Modular indicator

An indicator module includes first electrodes disposed on a first support surface, each of the first electrodes having a flexible portion having a sloped section forming an oblique angle with the first support surface, a second electrodes disposed on a second support surface spaced apart from the first support surface along a longitudinal direction, a set of conductors elongated substantially in the longitudinal direction, each of the first electrodes being electrically connected to the a respective one of the second electrodes via a respective one of the conductors, and an indicator circuit, such as a set of LEDs, electrically connected to one or more of the conductors and adapted to generate a human perceptible signal when the indicator circuit receives electrical power from the one or more of the conductors.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/675,708, filed Nov. 6, 2019, now U.S. Pat. No. 10,984,636, issued Apr. 20, 2021, which is a continuation of international application Serial No. PCT/US2019/036761, filed Jun. 12, 2019, and designating the United States, which international application claims the benefit of U.S. patent application Ser. No. 16/006,158, filed Jun. 12, 2018, and issued as U.S. Pat. No. 10,475,299, on Nov. 12, 2019, which is a continuation-in-part of U.S. patent application Ser. No. 14/803,619, filed Jul. 20, 2015, and issued as U.S. Pat. No. 9,997,031 on Jun. 12, 2018. All of the above-referenced prior applications are incorporated herein by reference in their entirety.

BACKGROUND

The present disclosure relates to indicator assemblies having multiple modular indicator elements. Examples of such assemblies include assemblies sometimes known as “tower lights,” “stack lights” or “tower stack lights.” Such assemblies find wide range of applications, from safety, automation and workflow management in industrial settings to status indication in office settings. In a typical assembly of this kind, multiple indicator modules, such as LED light modules, which are typically cylindrical in shape, are connected together in series along a longitudinal axis. The module at one end of a series is connectable to a base having multiple electrodes, each connected to a wire or connector pin for conducting electrical signal (i.e., power) from a signal source, such as a controller, to the respective electrode. Each module may have multiple conductors running from one end of the module to the other, typically near or inside the cylindrical housing wall of the module. When the modules are connected together, the conductors form multiple conductive paths through the assembly such that each of the conductors in each module is connected to a corresponding electrode in the base to receive an electrical signal. Each module also has one or more indicator circuits, such as LED elements, often with associated electronic components for various purposes, such as intermittent signaling and surge protection. The indicator is typically connected to one of the conductors. The angular position (rotational about the longitudinal axis) between each pair of adjacent modules is typically fixed, for example by bayonet-type mounts. Thus, the order of the modules in the series typically determines which electrode in the base corresponds to the indicator circuit in each module. Such an arrangement imposes certain constraints and complications on the design and deployment of such indicator assemblies and associated components such as controllers and cables.

SUMMARY

In one aspect of this disclosure, an indicator module includes a body portion having a mounting portion, such as a bayonet mount, to removably attach the module to another module, such as a module of the same kind. The module also includes a first plurality of electrodes attached to the body portion and disposed to be in contact with respective ones of a plurality of electrodes in the attached module or base. The indicator module further includes an indicator circuit, such as a visual or audio indicator circuit, and a switch module, such as a DIP switch, operatively connected to the first plurality of electrodes and to the indicator circuit. The switch module is configurable (e.g., by setting the DIP switch) to selectively operatively connect the indicator circuit to one of the first plurality of electrodes. In another aspect of the disclosure, an indicator module described above can further include a second plurality of electrodes, each operatively connected to a respective one of the first plurality of electrodes by a conductor such as a conductive wire. Each plurality of electrodes is located at one end of the module so that the module can be connected to another indicator module at each end, or another indicator at one end and a base at the other.

In another aspect of the disclosure, the visual indicator in an indicator module with conductive wires described above includes a plurality of light elements, such as LEDs, with the conductive wires disposed in a more interior region of the module as compared to the light elements, which can be distributed near the periphery of the module. Such an arrangement reduces shadows of the wires cast by the light elements which can be visible from the exterior of the module.

In another aspect of the disclosure, the first plurality electrodes can each include a flexible portion so that when the module is removably attached to another module or a base, each electrode in the first plurality of electrodes is biased against the electrode in the other module or base.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1(a) illustrates an indicator assembly with multiple indicator modules and a base according to an aspect of the present disclosure.

FIG. 1(b) illustrates an indicator assembly with multiple indicator modules, including two different types of indicator modules, specifically both audio and visual indicator modules in this example, and a base according to an aspect of the present disclosure.

FIG. 2 illustrates another indicator assembly similar to the one shown in FIG. 1(b).

FIGS. 3(a) and 3(b) show attachment of one indicator module to another indicator module in a plurality of indicator modules in assembling an indicator assembly according to an aspect of the present disclosure.

