge heads arranged in the same line in accordance with a combination of the liquid discharge heads, which is different from the liquid discharge module described in the first embodiment. The liquid discharge module as the head assembly is arranged on the image forming unit 10 at a different inclination such that a discharge surface of each of the liquid discharge heads faces the outer periphery of the conveying drum 12, similarly to the liquid discharge module illustrated in the first embodiment.
A liquid discharge module 100 as the head assembly is able to mount and use a large amount of liquid discharge heads on a head attachment plate (head frame) 101 illustrated in a lower part of a main body. An ink manifold 150 is constructed in an upper part of the main body, and it is possible to distribute ink liquid from an ink common path 151 of the ink manifold 150 to each of the liquid discharge heads 141 through a branch path 152 that extends to each of the liquid discharge heads 141 that are attached at respective attachment positions 103. Here, the ink manifold 150 corresponds to a “liquid supply path”.
An external bracket (base bracket) 200 and an adjustment bracket 250 for attaching the sub tank 142 to the main body are mounted on a plate on the front surface side of the liquid discharge module 100, and the sub tank 142 is attached by the brackets. Here, the base bracket 200 corresponds to a “first holding member”, and the adjustment bracket 250 corresponds to a “second holding member”. The holding member 143 including the bracket (base bracket) 200 and the adjustment bracket 250 holds the liquid discharge head 141 and the sub tank 142.
The ink liquid is transmitted to each of the units through pipes as illustrated in
The liquid discharge module 100 illustrated in
The ink manifold 150 is constructed in the upper part of the main body. The ink manifold 150 distributes the ink liquid to each of the liquid discharge heads 141 from the ink common path 151 of the ink liquid through the branch path 152 extending to each of the liquid discharge heads 141 that are attached to the respective attachment positions 103.
How to Use Brackets
Configurations of the base bracket 200 and the adjustment bracket 250 will be first described, and thereafter, how to use the brackets will be described using an example. As illustrated in
Here, the plurality of screw holes 201 of the base bracket 200 are one example of a “first adjuster”, a “first mounting part”, and the like. Further, the plurality of holes 251 of the adjustment bracket 250 are one example of a “second adjuster”, a “second mounting part”, and the like. Meanwhile, the “first adjuster”, the “first mounting part”, the “second adjuster”, and the “second mounting part” are not limited thereto, and other modes may be adopted.
When the sub tank 142 is to be attached to the liquid discharge module 100, the base bracket 200 is mounted on the liquid discharge module 100 with screws or the like, and the adjustment bracket 250 is mounted at an adjusted height on the base bracket 200 with screws. The sub tank 142 is held by being fastened to the adjustment bracket 250 with screws via the holes 251. In this manner, the sub tank 142 can be detachably attached by detaching and attaching screws from and to the base bracket 200. Meanwhile, the base bracket 200 may be mounted on the liquid discharge module 100 in advance, or may be integrally configured as a part of the main body of the liquid discharge module 100.
As illustrated at (a) in
As illustrated at (a) in
Specifically, as illustrated in
As described above, even in the second embodiment, it is possible to adjust the positions of the containing members in the vertical direction in the plurality of liquid discharge modules with a simple configuration, so that it is possible to prevent variation of discharging among the heads by a simple method.
Furthermore, like the base bracket 200, it is sufficient to adjust the holding position of the containing member in the direction away from the conveying surface by using the holding member that extends in the direction away from the conveying surface along which the discharge target for discharging liquid is conveyed; therefore, it is possible to easily perform adjustment operation.
Moreover, it is possible to simplify a structure for holding the containing member by providing the second adjuster that adjusts the position of the containing member in the rotation direction in the adjustment bracket 250.
Furthermore, like the combination of the base bracket 200 and the adjustment bracket 250, by allowing different mechanisms to adjust the position of the containing member in the vertical direction and the holding position in the rotation direction, it is possible to simplify the adjustment operation and simplify the structure.
Moreover, by arranging the plurality of screw holes 201 that are arranged in the direction away from the conveying surface as in the base bracket 200, it is possible to perform operation of adjusting the position of the containing member in the vertical direction in a visually easy manner.
Furthermore, by arranging the plurality of holes 251 that are arranged in the circumferential direction as in the adjustment bracket 250, it is possible to perform operation of adjusting the position of the containing member in rotation direction in a visually easy manner.
Moreover, by allowing the containing member to be detachably attached, it is possible to easily perform operation of exchanging the containing member.
Modification of Second Embodiment
As a modification of the second embodiment, a configuration of a liquid discharge module that discharges different kinds of ink liquid (for example, ink liquid of different colors) in a main body of a single liquid discharge module will be described. In the following, only components different from the configuration of the liquid discharge module of the second embodiment will be described.
