Infusion system and method of use which prevents over-saturation of an analog-to-digital converter

- ICU Medical, Inc.

To detect air in a fluid delivery line of an infusion system, infusion fluid is pumped through a fluid delivery line adjacent to at least one sensor. A signal is transmitted and received using the at least one sensor into and from the fluid delivery line. The at least one sensor is operated, using at least one processor, at a modified frequency which is different than a resonant frequency of the at least one sensor to reduce an amplitude of an output of the signal transmitted from the at least one sensor to a level which is lower than a saturation level of the analog-to-digital converter to avoid over-saturating the analog-to-digital converter. The signal received by the at least one sensor is converted from analog to digital using an analog-to-digital converter. The at least one processor determines whether air is in the fluid delivery line based on the converted digital signal.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/823,098 which issued on Aug. 17, 2020 as U.S. Pat. No. 11,090,431 B2 entitled “Infusion System and Method of Use Which Prevents Over-Saturation of an Analog-to-Digital Converter,” filed Mar. 18, 2020, which is a continuation of U.S. patent application Ser. No. 15/648,975 which issued on Mar. 24, 2020 as U.S. Pat. No. 10,596,316 B2, entitled “Infusion System and Method of Use Which Prevents Over-Saturation of an Analog-to-Digital Converter,” filed Jul. 13, 2017, which is a continuation of U.S. patent application Ser. No. 14/289,796 which issued on Jul. 18, 2017 as U.S. Pat. No. 9,707,341 B2, entitled “Infusion System and Method of Use Which Prevents Over-Saturation of an Analog-to-Digital Converter,” filed May 29, 2014, which claims the benefit of priority to U.S. Provisional Patent Application No. 61/828,408, entitled “Infusion System and Method of Use Which Prevents Over-Saturation of an Analog-to-Digital Converter,” filed May 29, 2013, the disclosures of which are hereby incorporated by reference in their entirety.

BACKGROUND Field of the Invention

This disclosure relates to an infusion system and method of use which prevents over-saturation of an analog-to-digital converter being used to determine whether air is present in the infusion system.

The Symbig™ infusion system, made by Hospira, Inc., previously detected whether air was present in the infusion system by operating one or more sensors at their resonant frequency, which was determined and set during calibration. The one or more sensors were used to transmit and receive a signal through a fluid delivery line of the infusion system in order to determine, based on the strength of the signal that propagated through the fluid delivery line, whether air, fluid, or some combination thereof was disposed in the fluid delivery line. Signals propagate better through liquid fluid than through air. The resonant frequency of the one or more sensors is the frequency at which the output of the signal transmitted from the one or more sensors is maximized for a given transfer medium such as for the infusion fluid contained within the fluid delivery line of the infusion system. Thus, conventional wisdom suggested that the one or more sensors would be most effective at their resonant frequency. However, analog-to-digital converters are used to convert the received analog signal from analog to digital in order for a processor to determine, based on the converted digital signal, whether air, fluid, or some combination thereof is disposed in the fluid delivery line of the infusion system. It has been observed or discovered by the Applicants that under certain conditions, analog-to-digital converters can become over-saturated if the output of the signal transmitted from the one or more sensors is too high.

A system and method is needed to overcome one or more issues of one or more of the existing systems and methods for detecting air in an infusion system.

SUMMARY OF THE INVENTION

In one embodiment, an infusion system is disclosed for being operatively connected to a fluid delivery line and to an infusion container containing an infusion fluid. The infusion system includes a pump, at least one sensor, an analog-to-digital converter, at least one processor, and a memory. The at least one sensor is disposed adjacent to the fluid delivery line and configured to transmit and receive a signal to detect whether there is air in the fluid delivery line. The analog-to-digital converter is electronically connected to the at least one sensor for converting the received signal from analog to digital. The at least one processor is in electronic communication with the pump, the at least one sensor, and the analog-to-digital converter. The memory is in electronic communication with the at least one processor. The memory includes programming code for execution by the at least one processor. The programming code is configured to operate the at least one sensor at a modified frequency which is different than a resonant frequency of the at least one sensor in order to reduce an amplitude of an output of the signal transmitted from the at least one sensor to a level which is lower than a saturation level of the analog-to-digital converter.

