Detection system and method

A detection system includes a radar-unit and a controller-circuit. The radar-unit is configured to detect objects proximate a host-vehicle. The controller-circuit is in communication with the radar-unit and is configured to determine a detection-distribution based on the radar-unit. The detection-distribution is characterized by a longitudinal-distribution of zero-range-rate detections associated with a trailer towed by the host-vehicle. The controller-circuit is further configured to determine a trailer-classification based on a comparison of the detection-distribution and longitudinal-distribution-models stored in the controller-circuit. The trailer-classification is indicative of a dimension of the trailer. The controller-circuit determines a trailer-length of the trailer based on the detection-distribution and the trailer-classification.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. application Ser. No. 16/154,848, filed Oct. 9, 2018, now U.S. Pat. No. 10,838,054, which in turn claims priority to U.S. Provisional Application Ser. No. 62/742,646, filed Oct. 8, 2018, the disclosures of which are incorporated herein by reference.

TECHNICAL FIELD OF INVENTION

This disclosure generally relates to a detection system, and more particularly relates to a detection system that determines a trailer-length.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will now be described, by way of example with reference to the accompanying drawings, in which:

FIG. 1 is an illustration of a detection system in accordance with one embodiment;

FIG. 2 is an illustration of the detection system of FIG. 1 in accordance with one embodiment;

FIG. 3A is a plot of objects detected by the detection system of FIG. 1 in accordance with one embodiment;

FIG. 3B is a plot of the objects of FIG. 3A in a longitudinal direction in accordance with one embodiment;

FIG. 4A is a plot of objects detected by the detection system of FIG. 1 in accordance with one embodiment;

FIG. 4B is a plot of the objects of FIG. 4A in a longitudinal direction in accordance with one embodiment;

FIG. 5A is a plot of objects detected by the detection system of FIG. 1 in accordance with one embodiment;

FIG. 5B is a plot of the objects of FIG. 5A in a longitudinal direction in accordance with one embodiment;

FIG. 6 is an illustration of an iterative process determining a longitudinal-distribution-model in accordance with one embodiment; and

FIG. 7 is an illustration of a detection method in accordance with another embodiment.

DETAILED DESCRIPTION

Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the various described embodiments. However, it will be apparent to one of ordinary skill in the art that the various described embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.

FIG. 1 illustrates a non-limiting example of a detection system 10, hereafter referred to as the system 10, installed on a host-vehicle 12 towing a trailer 14. As will be described in more detail below, the system 10 in an improvement over other detection systems because the system 10 estimates a trailer-length 16 based on detected targets by classifying a distribution of data points and performing a regression on the distribution of the data points. The system 10 provides the technical benefit of enabling an adjustment of a blind-zone (not shown) of the host-vehicle 12 based on a size of the trailer 14, improving safety for the driver and other vehicles. In one embodiment, the trailer 14 is a cargo-trailer that may be an enclosed-type with solid panels, while in another embodiment the cargo-trailer is an open-type with an exposed frame. In yet another embodiment the trailer 14 is a boat-trailer. In yet another embodiment the trailer 14 is a travel-trailer.

The system 10 includes a radar-unit 20. The radar-unit 20 is configured to detect objects 26 proximate the host-vehicle 12. The radar-unit 20 detects a radar-signal that is reflected by the features of the trailer 14 towed by the host-vehicle 12, as illustrated in FIG. 2. Typical radar-systems on vehicles are capable of only determining a distance 28 (i.e. range) and azimuth-angle 30 to the target so may be referred to as a two-dimensional (2D) radar-system. Other radar-systems are capable of determining an elevation-angle to the target so may be referred to as a three-dimensional (3D) radar-system. In the non-limiting example illustrated in FIG. 1, the 2D radar-unit 20 includes a left-sensor 20A and a right-sensor 20B. A radar sensor-system with a similarly configured radar-unit 20 is available from Aptiv of Troy, Mich., USA and marketed as an Electronically Scanning Radar (ESR) or a Rear-Side-Detection-System (RSDS). It is contemplated that the teachings presented herein are applicable to radar-systems with one or more sensor devices. It is also contemplated that the teachings presented herein are applicable to both 2D radar-systems and 3-D radar-systems with one or more sensor devices, i.e. multiple instances of the radar-unit 20. The radar-unit 20 is generally configured to detect the radar-signal that may include data indicative of the detected-target present on the trailer 14. As used herein, the detected-target present on the trailer 14 may be a feature of the trailer 14 that is detected by the radar-unit 20 and tracked by a controller-circuit 32, as will be described in more detail below.