FIG. 4 is a top (referenced to an upright orientation of the assembly) perspective view of an indicator assembly with an indicator module mounted on a base according to an aspect of the present disclosure.

FIG. 5 is a bottom (referenced to an upright orientation of the assembly) perspective view of an indicator assembly according to an aspect of the present disclosure.

FIG. 6 is a bottom (referenced to an upright orientation of the assembly) perspective view of the indicator assembly shown in FIG. 5 but without the housing.

FIG. 7 is a side view of the indicator assembly shown in FIG. 5.

FIGS. 8(a), (b) and (c) are, respectively, bottom, side and top views (referenced to an upright orientation of the assembly) of the components of the indicator module shown in FIG. 6.

FIG. 9 is a side view of the assembly shown in FIG. 4.

FIG. 10(a) shows a DIP switch as a switch module included as part of an indicator module according to an aspect of the present disclosure.

FIG. 10(b) schematically shows wiring for signal (power) supply to the indicator modules in an indicator assembly according to an aspect of the present disclosure.

FIG. 10(c) schematically shows an arrangement of pin connections for the connector in an indicator module base according to an aspect of the present disclosure.

FIG. 10(d) shows the correspondence between the pins in FIG. 10(c) and modules in FIG. 10(b).

FIG. 11 shows an example circuit diagram of the electronics in a visual indicator module according to an aspect of the present disclosure.

FIG. 12 shows a bottom view (referenced to an upright orientation of the assembly) of the components of the indicator module shown in FIG. 6 according to another embodiment.

FIGS. 13(a) and 13(b) shows an example circuit diagram of the electronics in a visual indicator module according to an aspect of the present disclosure.

DETAILED DESCRIPTION

The present disclosure is made with reference to example devices and methods illustrated in the attached FIGS. 1-13. The example devices and methods allows an indicator module in a modular tower light to be conveniently configured to be powered by any chosen one of the plurality of signal lines regardless of the position of the module in the sequence of modules. In addition, or independently, the plurality of signal lines that run through a visual indicator module can be positioned in the interior region of the module relative to visual signal sources (e.g., LEDs) so that shadows of the conductors cast by the visual signal sources are reduced as compared to modules having the signal lines near or inside transparent/translucent module housing wall.

Referring to FIGS. 1(a) and (b), example indicator assembles (100, 200) each include a base (110) and several visual indicators (120, 130, 140) mounted on top of each other and on top of the base (110). Each visual indicator (120, 130, 140) can provide a visual indication of a chosen kind, such as color. The top module (140) in assembly (100) can accept additional modules but in this example has a cap (150) mounted at the top. In the assembly (160) in FIG. 1(b), an audio indicator module (170) is mounted on top of the top visual indicator module (140). The base (110) includes an indicator mounting portion (112) for attachment to an indicator module (120, 130, 140), a base mounting portion (114) (e.g., a threaded cylindrical portion) for mounting the base on a support such as a bracket, and a connector (116) for electrical connection between the assembly and one or more signal sources, such as a controller, via one or more electrical cables.

FIG. 2 shows an assembly (200) similar to that (160) shown in FIG. 1(b), except that it includes two additional visual modules, lower module (210), upper module (220). FIG. 2 further shows guide marks to assist in mounting two modules to each other by a bayonet-style mount. For example, to attach upper module (220) to lower module (210), a first mark (222) at the bottom of the upper module (220) is first aligned with a first mark (212) at the top of the lower module (210), as shown in FIG. 3(a). Then the two modules are pushed together longitudinally and then twisted axially relative to each other until locked, when a second mark (224) at the bottom of the upper module (220) is aligned with the first mark (212) of the lower module (210).

Referring to FIGS. 4 and 5, which show examples of two identical indicator modules, lower module (210), upper module (220), FIG. 4 being from a top/side perspective (references to an upright orientation of the assembly), and FIG. 5 being from a bottom/side perspective. Each module has a body portion (400, 500), which includes a bottom mounting portion (410, 510) for mounting the module to an electrical module, such as another module, or a base (110 in FIG. 4; not shown in FIG. 5), below. Each body portion in this case also includes a top mounting portion (410, 520) for attachment to another module, or cap. Each module in these examples also includes a set of bottom electrodes (530 in FIG. 5; not shown in FIG. 4) near or at the bottom mounting portion (410, 510). Each module further includes a set of top electrodes (440 in FIG. 4; not shown in FIG. 5) corresponding to the respective bottom electrodes (530). In the example shown in FIG. 4, the base (110) also has a set of electrodes (not shown) similar to the top electrodes (440) for lower module (210). When a module (210, 220) is mounted on the electrical module, such as another indicator module or a base (110) below, the bottom electrodes (530) of upper module (220) are in contact with the electrodes in the electrical module, such as the top electrodes (440) of lower module (210) or the electrodes (118) of the base (110). See FIG. 9 for an example in which an indicator module body portion (500) is mounted on a base (110).