In another embodiment, a method is disclosed for detecting air in a fluid delivery line of an infusion system. In one step, infusion fluid is pumped through a fluid delivery line adjacent to at least one sensor. In another step, a signal is transmitted and received using the at least one sensor into and from the fluid delivery line. The at least one sensor is operated, using at least one processor, at a modified frequency which is different than a resonant frequency of the at least one sensor in order to reduce an amplitude of an output of the signal transmitted from the at least one sensor to a level which is lower than a saturation level of an analog-to-digital converter to avoid over-saturating the analog-to-digital converter. In an additional step, the signal received by the at least one sensor is converted from analog to digital using the analog-to-digital converter.

In still another embodiment, a method is disclosed for arranging and using an infusion system. In one step, a resonant frequency of at least one sensor is determined. In another step, a saturation level of an analog-to-digital converter is determined. In still another step, the at least one sensor is disposed adjacent to a fluid delivery line. In yet another step, a pump is connected to the fluid delivery line. In another step, the analog-to-digital converter is electronically connected to the at least one sensor. In an additional step, at least one processor is electronically connected to the pump, to the at least one sensor, and to the analog-to-digital converter. In still another step, the at least one processor is programmed to operate the at least one sensor at a modified frequency which is different than the resonant frequency of the at least one sensor in order to reduce an amplitude of an output of a signal transmitted from the at least one sensor to a level which is lower than the saturation level of the analog-to-digital converter to avoid over-saturating the analog-to-digital converter.

The scope of the present disclosure is defined solely by the appended claims and is not affected by the statements within this summary.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure.

FIG. 1 illustrates a block diagram of an infusion system under one embodiment of the disclosure;

FIG. 2 is a graph illustrating in one embodiment of the disclosure how shifting the frequency of a sensor of the infusion system of FIG. 1 to a modified frequency which is different than the resonant frequency of the sensor may avoid over-saturating an electronic detection device of FIG. 1;

FIG. 3 illustrates a cross-section through one embodiment of a segment of fluid delivery line coupled to an electronic transmitting device, a transmitter portion of a sensor, a receiver portion of the sensor, and an electronic detection device;

FIG. 4 illustrates a top view through one embodiment of the piezoelectric crystals of the transmitter portion of the sensor of FIG. 3;

FIG. 5 illustrates a flowchart of one embodiment of a method for arranging and using an infusion system;

FIG. 6 illustrates a flowchart of one embodiment of a method for detecting air in a fluid delivery line of an infusion system;

FIG. 7 is a graph illustrating five different curves showing for five different illustrative sensors, which could each be tried as the sensor in the infusion system of FIG. 1, how their respective signal strength varies as their modified frequency varies; and

FIG. 8 illustrates a flowchart of one embodiment of a method for determining the modified frequency of an infusion system.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The following detailed description is of the best currently contemplated modes of carrying out the disclosure. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the disclosure, since the scope of the disclosure is best defined by the appended claims. It is noted that the Figures are purely for illustrative purposes and are not to scale.

Applicants have discovered through testing of the Symbig™ infusion system that when some sensors are operated at their resonant frequency the signal transmitted from the one or more sensors sometimes is over-saturated and causes the analog-to-digital converter to become over-saturated. Variation in sensor manufacturing and assembly, especially bonding of the piezo-electric element to the supporting body in an ultrasonic sensor, can be significant. Some piezo-electric elements may be extremely well bonded within the sensor assembly while others may have many gaps, voids or air bubbles in the bonding of the element to the sensor body. Sensors with few bonding imperfections may have high output amplitude, particularly at resonant frequency. Applicants have further discovered that this high amplitude, oversaturated signal sometimes reduces the accuracy and reliability of the analog-to-digital converters which may not correctly convert the received over-saturated signal. Applicants have additionally discovered that this could lead to errors in the infusion system's determination as to whether or not air is contained in the infusion system and the generation of alarms.