Referring back to FIG. 1, the system 10 also includes the controller-circuit 32 in communication with the radar-unit 20. The radar-unit 20 may be hardwired to the controller-circuit 32 through the host-vehicle's 12 electrical-system (not shown), or may communicate through a wireless network (not shown). The controller-circuit 32 may include a processor (not shown) such as a microprocessor or other control circuitry such as analog and/or digital control circuitry including an application specific integrated circuit (ASIC) for processing data as should be evident to those in the art. The controller-circuit 32 includes a memory 22, including non-volatile-memory, such as electrically-erasable-programmable read-only-memory (EEPROM) for storing one or more routines, thresholds, and captured data. The one or more routines may be executed by the processor to perform steps for detecting the objects 26 based on signals received by the controller-circuit 32 from the radar-unit 20 as described herein. The controller-circuit 32 is configured to determine that the trailer 14 is being towed by the host-vehicle 12 (i.e. determine a trailer-presence) using the known methods of zero-range-rate (ZRR) detection of targets that will be understood by those in the art.

FIG. 3A illustrates a plot of multiple radar-sensors 20A, 20B data acquisition cycles that locate the ZRR targets along a host-vehicle-longitudinal-axis 34 and a host-vehicle-lateral-axis 36. The trailer 14 has a known-trailer-length of 3.2 m. Each data acquisition cycle consists of 64-detections per radar-sensor 20A, 20B within a time interval of 50-milliseconds (50 ms), or a total of 128-detections for the two radar-sensors 20A and 20B. The origin of the plot is located at a center of the host-vehicle's 12 front-bumper (not specifically shown).

FIG. 3B illustrates a detection-distribution 24 determined by the controller-circuit 32 that is characterized by a longitudinal-distribution of ZRR detections associated with the trailer 14 towed by the host-vehicle 12. That is, the detection-distribution 24 is a plot of the groups of the ZRR targets from FIG. 3A along the host-vehicle-longitudinal-axis 34 only. Note that the x-axis for the plot in FIG. 3B is the distance 28 from a rear-end of the host-vehicle 12, and not the distance from the front-bumper as illustrated in FIG. 3A. The controller-circuit 32 determines the detection-distribution 24 in a finite time-period, which in the examples illustrated herein, is about 1-minute in duration.

The detection-distribution 24 is characterized by groups of ZRR targets detected within sequential predetermined length-intervals extending for a predetermined-distance 38 behind the host-vehicle 12. In the examples illustrated herein, the groups represent the ZRR targets detected in increments of 0.2-meters (0.2 m) extending from the rear-end of the host-vehicle 12 for the distance 28 of up to about 12 m. For example, every 10 points along the x-axis of the plot in FIG. 3B represents 2.0 m of distance 28 from the rear-end of the 5 m long host-vehicle 12. The Y-axis in FIG. 3B represents the cumulative number of detections in a group. Some of the groups represent real-objects and others represent phantom-objects. Experimentation by the inventors has discovered that the predetermined length-intervals of less than or equal to about 0.2-meters provides an adequate balance between memory 22 utilization and accuracy of the trailer-length 16 determination. The predetermined-distance 38 of 12 m is selected as representative of a typical longest-trailer that may be legally towed on roadways by the host-vehicle 12. However, the predetermined-distance 38 may be user defined and adjusted to other distances 28 in excess of 12 m.