The liquid discharge module 500 of the modification as illustrated in
As illustrated in
In the example illustrated in
When the main body of the liquid discharge module 500 is set in an inclined manner, the hydraulic head difference varies between the set of two arrays on one side and the set of two arrays on the other side across the structure 102; therefore, it is necessary to displace mounting positions of the sub tanks 142 such that the hydraulic head difference in each of the sets of two arrays becomes equivalent at the value L that has been set in the other liquid discharge module 500. Therefore, as illustrated in
In this manner, as illustrated in
Here, as one example, the example has been described in which the two sub tanks 142 are attached such that one of the sub tanks 142 is shared with the two arrays on one side and the other one of the sub tanks 142 is shared with the two arrays on the other side across the structure 102 (see
Meanwhile, it may be possible to use, for example, liquid of four colors such as black K, cyan C, magenta M, and yellow Y, and other special kinds of liquid as the ink liquid to be discharged from each of the liquid heads. The types of the liquid are not limited to this example.
Modification of First Embodiment
The holding member 143 of each of the liquid discharge modules 14a, 14b, and 14c holds the containing member 142 such that distances D1, D2, and D3 between the discharge surfaces 1400 of the liquid discharge heads 141 and the containing members in directions of perpendicular lines (chain lines in the figure) of the discharge surfaces 1400 are larger as angles 81, 82, and 83 between the perpendicular lines and the horizontal plane 600 on which the image forming apparatus 1 is set are smaller. In the present modification, while the positions of the sub tanks 142 in the vertical direction relative to the respective liquid discharge heads 141 in the liquid discharge modules 14a, 14b, and 14c are different, it is possible to prevent variation in the hydraulic head difference among the liquid discharge modules 14, as compared to a case in which the distances D1, D2, and D3 are set to be constant regardless of the angles θ1, θ2, and θ3. In other words, by adjusting the sub tanks 142 relative to the discharge surfaces 1400 in the direction of the perpendicular line, it is possible to prevent variation in the height between each of the nozzle arrays and each of the negative pressure generation positions in the vertical direction among the plurality of liquid discharge modules 14. With this configuration, it is possible to prevent variation in the hydraulic head difference among the liquid discharge modules 14.
In the present modification, the above-described relationship between the angle and the distance is satisfied for all of the five liquid discharge modules, but embodiments are not limited thereto. For example, in
While the example has been described in the above-described embodiments in which the plurality of liquid discharge modules 14 are arranged so as to face the conveying drum 12, embodiments are not limited thereto. In a configuration in which a conveying guide plate in a curved shape is arranged instead of the drum and a sheet is conveyed onto the conveying guide plate by a mechanism, such as a conveying roller, it may be possible to arrange a plurality of liquid discharge modules such that the liquid discharge modules face the conveying guide plate.
According to an embodiment of the present invention, it is possible to prevent variation in image quality among heads with a simple configuration.
The above-described embodiments are illustrative and do not limit the present invention. Thus, numerous additional modifications and variations are possible in light of the above teachings. For example, at least one element of different illustrative and exemplary embodiments herein may be combined with each other or substituted for each other within the scope of this disclosure and appended claims. Further, features of components of the embodiments, such as the number, the position, and the shape are not limited the embodiments and thus may be preferably set. It is therefore to be understood that within the scope of the appended claims, the disclosure of the present invention may be practiced otherwise than as specifically described herein.
Claims
1. An apparatus configured to discharge liquid comprising:
- a plurality of liquid discharge modules arranged at different inclinations in the apparatus, wherein
- each of the plurality of liquid discharge modules comprises: a liquid discharge head configured to discharge liquid; a containing member arranged at a corresponding inclination for its liquid discharge module, configured to contain liquid to be supplied to the liquid discharge head; and a holding member configured to hold the containing member, and
- the holding member of each of the plurality of liquid discharge modules includes a first adjuster configured to adjust a position of the containing member relative to the liquid discharge head in a vertical direction in the apparatus.
2. The apparatus configured to discharge liquid according to claim 1, wherein
- the holding member includes a first holding member extending in a direction away from a conveying surface along which a discharge target to which the liquid is to be discharged is to be conveyed, and
- the first adjuster is configured to adjust a holding position of the containing member relative to the first holding member in the direction away from the conveying surface.
3. The apparatus configured to discharge liquid according to claim 1, wherein the holding member includes a second adjuster configured to adjust a position of the containing member in a rotation direction.
4. The apparatus configured to discharge liquid according to claim 3, wherein
- the holding member includes: a first holding member extending in a direction away from a conveying surface along which a discharge target to which the liquid is to be discharged is to be conveyed, and a second holding member configured to hold the containing member and be held by the first holding member.