In this example, the top electrodes (440) are substantially flat and face the direction of the longitudinal axis of the lower module (210). The electrodes (118 in FIG. 9) in the base (110) have a similar structure. The bottom electrodes (530) are flexible so that when the upper module (220) is mounted on the lower module (210) or a base (110), the bottom electrodes (530) are biased against the corresponding top electrodes (440) (or electrodes (118) in the base) to ensure proper electrical contact. In addition, the bottom electrodes (530), in one example, include a sloped section (532) obliquely facing the direction in which the module rotates relative to the module being attached thereto. This configuration ensures proper flex of the bottom electrodes (530) and prevents any protrusion on the top surface (624 in FIG. 8) of the top circuit board (620 in FIG. 8) of the module being attached to from impeding the relative rotation and proper locking between the two modules.

Not all indicator modules need to have both top and bottom electrodes, and top and bottom mounting portions. An indicator module, such as the audio module 170, can be designed to always be the top module in a stack, and as such, needs only to have a bottom mounting portion and bottom electrodes (details not shown).

As shown in FIG. 5, an indicator module in these examples further includes a switch module (550), which in the example shown in FIG. 5, is supported at the bottom of the upper module (220) but can be anywhere accessible by a user. The switch module (550) is used to selectively connect an indicator circuit (to be described later) in the upper module (220) to one of the bottom electrodes (530).

The body portion (400, 500) of each indicator module (210, 220) can also include a housing wall (460, 560), which in the case of an optical indicator module, may be a transparent or translucent wall for transmitting light emitted by an illumination source contained therein.

Referring to FIG. 6, the various electrical and electronic components (640) in an indicator module (210, 220) in this example are supported on a bottom circuit board (610) and a top circuit board (620). For example, the bottom electrodes (530) and switch module (550) are supported on the bottom side (614) of the bottom circuit board (610), and the top electrodes (440) are supported on the top side (624) of the top circuit board (620).

Each module further includes an indicator circuit, which in this example includes light sources (630), such as light emitting diodes (LEDs) and associated electronic components (640), which can include, for example, a driver circuit, blinker circuit and protection circuit. In this case, the light sources (630) are mounted on the bottom surface (622) of the top circuit board (620) and (not shown) on the top surface (612) of the bottom circuit board (610). In this case, the light sources (630) are also distributed near the periphery, or housing wall (560) of the upper module (220). FIG. 7 shows a cross-sectional view of an indicator module, with the bottom circuit board (610) and top circuit board (620) interconnected via the conductors (650) and connectors (660), and with the light sources (630), other electronic components (640), bottom electrodes (530) and switch module (550) mounted the appropriate circuit boards (610, 620).

With further reference to FIG. 8, each indicator module (210, 220) in this example further includes conductors (650) connecting the top electrodes (440 in FIGS. 4 and 8; not shown in FIG. 5 or 6) to the bottom electrodes (not shown in FIG. 4; 530 in FIGS. 5 and 6) within each module via connectors (660) and conductive lines (not shown) on the top and bottom circuit boards. The connectors (660) permit the top and bottom circuit boards (610, 620) to be readily assembled together or disassembled. The conductors (650) in this case are disposed in an interior region relative to the light sources (630). With this arrangement, shadows of the conductors (650) cast by the light sources (630) are reduced as compared to the arrangements in which the conductors are disposed near the periphery and light sources are disposed in a more interior region of the module.

FIG. 9 shows a cross-sectional view of an indicator module, with the bottom circuit board (610) and top circuit board (620) interconnected via the conductors (650) and connectors (660), and with the bottom electrodes (530), other electronic components (640), and the electrodes (118) of the base (110).

When an indicator assembly (100 or 160) is assembled, there are several conductive paths running through all the modules in the assembly. Several such conductive paths (logically labeled “M1” through “M6” in FIG. 10(b)) are connected to respectively signal sources (symbolically illustrated as a set of switches (1060) in FIG. 10(b)) such as a controller (not shown) via the connector (116; see FIG. 10(c) for pin-out and (d) for identification of the wires). One or more such conductive paths can also be connected to a common terminal, such as ground. Each conductive path includes one conductor (650) and corresponding top and bottom electrodes (440, 530) in each module.