Referring again to FIG. 1, the controller-circuit 32 is further configured to determine a trailer-classification 42 based on a comparison of the detection-distribution 24 and longitudinal-distribution-models 44 stored in the controller-circuit 32. The trailer-classification 42 is indicative of a dimension of the trailer 14 and includes a first-class 46 (e.g. trailers 14 having a trailer-length 16 between 1 m and 4 m), a second-class 48 (e.g. trailers 14 having the trailer-length 16 between 4 m and 8 m), and a third-class 50 (e.g. trailers 14 having the trailer-length 16 between 8 m and 12 m). The longitudinal-distribution-models 44 are trained (i.e. calibrated or optimized) to determine the trailer-classification 42 using known data (i.e. training-data collected from the detection-distributions 24 of various trailers 14 with known-trailer-lengths) using a machine learning algorithm with Supervised Learning (e.g., “examples” x with “labels” y), wherein the x-training-data are the cumulative-detections at each of the predetermined length-intervals (i.e., every 0.2 m up to 12 m), and the y-training-data are the associated known-trailer-classification (i.e., first-class 46, second-class 48, and third-class 50). The machine learning algorithm creates a model based on the training-data that determines the trailer-classification 42. Any applicable machine learning algorithm may be used to develop the longitudinal-distribution-models 44. One such machine learning algorithm is the MATLAB® “fitensemble( )” by The MathWorks, Inc. of Natick, Mass., USA. The prediction of the trailer-classification 42 based on the longitudinal-distribution-models 44 and the detection-distribution 24 is executed using the MATLAB® “predict( )” function, by The MathWorks, Inc. of Natick, Mass., USA, or similarly known algorithm In the example illustrated in FIG. 3A, the trailer 14 is classified by the system 10 as a first-class 46 trailer 14.

The controller-circuit 32 determines the trailer-length 16 based on the detection-distribution 24 and the trailer-classification 42 by applying regression-models 52 to the detection-distribution 24. The regression-models 52 are associated with each of the trailer-classifications 42 and are stored in the controller-circuit 32. Each trailer-classification 42 has associated with it a unique regression-model 52 to more accurately determine the trailer-length 16. The regression-models 52 are trained to determine the trailer-length 16 using known training-data using the same machine learning algorithm with supervised learning as described above, wherein the x-training-data are the cumulative-detections at each of the predetermined length-intervals (i.e., every 0.2 m) and the y-training-data are the associated known-trailer-lengths. The regression-models 52 are developed using the MATLAB® “fitrensemble( )” by The MathWorks, Inc. of Natick, Mass., USA, and use 50 iterations to converge on the model having an acceptable error or residual values. The controller-circuit 32 uses the detection-distribution 24 as input into the regression-model 52 to estimate or predict the trailer-length 16. The prediction of the trailer-length 16 is also executed using the MATLAB® “predict( )” function, by The MathWorks, Inc. of Natick, Mass., USA, or similarly known algorithm, based on the regression-model 52 and the detection-distribution 24.

In the example illustrated in FIG. 3B the trailer-length 16 is predicted to be 3.22 m compared to the known length of 3.20 m. FIGS. 4A-4B illustrate the trailer 14 classified as the second-class 48 with the known length of 6.60 m, and the trailer-length 16 predicted by the system 10 of 6.58 m. FIGS. 5A-5B illustrate the trailer 14 classified as the third-class 50 with the known length of 8.90 m, and trailer-length 16 predicted by the system 10 of 8.92 m. Experimentation by the inventors has discovered that the prediction of the trailer-length 16 using the above system 10 has been shown to reduce the error to less than 1.5% of the known-trailer-length.

FIG. 6 illustrates an example of an iterative process for determining the longitudinal-distribution-models 44 using the MATLAB® functions described above and known training-data. Iteration-1 initially applies a linear function representing a mean value of the training-data, after which an error residual (i.e. a difference between the mean-value and the particular data-point) is calculated. The plot of the error residual from Iteration-1 is fit with a step-function which is used to update the linear function in iteration-2. The iterative process continues for N iterations (preferably N=50) until the resulting longitudinal-distribution-model 44 is characterized as having the error residual close to zero.

FIG. 7 is a flow chart illustrating another embodiment of a detection method 100.

Step 102, DETECT OBJECTS, includes detecting objects 26 proximate a host-vehicle 12 with a radar-unit 20 as described above.

Step 104, DETERMINE DETECTION-DISTRIBUTION, includes determining the detection-distribution 24 based on the radar-unit 20 with the controller-circuit 32 in communication with the radar-unit 20. The detection-distribution 24 is characterized by a longitudinal-distribution of zero-range-rate detections associated with a trailer 14 towed by the host-vehicle 12. The detection-distribution 24 is determined in a finite time-period of about 1-minute. The controller-circuit 32 detects the groups of zero-range-rate detections within the sequential predetermined length-intervals extending for a predetermined-distance 38 behind the host-vehicle 12 as described above.