FIG. 1 illustrates a block diagram of an infusion system 100 under one embodiment of the disclosure. The infusion system 100 comprises: an infusion container 102; a fluid delivery line 104; a pump device 106; a processing device 108; an alarm device 110 that generates an audio, visual, other sensory signal or the like to a user; an input/output device 112; an electronic transmitting device 114; a sensor 116; an electronic detection device 118; and a delivery/extraction device 120. The infusion system 100 may comprise the Plum A+™, Gemstar™, Symbig™, or other type of infusion system. The infusion container 102 comprises a container for delivering fluid such as IV fluid or a drug to the patient 122. The fluid delivery line 104 comprises one or more tubes, connected between the infusion container 102, the pump device 106, the sensor 116, and the delivery/extraction device 120, for transporting fluid from the infusion container 102, through the pump device 106, through the sensor 116, through the delivery/extraction device 120 to the patient 122. The fluid delivery line 104 may also be used to transport blood, extracted from the patient 122 using the delivery/extraction device 120, through the sensor 116 as a result of a pumping action of the pump device 106. The pump device 106 comprises a pump for pumping fluid from the supply container 102 or for pumping blood from the patient 122. The pump device 106 may comprise a plunger based pump, a peristaltic pump, or another type of pump.

The processing device 108 comprises at least one processor for processing information received from the electronic detection device 118 and/or the sensor 116 and for executing one or more algorithms to determine if air, fluid, or some combination thereof is located in the fluid delivery line 104 at the location of the sensor 116. The processing device 108 is in electronic communication with the pump device 106, the electronic transmitting device 114, the sensor 116, the electronic detection device 118, the input/output device 112, and the alarm device 110. The processing device 108 includes or is in electronic communication with a computer readable memory, containing programming code containing the one or more algorithms for execution by the at least one processor, and a clock.

The alarm device 110 comprises an alarm, triggered by the processing device 108, for notifying the clinician (also referred to as ‘user’ herein) as to the presence of air being disposed in the fluid delivery line 104 at the location of the sensor 116. The alarm device 110 may be configured to stop the pump device 106 prior to an air embolism being delivered through the fluid delivery line 104 and the delivery/extraction device 120 to the patient 122.

The input/output device 112 comprises a device which allows a clinician to input or receive information. The input/output device 112 allows a clinician to input or receive information regarding the infusion. For instance, the clinician may use the input/output device 112 to input or select a medication infusion program to be applied by the processing device 108, to set settings for the processing device 108 to apply in using the programming code containing the algorithm(s), or to input other type of information. The input/output device 112 may further output information to the clinician. In other embodiments, any of the information inputted into the input/output device 112 may be pre-installed into the programming code or the processing device 108.

The delivery/extraction device 120 comprises a patient vascular access point device for delivering fluid from the infusion container 102 to the patient 122, or for extracting blood from the patient 122. The delivery/extraction device 120 may comprise a needle, a catheter, or another type of delivery/extraction device. In other embodiments, the infusion system 100 of FIG. 1 may be altered to vary the components, to take away one or more components, or to add one or more components.

The electronic transmitting device 114 comprises electronic circuitry, connected to the sensor 116, which transmits a signal from a transmitter portion 116A of the sensor 116, through the fluid delivery line 104, to a receiver portion 116B of the sensor 116. The transmitter portion 116A and the receiver portion 116B are disposed on opposed sides of the fluid delivery line 104. The receiver portion 116B of the sensor is electronically connected to the electronic detection device 118. The sensor 116 may comprise an air-in-line sensor for sensing, with the assistance of the electronic detection device 118 and the processing device 108, whether air, fluid, or some combination thereof is contained in the fluid delivery line 104. The sensor 116 is disposed adjacent to and/or connected to the fluid delivery line 104 distal of the pump device 106. In other embodiments, the sensor 116 may be located proximal to the pump device 106 or may be located in both proximal and distal positions.