5. The apparatus configured to discharge liquid according to claim 4, wherein
- the first adjuster is configured to adjust a position of the second holding member relative to the first holding member in the direction away from the conveying surface, and
- the second adjuster is configured to adjust a position of the containing member relative to the second holding member in the rotation direction about an axis perpendicular to a conveying direction of the discharge target and a liquid discharge direction.
6. The apparatus configured to discharge liquid according to claim 4, wherein
- the first holding member includes a plurality of first mounting parts arranged in the direction away from the conveying surface, and
- the second holding member is configured to be mounted on any of the plurality of first mounting parts.
7. The apparatus configured to discharge liquid according to claim 4, wherein
- the second holding member includes a plurality of second mounting parts arranged in a circumferential direction about an axis perpendicular to a conveying direction of the discharge target and a liquid discharge direction, and
- the containing member is mounted on any of the plurality of second mounting parts.
8. The apparatus configured to discharge liquid according to claim 1, wherein the containing member is detachably attached to the holding member.
9. The apparatus configured to discharge liquid according to claim 1, wherein the plurality of liquid discharge modules are arranged along a conveying surface along which a discharge target to which the liquid is to be discharged is to be conveyed, at the inclinations in accordance with a curved surface of the conveying surface.
10. The apparatus configured to discharge liquid according to claim 1, wherein
- the containing member includes a flexible film at a side surface of the containing member,
- the liquid discharge head includes a nozzle array arranged in a predetermined direction, and
- the side surface faces in the predetermined direction.
11. The apparatus configured to discharge liquid according to claim 1, wherein each of the plurality of liquid discharge modules includes a liquid supply path configured to supply liquid from the containing member to the liquid discharge head.
12. The apparatus configured to discharge liquid according to claim 1, wherein the inclinations of the plurality of liquid discharge modules in the apparatus are different between different colors of liquid to be discharged from the liquid discharge head.
13. The apparatus configured to discharge liquid according to claim 1, wherein the holding member of each of the plurality of liquid discharge modules is configured to hold the containing member such that a position of the containing member relative to the liquid discharge head in the vertical direction in the apparatus is equivalent among the plurality of liquid discharge modules.
14. An apparatus configured to discharge liquid comprising:
- a plurality of liquid discharge modules arranged at different inclinations in the apparatus, wherein
- each of the plurality of liquid discharge modules includes: a liquid discharge head configured to discharge liquid; a containing member configured to contain liquid to be supplied to the liquid discharge head; and a holding member configured to hold the containing member, and
- the holding member of each of the plurality of liquid discharge modules is configured to hold the containing member such that a position of the containing member relative to the liquid discharge head in a vertical direction in the apparatus is equivalent among the plurality of liquid discharge modules.
15. An apparatus configured to discharge liquid comprising:
- a plurality of liquid discharge modules arranged at different inclinations in the apparatus, wherein
- each of the plurality of liquid discharge modules includes: a liquid discharge head configured to discharge liquid; a containing member configured to contain liquid to be supplied to the liquid discharge head; and a holding member configured to hold the containing member, and
- the holding member of each of the plurality of liquid discharge modules is configured to hold the containing member such that a distance between a discharge surface of the liquid discharge head and the containing member in a direction of a perpendicular line of the discharge surface is larger as an angle between the perpendicular line and a horizontal plane on which the apparatus is set is smaller.
20080291240 | November 27, 2008 | Ohsako et al. |
20110141209 | June 16, 2011 | Tsukamura et al. |
20110228016 | September 22, 2011 | Nakamura |
20120056953 | March 8, 2012 | Nakamura |
20130155158 | June 20, 2013 | Tsukamura et al. |
20130286061 | October 31, 2013 | Nakamura |
20140079461 | March 20, 2014 | Obata et al. |
20150109386 | April 23, 2015 | Koike |
20180056657 | March 1, 2018 | Murakami |
102017114280 | December 2018 | DE |
2005-059274 | March 2005 | JP |
2013-226721 | November 2013 | JP |
2016-083789 | May 2016 | JP |
2017-209844 | November 2017 | JP |
Type: Grant
Filed: Mar 2, 2020
Date of Patent: Jul 12, 2022
Patent Publication Number: 20200282728
Assignee: Ricoh Company, Ltd. (Tokyo)
Inventor: Daisuke Nakamura (Kanagawa)
Primary Examiner: Anh T Vo
Application Number: 16/806,675
International Classification: B41J 2/175 (20060101); B41J 2/135 (20060101); B41J 25/316 (20060101); B41J 2/23 (20060101);