Step 106, DETERMINE TRAILER-CLASSIFICATION, includes determining the trailer-classification 42, with the controller-circuit 32, based on a comparison of the detection-distribution 24 and the longitudinal-distribution-models 44 stored in the controller-circuit 32. The trailer-classifications 42 include a first-class 46, a second-class 48, and a third-class 50 as described above.

Step 108, DETERMINE TRAILER-LENGTH, includes determining the trailer-length 16 of the trailer 14, with the controller-circuit 32, based on the detection-distribution 24 and the trailer-classification 42 as described above. The trailer-length 16 is determined by regression-models 52 stored in the memory 22 of the controller-circuit 32 as described above. Each trailer-classification 42 has a unique regression-model 52.

Accordingly, a detection system 10 (the system 10), a controller-circuit 32 for the system 10, and a detection method 100 are provided. The system 10 is an improvement over other detection systems because the system 10 estimates the trailer-length 16 in a time-period of less than 1-minute and reduces a measurement error.

While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow. “One or more” includes a function being performed by one element, a function being performed by more than one element, e.g., in a distributed fashion, several functions being performed by one element, several functions being performed by several elements, or any combination of the above. It will also be understood that, although the terms first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, without departing from the scope of the various described embodiments. The first contact and the second contact are both contacts, but they are not the same contact. The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.

Claims

1. A system comprising:

a radar unit configured for a host vehicle to obtain radar detections from behind the host vehicle as a trailer is towed behind the host vehicle; and
a controller circuit for the host vehicle, the controller circuit configured to: determine, with the radar unit, a distribution of zero-range-rate detections obtained from behind the host vehicle; determine, based on the distribution of zero-range-rate detections, a length of the trailer being towed behind the host vehicle by: inputting the distribution of zero-range-rate detections into a model configured to predict a trailer classification; and determining, based in part on the trailer classification, the length of the trailer; and adjust, based on the length of the trailer, an estimated dimension of a blind zone associated with the trailer.

2. The system of claim 1, wherein the controller circuit is configured to determine the distribution of zero-range-rate detections during a finite time period.

3. The system of claim 1, wherein the model is configured to predict the trailer classification to be one of a plurality of different classifications.

4. The system of claim 3, wherein the plurality of different classifications comprise: a first class of trailers that are less than a first length, a second class of trailers that are between the first length and a second length, and a third class of trailers that are greater than the second length.

5. The system of claim 3, wherein the model comprises one or more regression models.

6. The system of claim 3, wherein the model comprises at least two regression models, and each of the at least two regression models is associated with a different classification from the plurality of different classifications.

7. The system of claim 1, wherein the distribution of zero-range-rate detections includes groups of zero-range-rate targets detected at sequential intervals of potential trailer lengths that extend behind the host vehicle.

8. The system in accordance with claim 7, wherein the intervals of potential trailer lengths are each less than or equal to about 0.2-meters.

9. The system of claim 1, further comprising the host vehicle.

10. A non-transitory computer-readable media comprising instructions that, when executed, configure a processor of a host vehicle to:

communicate, with a radar unit of the host vehicle, to obtain radar detections from behind the host vehicle as a trailer is towed behind the host vehicle;
determine, with the radar unit, a distribution of zero-range-rate detections obtained from behind the host vehicle;
determine, based on the distribution of zero-range-rate detections, a length of the trailer being towed behind the host vehicle by: inputting the distribution of zero-range-rate detections into a model configured to predict a trailer classification; and determining, based in part on the trailer classification, the length of the trailer; and
adjust, based on the length of the trailer, an estimated dimension of a blind zone associated with the trailer.

11. The computer-readable media of claim 10,

wherein the model comprises at least two regression models configured to predict the trailer classification to be one of a plurality of different classifications including the trailer classification predicted by the model, and
wherein each of the at least two regression models is associated with a different classification from the plurality of different classifications.