Regarding the switch module (550), one function of the switch is to selectively interconnect the indicator circuit, such as visual indicator circuit (630, 640), with one or more of the conductive paths. For example, the indicator circuit in each indicator module can be connected between the common terminal (e.g., ground) and, via the switch module, selectively to one of the signal sources. The connection can be made, for example, to the bottom electrodes (530) via conductive lines (not shown) in the circuit board (610). The switch module (550) can be any suitable connecting device, including switches such as DIP switches, rotary switches, sliding switches, and the like. Though less convenient, the switching module (550) can also be a jumper arrangement. In an example, shown in FIG. 10(a), a part of a DIP switch (1050) is used for the purpose of selectively connecting an indicator circuit to one of the conductive paths. In this case, the DIP switch (1050) has several individual switches (1052, 1054), a subgroup (1052) of which serves to make the selective connections. For example, if the switch element in position “3” in a DIP switch in a module is switched to “ON,” the module is “seen” as M3, or Module 3, by the controller, regardless of the physical location of the indicator module in the sequence of modules in the assembly.

As a further example, two or more indicator modules, each occupying a different physical location, in an indicator assembly can be configured to be the same logical module by appropriate setting of the switch module (550). For example, if the switch element in position “3” in a DIP switch in each of two or more indicator modules in an indicator assembly is switched to “ON,” each of the modules is “seen” as M3, or Module 3, by the controller. Both or all of the modules set to M3 will be activated. For example, in an indicator assembly (e.g., one as shown in FIG. 2) having both an audio indicator module and a visual indicator module, both indicator modules can be set to the same logical module (e.g., both physical Module 6 (170) and physical Module 4 (210) can be set to be logical Module 3, or M3). When the controller supplies power to the logical module (e.g., Module 3, or M3), both the audio and visual indicator modules will be activated and generate audio and visual signals, respectively. In another example, multiple visual indicator modules in an indicator assembly can be set to the same logical module to produce a desired array of visual signals, such as an array of lights of the same color or any other color pattern.

Other functions can be provided by the switch module (550, 1050). For example, a portion of the DIP switch (1050) can be used to affect the type of indication provided by Module 3 (assuming the switch element in position “3” is “ON”). For example, switch elements in positions “7” and “8” can be used to control whether the indicator module is active continuously or intermittently, and the frequency of intermittent indications (flashes or beeps).

A variety of electrical and electronic circuits can be used to implement specific functional aspects of the indicator module. For example, the circuit schematically shown in FIG. 11 can be used to build a visual indicator module designed for tower lights having up to six independent channels. In this example, a portion (1052) of the switch module (1050) is used to selectively connect the light sources (630) and other electronics (640) via one of the six conductive paths (1110). The circuit (640) includes, among other things, a driver (642) for powering the light sources (630) and timing circuit (644). Another portion (1054) of the switch module (1050) is used to control the blinking indication of the light sources (630). Other suitable circuits can be used, depending the specific desired operation.

In accordance with another aspect of the present disclosure, additional switches can be included in a indicator module (210,220) to enable additional functionalities of the module. The additional switches can be included in the form of additional individual switches (1052,1054) in the switch module (550,1050). Alternatively or in addition, they can be included, as in an exemplary embodiment shown in FIG. 12, in the form of individual switches (1272,1274) in one or more additional switch modules (1270).

For example, the light sources (630) can each be a multi-color LED or a group of discrete single-color LEDs of different colors, and switches (1272,1274) can be connected to power respective LEDs or color components of a multi-color LED to produce a desired color by mixing colors emitted by LEDs or LED components of different colors. For example, an RGB (red-green-blue) LED may provide seven different colors (turning on one, two, three colors); an RGBA (red-green-blue-amber) LED may provide fourteen colors (turning on one, two, three colors) or more. TABLE I below shows an example in which four switches (5B-8B) in a DIP switch module (1270) are used to generate fourteen colors. In this example, the circuit is configured such that turning all switches (5B-8B) on does not result in a state in which all four color components are on; instead, a demonstrative state is reached, which can be, for example, cycling through all fourteen colors while the LEDs are flashing.

TABLE I Effect of Switch Positions For Switch Module (1270) DIP Switch (1270) Assembly Options 1B 2B 3B 4B 5B 6B 7B 8B Color Red ON Selection Green ON Yellow ON ON Blue ON Magenta ON ON Cyan ON ON White ON ON ON Amber ON Rose ON ON Lime Green ON ON Orange ON ON ON Sky Blue ON ON Violet ON ON ON Spring Green ON ON ON Color Demo Flash Demo ON ON ON ON Flashing Sold On and 0.5 Hz Flash ON Strobing 1.5 Hz Flash ON 3.0 Hz Flash ON ON 0.5 Hz Strobe ON 1.5 Strobe ON ON 3.0 Hz Strobe ON ON Instantly Sweep ON ON ON Instantly High Low ON

As further illustrated by the example of TABLE I, switches (1272,1274) can be connected to enable other functionalities in similar ways as the switches “7” and “8” (1054) described above. For example, switches 2B-4B can be connected to appropriate circuitry to cause the LEDs to flash or strobe at various frequencies, or to provide intensity sweep (pulse); switch 1B, as another example, can be connected to appropriate circuitry to cause the LEDs to emit light at various intensities.