12. The computer-readable media of claim 11, wherein the plurality of different classifications comprise: a first class of trailers that are less than a first length, a second class of trailers that are between the first length and a second length, and a third class of trailers that are greater than the second length.

13. The computer-readable media of claim 10, wherein the distribution of zero-range-rate detections includes groups of zero-range-rate targets detected at sequential intervals of potential trailer lengths that extend behind the host vehicle.

14. The computer-readable media of claim 13, wherein the sequential intervals of potential trailer lengths are each less than or equal to about 0.2-meters.

15. The computer-readable media of claim 13, wherein the instructions, when executed, further configure the processor of the host vehicle to determine the groups of zero-range-rate targets during a finite time period.

16. A method comprising:

obtaining, by a processor of a radar unit of a host vehicle, radar detections obtained from behind the host vehicle as a trailer is towed behind the host vehicle;
determining, by the processor, a distribution of zero-range-rate detections obtained from behind the host vehicle;
determining, by processor, and based on the distribution of zero-range-rate detections, a length of the trailer being towed behind the host vehicle by: inputting the distribution of zero-range-rate detections into a model configured to predict trailer a tailer classification; and determining, based in part on the trailer classification, the length of the trailer; and
adjusting, by a controller circuit of the host vehicle and based on the length of the trailer, an estimated dimension of a blind zone associated with the trailer.

17. The method of claim 16,

wherein the model comprises at least two regression models configured to predict the trailer classification to be one of a plurality of different classifications including the trailer classification predicted by the regression model, and
wherein each of the at least two regression models is associated with a different classification from the plurality of different classifications.

18. The method of claim 17, wherein the plurality of different classifications comprise: a first class of trailers that are less than a first length, a second class of trailers that are between the first length and a second length, and a third class of trailers that are greater than the second length.

19. The method of claim 16, wherein the distribution of zero-range-rate detections includes groups of zero-range-rate targets detected at sequential intervals of potential trailer lengths that extend behind the host vehicle.

20. The method of claim 19, wherein determining the distribution of zero-range-rate detections comprises determining the groups of zero-range-rate targets during a finite time period.