As summarized in TABLE II below, the switching states of the switches (1052) in the other DIP-switch (550,1050) controls the logical position of each indicator module as described before.

TABLE II Effect Of Switch Position For Switch Module (550, 1050) Assembly DIP Switch (550, 1050) Options 1 2 3 4 5 6 Position Module 1 ON Module 2 ON Module 3 ON Module 4 ON Module 5 ON Module 6 ON

The user configurable indicator modules described above can also be used with other types of indicator modules, such as traditional tower light modules, to achieve desired configurations.

An example circuit, schematically shown in FIG. 13 can be used to build a visual indicator module designed for tower lights shown in FIG. 12 and capable of performing the various functions described above. In this example, a processor (1342) in the circuit (1300) is configured to receive inputs (in this example, COLOR1, COLOR2, COLOR3, COLOR4, FLASH1, FLASH2, STROBE and ECO_MODE) from the additional switch module (1270) generate control signals (in this example, PWM_RED, PWM_GREEN and PWM_BLUE) to control the level of power delivered to LED's of each color (red, green and blue). The control in this example is achieved by pulse-width modulation (PWM). The functions described above, such as mixing LED colors to obtain various color, cycling through colors, and intensity sweeping, can be achieved. Other suitable circuits can be used, depending the specific desired operation.

Thus, a device and method have been described, which, among other things, provide a high degree of flexibility in configuring modular indicator assemblies (tower lights and the like). By the use of a switch module inside an indicator module, the module can be configured to function as a module in any logical (electronic) position in a multi-indicator assembly, regardless of its location in the physical sequence of the indicator modules in the assembly. The arrangement of the conductive paths relative to optical indicator elements (e.g., LEDs) provides a reduction in shadowing from the conductive paths. Resilient, or flexible, electrodes can be used for proper inter-modular electrical connections.

Many modifications and variations of the examples disclosed herein, and numerous other embodiments of the invention can be made without exceeding the scope of the invention, which is to be measured by the claims hereto appended.

Claims

1. An indicator module, comprising:

a first circuit board having a first support surface;
a first plurality of electrodes disposed on the first support surface, each of the first plurality of electrodes comprising an arched flexible portion having a lower portion and an upper portion disposed farther from the first support surface than the lower portion;
a second circuit board having a second support surface spaced apart from the first support surface along a longitudinal direction, the first and second support surfaces facing substantially away from each other along the longitudinal direction;
a second plurality of electrodes disposed on the second support surface;
a plurality of conductors elongated substantially in the longitudinal direction, each of the first plurality of electrodes being electrically connected to a respective one of the second plurality of electrodes via a respective one of the plurality of conductors;
an indicator circuit electrically connected to one or more of the plurality of conductors and adapted to generate a human perceptible signal when the indicator circuit receives electrical power from the one or more of the plurality of the conductors; and
a body portion supporting the first and second circuit boards and comprises a housing wall enclosing the indicator circuit around the longitudinal direction.

2. The indicator module of claim 1, wherein first plurality of electrodes are positioned substantially along a circle defining a tangent direction at the position of each of the first electrodes, wherein the arched flexible portion of each of the first plurality of electrodes is bowed substantially in a plane parallel to the longitudinal direction and the tangent direction defined at the electrode.

3. The indicator module of claim 1, wherein each of the second plurality of electrodes comprises a substantially flat contact area facing substantially in the longitudinal direction.

4. The indicator module of claim 1, wherein the indicator circuit comprises a plurality of light emitters mounted on the first or second circuit board and surrounding the plurality of conductors, and the housing wall comprising a transparent or translucent portion located to permit transmission of light from the light emitters through the transparent or translucent portion.

5. The indicator module of claim 4, wherein the light emitters are arranged substantially along a circle defining through its center a longitudinal axis substantially along the longitudinal direction, the circle lying in a plane substantially parallel to the first support surface, and the plurality of conductors are disposed in proximity to the longitudinal axis.

6. The indicator module of claim 5, further comprising a spacer disposed between the first and second support surfaces, accommodating the plurality of conductors passing through the spacer, and separating the plurality of conductors from each other.

7. The indicator module of claim 1, further comprising a switch module operatively connected to the first plurality of electrodes and to the indicator circuit and configurable to selectively operatively connect the indicator circuit to one or more of the first plurality of electrodes.

8. The indicator module of claim 7, wherein the switch module is configurable to selectively operatively connect the indicator circuit to one or more of the first plurality of electrodes independent of whether the indicator circuit is connected to any other one of the first plurality of electrodes.

9. The indicator module of claim 1, wherein the body portion further comprises:

a first mounting portion of a first configuration proximal to the first plurality of electrodes; and
a second mounting portion of a second configuration proximal to the second plurality of electrodes, the first and second configurations being adapted to enable the first mounting portion to engage a mounting portion of an external device and of the second configuration to form a mating attachment between the indicator module and the external device, and to enable the second mounting portion to engage a mounting portion of an external device and of the first configuration to form a mating attachment between the indicator module and the external device.

10. The indicator module of claim 9, wherein the first and second configurations are adapted to enable the first mounting portion to engage a mounting portion of an external device and of the second configuration to form a mating attachment between the indicator module and the external device when the first mounting portion is rotated relative to the external device about the longitudinal direction, and to enable the second mounting portion to engage a mounting portion of an external device and of the first configuration to form a mating attachment between the indicator module and the external device when the second mounting portion is rotated relative to the external device about the longitudinal direction,

wherein the arched flexible portion of each of the first plurality of electrodes bows out in substantially a direction between the longitudinal direction and a direction of motion of the electrode when the first mounting portion is rotated relative to the external device about the longitudinal direction.

11. The indicator assembly of claim 10, wherein the first and second configurations are adapted to enable the first mounting portion to engage a mounting portion of an external device and of the second configuration to form a mating attachment between the indicator module and the external device when the first mounting portion is rotated from an unlocked position to a locked position relative to the external device about the longitudinal direction, and to enable the second mounting portion to engage a mounting portion of an external device and of the first configuration to form a mating attachment between the indicator module and the external device when the second mounting portion is rotated from an unlocked position to a locked position relative to the external device about the longitudinal direction,

wherein the first configuration includes a first marker, and the second configuration includes a second marker, the first and second markers being arranged to cooperatively provide a first pattern indicative of the unlocked position of the first or second mounting portion relative to the external device, and a second pattern indicative of the position of the first or second mounting portion relative to the external device.

12. An indicator assembly kit, comprising a plurality of indicator modules of claim 9, wherein each of the second plurality of electrodes of the first one of the plurality of indicator modules and a corresponding one of the first plurality of electrodes of the second one of the plurality of indicator modules are adapted to form compressive contact with each other when the second mounting portion of the body portion of the first one of the plurality of indicator modules and the first mounting portion of the body portion of the second one of the plurality of indicator modules are in a mating attachment to each other.

13. The indicator assembly kit of claim 12, wherein the indicator circuit of at least one of the indicator modules comprises a visual indicators circuit adapted to generate a light signal when the indicator circuit receives electrical power from the one or more of the plurality of the conductors, the kit further comprising an audio indicator module comprising an audio indicator circuit and a body portion housing the audio indicator circuit, the audio indicator circuit being adapted to generate an audio signal when the indicator circuit receives electrical power from the one or more of the plurality of the conductors, and the body portion of the audio indicator module having a mounting portion of the first or second configuration.

14. The indicator assembly kit of claim 12, further comprising a base module comprising:

a body portion have a mounting portion of the first or second configuration;
a plurality of electrodes proximal to the mounting portion; and
a plurality of conductors adapted to electrically connect the respective ones of the plurality of electrodes of the base module to one or more signal sources external to the base module,
each of the plurality of electrodes of the base module and a corresponding one of the first plurality of electrodes of the first indicator module or the second plurality of electrodes of the second indicator module being adapted to form compressive contact with each other when the mounting portion of the base portion and the first mounting portion the of the first indicator module or the second mounting portion of the second indicator module are in a mating attachment to each other.

15. An indicator assembly, comprising:

a first module, comprising: a body portion having a first mounting portion and a second mounting portion spaced apart from the first mounting portion along a longitudinal axis; a first support surface proximal to the first mounting portion of the body portion; a first plurality of electrodes disposed on the first support surface, each of the first electrodes comprises an arched flexible portion having a lower portion and an upper portion disposed farther from the first support surface than the lower portion; a second support surface proximal to the second mounting portion of the body portion, the first and second support surface facing substantially away from each other along the longitudinal axis; a second plurality of electrodes disposed on the second support surface; a plurality of conductors elongated substantially in the longitudinal direction, each of the first plurality of electrodes being electrically connected to a respective one of the second plurality of electrodes via a respective one of the plurality of conductors; and an indicator circuit electrically connected to one or more of the plurality of conductors and adapted to generate a human perceptible signal when the indicator circuit receives electrical power from the one or more of the plurality of the conductors;
a second module having a body portion adapted to engage the first or second mounting portion of the first module to form a mating attachment between the first and second modules.