Referenced Cited
U.S. Patent Documents
5361072 November 1, 1994 Barrick et al.
5517196 May 14, 1996 Pakett et al.
6680689 January 20, 2004 Zoratti
6933837 August 23, 2005 Gunderson et al.
7786849 August 31, 2010 Buckley
7904222 March 8, 2011 Lee et al.
8665078 March 4, 2014 Van Wiemeersch et al.
9211889 December 15, 2015 Hoetzer
9229102 January 5, 2016 Wright et al.
9296423 March 29, 2016 Rupp et al.
9373044 June 21, 2016 Wallat et al.
9477894 October 25, 2016 Reed et al.
9566911 February 14, 2017 Greenwood et al.
9594155 March 14, 2017 Cashler et al.
9796228 October 24, 2017 Hu et al.
9804022 October 31, 2017 Kyrtsos et al.
9910151 March 6, 2018 Cashier
9937953 April 10, 2018 Lavoie et al.
9975480 May 22, 2018 Lai et al.
10207643 February 19, 2019 Prasad et al.
10276049 April 30, 2019 Prasad et al.
10286916 May 14, 2019 Prasad et al.
10351146 July 16, 2019 Prasad et al.
10393862 August 27, 2019 Cashler et al.
10481255 November 19, 2019 Prasad et al.
10838054 November 17, 2020 Wang et al.
10955540 March 23, 2021 Wang et al.
11092668 August 17, 2021 Wang et al.
20080169938 July 17, 2008 Madau
20080186204 August 7, 2008 Buckley
20090005932 January 1, 2009 Lee et al.
20100109938 May 6, 2010 Oswald et al.
20110140872 June 16, 2011 McClure
20110257860 October 20, 2011 Getman et al.
20120041659 February 16, 2012 Greene
20120169523 July 5, 2012 Lee et al.
20130027195 January 31, 2013 Van Wiemeersch et al.
20130169425 July 4, 2013 Victor et al.
20130176161 July 11, 2013 Derham et al.
20130222592 August 29, 2013 Gieseke
20130226390 August 29, 2013 Luo et al.
20130251194 September 26, 2013 Schamp
20140085472 March 27, 2014 Lu et al.
20140160276 June 12, 2014 Pliefke et al.
20140160279 June 12, 2014 Pliefke et al.
20140176716 June 26, 2014 Wallat et al.
20140218522 August 7, 2014 Lavoie et al.
20140222288 August 7, 2014 Lavoie et al.
20140267688 September 18, 2014 Aich et al.
20140267689 September 18, 2014 Lavoie
20140277942 September 18, 2014 Kyrtsos
20140303849 October 9, 2014 Hafner
20150120141 April 30, 2015 Lavoie et al.
20160003935 January 7, 2016 Stainvas Olshansky
20160041258 February 11, 2016 Cashler
20160084943 March 24, 2016 Arage
20160098604 April 7, 2016 Min
20160101811 April 14, 2016 Kyrtsos et al.
20160153778 June 2, 2016 Singh et al.
20160167651 June 16, 2016 Schwindt et al.
20160203374 July 14, 2016 Zeng et al.
20160209211 July 21, 2016 Song et al.
20160252610 September 1, 2016 Smith et al.
20160297361 October 13, 2016 Drazan et al.
20170001566 January 5, 2017 Lu et al.
20170080928 March 23, 2017 Wasiek et al.
20170177949 June 22, 2017 Hu et al.
20170217368 August 3, 2017 Lewis et al.
20170242443 August 24, 2017 Schuh
20170305436 October 26, 2017 Maskell et al.
20170363727 December 21, 2017 Prasad et al.
20170363728 December 21, 2017 Prasad
20180011172 January 11, 2018 Cashler
20180025499 January 25, 2018 Strano et al.
20180045823 February 15, 2018 Prasad
20180061239 March 1, 2018 Prasad
20180068447 March 8, 2018 Prasad et al.
20180068566 March 8, 2018 Prasad
20180203106 July 19, 2018 Di
20190033442 January 31, 2019 Millar et al.
20190086204 March 21, 2019 Critchley
20190170867 June 6, 2019 Wang et al.
20190228258 July 25, 2019 Bell et al.
20190232964 August 1, 2019 Lindholm
20190308473 October 10, 2019 Yu
20190335100 October 31, 2019 Chen
20190347498 November 14, 2019 Herman
20200079165 March 12, 2020 Niewiadomski
20200081117 March 12, 2020 Flores Tapia
20200110163 April 9, 2020 Wang et al.
20200256953 August 13, 2020 Wang et al.
20210011145 January 14, 2021 Wang et al.
20210141075 May 13, 2021 Wang et al.
20210263145 August 26, 2021 Wang et al.
Foreign Patent Documents
1559842 January 2005 CN
101268383 September 2008 CN
102609953 July 2012 CN
203047062 July 2013 CN
104890671 September 2015 CN
205044655 February 2016 CN
105501114 April 2016 CN
10312548 May 2004 DE
10325192 January 2005 DE
1020004059596 June 2006 DE
102005019550 November 2006 DE
102005042729 March 2007 DE
102006028625 October 2007 DE
102009007990 August 2012 DE
102014107917 September 2015 DE
102016200642 July 2017 DE
2045155 April 2009 EP
2551132 January 2013 EP
2942766 November 2015 EP
2983006 February 2016 EP
3021140 May 2016 EP
3031687 June 2016 EP
3260884 December 2017 EP
3267222 January 2018 EP
3291205 March 2018 EP
2447672 September 2008 GB
2505666 March 2014 GB
2518857 April 2015 GB
H09267762 October 1997 JP
2002068032 March 2002 JP
2006114206 November 2006 WO
2007028433 March 2007 WO
2016015938 February 2016 WO
Other references
  • “Detection System”, U.S. Appl. No. 62/593,418, filed Dec. 1, 2017, 56 pages.
  • “European Search Report”, EP Application No. 19199564, dated Feb. 20, 2020, 2 pages.
  • “European Search Report”, EP Application No. 20152210, dated Mar. 23, 2020, 2 pages.
  • “Notice of Allowance”, U.S. Appl. No. 16/154,848, dated Jul. 1, 2020, 9 pages.
  • “Advisory Action”, U.S. Appl. No. 15/232,577, dated Feb. 6, 2019, 3 pages.
  • “Advisory Action”, U.S. Appl. No. 15/204,071, dated Apr. 4, 2019, 3 pages.
  • “Advisory Action”, U.S. Appl. No. 15/250,072, dated Sep. 11, 2018, 3 pages.
  • “Advisory Action”, U.S. Appl. No. 15/257,062, dated Sep. 18, 2018, 3 pages.
  • “Corrected Notice of Allowability”, U.S. Appl. No. 15/186,602, dated May 3, 2019, 4 pages.
  • “Corrected Notice of Allowance”, U.S. Appl. No. 16/154,848, dated Oct. 19, 2020, 2 pages.
  • “Detection System”, U.S. Appl. No. 15/840,321, filed Dec. 13, 2017, 40 pages.
  • “European Search Report”, EP Application No. 18208733, dated Apr. 22, 2019, 2 pages.
  • “European Search Report”, EP Application No. 18208733, dated Sep. 6, 2019, 2 pages.
  • “Extended European Search Report”, EP Application No. 17174836.1, dated Nov. 22, 2017, 10 pages.
  • “Extended European Search Report”, EP Application No. 17174842.9, dated Nov. 23, 2017, 10 pages.
  • “Extended European Search Report”, EP Application No. 17186999.3, dated Jan. 17, 2018, 7 pages.
  • “Extended European Search Report”, EP Application No. 17187300.3, dated Jan. 17, 2018, 7 pages.
  • “Extended European Search Report”, EP Application No. 17176204.0, dated Dec. 8, 2017, 7 pages.
  • “Extended European Search Report”, EP Application No. 17184001.0, dated Jan. 12, 2018, 8 pages.
  • “Extended European Search Report”, EP Application No. 17188610.4, dated Feb. 13, 2018, 8 pages.
  • “Final Office Action”, U.S. Appl. No. 15/186,602, dated Jan. 14, 2019, 10 pages.
  • “Final Office Action”, U.S. Appl. No. 15/259,126, dated Jun. 1, 2018, 14 pages.
  • “Final Office Action”, U.S. Appl. No. 15/257,062, dated Jul. 13, 2018, 7 pages.
  • “Final Office Action”, U.S. Appl. No. 15/204,071, dated Dec. 17, 2018, 7 pages.
  • “Final Office Action”, U.S. Appl. No. 15/232,577, dated Nov. 26, 2018, 8 pages.
  • “Final Office Action”, U.S. Appl. No. 15/250,072, dated Jul. 16, 2018, 9 pages.
  • “Foreign Office Action”, CN Application No. 201710542068.6, dated Mar. 9, 2020, 12 pages.
  • “Foreign Office Action”, CN Application No. 201710464625.7, dated Jul. 11, 2019, 12 pages.
  • “Foreign Office Action”, CN Application No. 201710806769.6, dated Jun. 9, 2020, 17 pages.
  • “Foreign Office Action”, CN Application No. 201710464962.6, dated Mar. 10, 2020, 18 pages.
  • “Foreign Office Action”, CN Application No. 201710806769.6, dated Dec. 4, 2019, 20 pages.
  • “Foreign Office Action”, EP Application No. 17187300.3, dated May 14, 2020, 4 pages.
  • “Foreign Office Action”, CN Application No. 201710464625.7, dated Jun. 17, 2020, 9 pages.