16. The indicator assembly of claim 15, wherein the second module and first or second mounting portions of the first module are adapted to form a mating attachment between the first and second modules when the second module is rotated relative to the first module about the longitudinal axis,

wherein the first and second mounting portions have a first and second configurations, respectively, adapted to enable the first mounting portion to engage a mounting portion of a device external to the first module and of the second configuration to form a mating attachment between the indicator module and the device external to the first module when the first mounting portion is rotated relative to the device external to the first module about the longitudinal direction, and to enable the second mounting portion to engage a mounting portion of a device external to the first module and of the first configuration to form a mating attachment between the first module and the device external to the first module when the second mounting portion is rotated relative to the device external to the first module about the longitudinal direction,
wherein the arched flexible portion of each of the first plurality of electrodes of the second indicator module bows out in substantially a direction between the longitudinal direction and a direction of motion of the electrode when the first mounting portion is rotated relative to the device external to the first module.

17. The indicator assembly of claim 16, further comprising a base module, comprising:

a body portion have a mounting portion;
a plurality of electrodes proximal to the mounting portion; and
a plurality of conductors adapted to electrically connect the respective ones of the plurality of electrodes of the base module to one or more signal sources external to the indicator assembly,
the mounting portion of the base module being adapted to engage the first or second mounting portion of the first module to form a mating attachment between the base module and the first module,
each of the plurality of electrodes of the base module and a corresponding one of the first or second plurality of electrodes of the first module being adapted to form compressive contact with each other when the mounting portion of the base portion and the first or second mounting portion the of the first module are in a mating attachment to each other.