  • “Non-Final Office Action”, U.S. Appl. No. 15/250,072, dated Mar. 27, 2018, 10 pages.
  • “Non-Final Office Action”, U.S. Appl. No. 15/232,577, dated Mar. 28, 2019, 10 pages.
  • “Non-Final Office Action”, U.S. Appl. No. 15/186,602, dated Jul. 19, 2018, 10 pages.
  • “Non-Final Office Action”, U.S. Appl. No. 15/259,126, dated Jan. 18, 2018, 12 pages.
  • “Non-Final Office Action”, U.S. Appl. No. 15/204,071, dated Jul. 19, 2018, 6 pages.
  • “Non-Final Office Action”, U.S. Appl. No. 15/257,062, dated Feb. 7, 2018, 7 pages.
  • “Non-Final Office Action”, U.S. Appl. No. 15/186,601, dated May 29, 2018, 7 pages.
  • “Non-Final Office Action”, U.S. Appl. No. 15/232,577, dated Jun. 8, 2018, 7 pages.
  • “Non-Final Office Action”, U.S. Appl. No. 15/840,321, dated Apr. 28, 2020, 9 pages.
  • “Notice of Allowance”, U.S. Appl. No. 15/840,321, dated Sep. 10, 2020, 10 Pages.
  • “Notice of Allowance”, U.S. Appl. No. 15/250,072, dated Jan. 2, 2019, 5 pages.
  • “Notice of Allowance”, U.S. Appl. No. 15/186,601, dated Jan. 18, 2019, 7 pages.
  • “Notice of Allowance”, U.S. Appl. No. 15/186,602, dated Mar. 20, 2019, 7 pages.
  • “Notice of Allowance”, U.S. Appl. No. 15/232,577, dated Jul. 17, 2019, 7 pages.
  • “Notice of Allowance”, U.S. Appl. No. 15/204,071, dated May 21, 2019, 8 pages.
  • “Notice of Allowance”, U.S. Appl. No. 15/840,321, dated Nov. 19, 2020, 8 pages.
  • “Restriction Requirement”, U.S. Appl. No. 15/840,321, dated Jan. 31, 2020, 6 pages.
  • “Trailer Detection System and Method”, U.S. Appl. No. 16/270,199, filed Feb. 7, 2019, 24 pages.
  • Cashler, et al., “Trailer Estimation with Elevation Enhanced Sensing”, U.S. Appl. No. 15/204,071, filed Jul. 7, 2016, 14 pages.
  • Prasad, et al., “Camera Based Trailer Detection and Tracking”, U.S. Appl. No. 15/257,062, filed Sep. 6, 2017, 10 pages.
  • Prasad, et al., “Camera Based Trailer Identification and Blind Zone Adjustment”, U.S. Appl. No. 15/250,072, filed Aug. 29, 2016, 16 pages.
  • Prasad, et al., “Trailer Dimension with Two Dimensional Radar and Camera”, U.S. Appl. No. 15/232,577, filed Aug. 9, 2016, 12 pages.
  • Prasad, et al., “Trailer Estimation and Blind Spot Information System Performance Improvement”, U.S. Appl. No. 15/186,601, filed Jun. 20, 2016, 18 pages.
  • Prasad, et al., “Trailer Estimation Improvement”, U.S. Appl. No. 15/186,602, filed Jun. 20, 2016, 21 pages.
  • Prasad, et al., “Trailer Lane Departure Warning and Sway Alert”, U.S. Appl. No. 15/259,126, filed Sep. 8, 2016, 16 pages.
  • “Corrected Notice of Allowane”, U.S. Appl. No. 15/840,321, dated Feb. 16, 2021, 3 pages.
  • “Non-Final Office Action”, U.S. Appl. No. 16/270,199, dated Mar. 16, 2021, 21 pages.
  • “Foreign Office Action”, EP Application No. 17184001.0, dated May 3, 2021, 5 pages.
  • “Notice of Allowance”, U.S. Appl. No. 16/270,199, dated Jun. 11, 2021, 12 pages.
  • “Extended European Search Report”, EP Application No. 21151400.5, dated Jun. 18, 2021, 12 pages.
  • Homm, et al., “Efficient Occupancy Grid Computation on the GPU with Lidar and Radar for Road Boundary Detection”, Jun. 2010, 8 pages.
  • “Extended European Search Report”, EP Application No. 21169450.0, dated Jul. 15, 2021, 8 pages.
Patent History
Patent number: 11435466
Type: Grant
Filed: Sep 29, 2020
Date of Patent: Sep 6, 2022
Patent Publication Number: 20210011145
Assignee: Aptiv Technologies Limited (St. Michael)
Inventors: Yu Wang (Troy, MI), Liang Ma (Rochester Hills, MI)
Primary Examiner: Bernarr E Gregory
Application Number: 17/037,307
Classifications
Current U.S. Class: Steering Control (701/41)
International Classification: G01S 13/08 (20060101); G01S 13/04 (20060101); G01S 13/931 (20200101); G01S 13/00 (20060101);