18. The indicator assembly of claim 16, wherein:

the indicator circuit of the first modules comprises a visual indicators circuit adapted to generate a light signal when the indicator circuit receives electrical power from the one or more of the plurality of the conductors, and
the second module comprises an audio indicator module comprising an audio indicator circuit and a body portion housing the audio indicator circuit, the audio indicator circuit being adapted to generate an audio signal when the indicator circuit receives electrical power from the one or more of the plurality of the conductors.
Referenced Cited
U.S. Patent Documents
3868671 February 1975 Maguire et al.
3868682 February 1975 Simon et al.
4839835 June 13, 1989 Hagenbuch
5327347 July 5, 1994 Hagenbuch
5416706 May 16, 1995 Hagenbuch
5453729 September 26, 1995 Chu
D363036 October 10, 1995 Sasaki
D363250 October 17, 1995 Miyatake
D363675 October 31, 1995 Sasaki et al.
5528499 June 18, 1996 Hagenbuch
5631832 May 20, 1997 Hagenbuch
5631835 May 20, 1997 Hagenbuch
5642933 July 1, 1997 Hitora
5644489 July 1, 1997 Hagenbuch
5650928 July 22, 1997 Hagenbuch
5650930 July 22, 1997 Hagenbuch
5742914 April 21, 1998 Hagenbuch
5769532 June 23, 1998 Sasaki
D408938 April 27, 1999 Miyatake
5952915 September 14, 1999 Marquardt et al.
5963126 October 5, 1999 Karlin et al.
5995888 November 30, 1999 Hagenbuch
6033087 March 7, 2000 Shozo et al.
D428821 August 1, 2000 Matuda et al.
D432038 October 17, 2000 Sasaki et al.
D432444 October 24, 2000 Sasaki et al.
6135612 October 24, 2000 Clore
6382811 May 7, 2002 Bernard
6384735 May 7, 2002 Rabou et al.
6409361 June 25, 2002 Ikeda
6471371 October 29, 2002 Kawashina et al.
6561719 May 13, 2003 Elsaesser et al.
6572242 June 3, 2003 Marquardt et al.
6586255 July 1, 2003 Hubert et al.
6589789 July 8, 2003 Hubert et al.
6604838 August 12, 2003 Jautz
6632003 October 14, 2003 Marquardt et al.
6705060 March 16, 2004 McGuinness et al.
6814610 November 9, 2004 Kurose et al.
6888454 May 3, 2005 Kurose
6964372 November 15, 2005 Peterson
6974414 December 13, 2005 Victor
7014030 March 21, 2006 Hendzel et al.
D518400 April 4, 2006 Sasaki et al.
D519869 May 2, 2006 Sasaki et al.
7224825 May 29, 2007 Craig et al.
D555025 November 13, 2007 Sasaki et al.
D557159 December 11, 2007 Sasaki et al.
D565788 April 1, 2008 Miyatake
7436504 October 14, 2008 Shaw et al.
7445360 November 4, 2008 Ikeda
D586033 February 3, 2009 Tominoto
7545284 June 9, 2009 Neumann et al.
D598315 August 18, 2009 Miyatake
D598316 August 18, 2009 Kuwano
D598799 August 25, 2009 Shigematsu
7587178 September 8, 2009 Marquardt
D604651 November 24, 2009 Shoettle
D604652 November 24, 2009 Shoettle
D606441 December 22, 2009 Miyatake
7633029 December 15, 2009 Komori et al.
7639148 December 29, 2009 Victor
7667149 February 23, 2010 Komori et al.
7675426 March 9, 2010 Takada et al.
7705745 April 27, 2010 Periot et al.
7722215 May 25, 2010 Ward et al.
7880637 February 1, 2011 Weiss
7888825 February 15, 2011 Iida et al.
7928610 April 19, 2011 Iida et al.
7950088 May 31, 2011 Dalton et al.
7956300 June 7, 2011 Hidaka et al.
7960665 June 14, 2011 Saki et al.
7985932 July 26, 2011 Yasui et al.
7994447 August 9, 2011 Sakai
7999200 August 16, 2011 Komori et al.
7999693 August 16, 2011 Hohler
8000835 August 16, 2011 Friz et al.
D647812 November 1, 2011 Kuwano et al.
D648241 November 8, 2011 Kuwano et al.
D651109 December 27, 2011 Kuwano
D651110 December 27, 2011 Kuwano
D651111 December 27, 2011 Kuwano
D651112 December 27, 2011 Kuwano
D651113 December 27, 2011 Kuwano et al.
8075408 December 13, 2011 Hwang
D652334 January 17, 2012 Kuwano et al.
D653141 January 31, 2012 Kuwano
D655216 March 6, 2012 Stuffle
8120489 February 21, 2012 Hatanaka et al.
8192292 June 5, 2012 Popielarz et al.
8260948 September 4, 2012 Chand et al.
8286288 October 16, 2012 McAllister et al.
D671254 November 20, 2012 Miyatake et al.
8395526 March 12, 2013 Kensy et al.
8454169 June 4, 2013 Kaseya
D681261 April 30, 2013 Miyatake et al.
8456322 June 4, 2013 Marquardt et al.
8487747 July 16, 2013 Morin
8487775 July 16, 2013 Victor et al.
8508902 August 13, 2013 Kamano et al.
8542104 September 24, 2013 Horowitz
D695951 December 17, 2013 Miyatake et al.
8615374 December 24, 2013 Discenzo
8615834 December 31, 2013 McAllister et al.
8650917 February 18, 2014 McAllister et al.
9997031 June 12, 2018 Dolezalek et al.
10475299 November 12, 2019 Dolezalek et al.
10984636 April 20, 2021 Dolezalek et al.
20020172040 November 21, 2002 Jautz
20030030567 February 13, 2003 Hetzel et al.
20040214476 October 28, 2004 Haas et al.
20110103050 May 5, 2011 Hochman
20130314916 November 28, 2013 Clore
20140071681 March 13, 2014 Ghafoori et al.
20150198317 July 16, 2015 Feller et al.
20150201261 July 16, 2015 Feller et al.
Foreign Patent Documents
20 2007 005 495 August 2007 DE
10 2011 080 595 February 2013 DE
2 182 776 May 2010 EP
2 996 442 March 2016 EP
3 121 798 January 2017 EP
Other references
  • Extended European Search Report for Application No. 21174543.5 dated Jan. 28, 2022.
  • International Search Report and Written Opinion for Application No. PCT/US2019/036761 dated Sep. 18, 2019.
  • TL70 Modular Tower Light Installation Tutorial, Banner Engineering, https://www.youtube.com/watch?v=1KrZFTF5T1Q, 2 pages (Oct. 20, 2014).
Patent History
Patent number: 11580828
Type: Grant
Filed: Apr 19, 2021
Date of Patent: Feb 14, 2023
Patent Publication Number: 20220036707
Assignee: BANNER ENGINEERING CORPORATION (Minneapolis, MN)
Inventors: Charles Dolezalek (Stacy, MN), Darrell Raymond Pikkaraine (Elk River, MN), Maximilian John Aponte (Shakopee, MN), Neal A. Schumacher (Plymouth, MN)
Primary Examiner: Hongmin Fan
Application Number: 17/233,834
Classifications
Current U.S. Class: Snap Means (362/656)
International Classification: G08B 5/38 (20060101); G08B 7/06 (20060101); G08B 21/18 (20060101); F21Y 115/10 (20160101); F21W 111/00 (20060101); H05B 45/10 (20200101);