The transmitter and receiver portions 116A and 116B of the sensor 116 sense the presence of air, fluid, or some combination thereof within the fluid delivery line 104. The transmitter and receiver portions 116A and 116B of the sensor 116 comprise a transducer such as an ultrasonic sensor, an acoustic sensor, an optical sensor, or another type of sensor. Alternate arrangements of the sensor transmitter and receiver are possible and include both side-by-side arrangements and the use of a single transducer to both transmit and receive a reflected signal. In other embodiments, any number, configuration, and type of sensor(s) may be used.

The electronic detection device 118 comprises electronic circuitry, connected to the receiver portion 116B of the sensor 116, for receiving the signal transmitted from the electronic transmitting device 114, through the transmitter portion 116A of the sensor 116, through the fluid delivery line 104, to the receiver portion 116B of the sensor 116, to the electronic detection device 118. The electronic detection device 118 comprises an analog-to-digital converter which is electronically connected to the sensor 116 for converting the signal received by the receiver portion 116B of the sensor from analog to digital and communicating the digital reading to the processing device 108. The processing device 108 then determines, based on the digital reading, whether air, fluid, or some combination thereof is disposed in the fluid delivery line 104 at the sensor 116 by executing the programming code containing the one or more algorithms.

The programming code implemented by the processing device 108 is configured to operate the sensor 116 at a modified frequency which is different than a resonant frequency of the sensor 116 in order to reduce the amplitude of an output of the signal transmitted from the transmitter portion 116A of the sensor 116 to a level which is lower than a saturation level of the electronic detection device 118 comprising the analog-to-digital converter. The resonant frequency of the sensor 116 is the frequency at which the output of the signal transmitted from the transmitter portion 116A of the sensor 116 is maximized for a given transfer medium (such as the fluid delivery line 104 filled with infusion fluid).

By reducing the amplitude of the output of the signal transmitted from the transmitter portion 116A of the sensor 116 to a level which is lower than the saturation level of the electronic detection device 118 comprising the analog-to-digital converter, the reliability and accuracy of the processing device 108 detecting air, fluid, or some combination thereof in the fluid delivery line 104 is increased. This is because when the amplitude of an output of a signal transmitted from a sensor to an analog-to-digital converter is greater than a saturation level of the analog-to-digital converter, the accuracy and reliability of the analog-to-digital converter is reduced which may lead to errors in detecting air, fluid, or some combination thereof in the fluid delivery line. The resonant frequency of the sensor 116, the saturation level of the electronic detection device 118, and the amplitude of the output of the signal transmitted from the transmitter portion 116A of the sensor 116, set to be lower than the saturation level of the electronic detection device 118, each may be determined and/or set during calibration of the sensor 116 and the electronic detection device 118, or advantageously may be set at other times such as during use in the field.

FIG. 2 is a graph 130 illustrating in one embodiment of the disclosure how shifting the frequency of the sensor 116 of FIG. 1 to a modified frequency which is different than the resonant frequency of the sensor 116 may avoid over-saturating the electronic detection device 118 of FIG. 1. Frequency of the sensor 116 of FIG. 1 is plotted on the X-axis of the graph 130. Output of the sensor 116 of FIG. 1 expressed as a percentage of the maximum sensor output is plotted on the Y-axis of the graph 130. The resonant frequency 132 is the frequency at which the output of the sensor 116 of FIG. 1 is maximized. The electronic detection device 118 of FIG. 1 is over-saturated when the output of the sensor 116 of FIG. 1 is above the saturation level 134. By reducing the output of the sensor 116 of FIG. 1 to a percentage of maximum which is lower than the saturation level 134, over-saturation of the electronic detection device 118 of FIG. 1 is avoided. As shown, this may be done by changing the frequency of the sensor 116 of FIG. 1 to a modified frequency which is different than the resonant frequency 132 to reduce the output of the sensor 116 of FIG. 1 to a level which is lower than the saturation level 134 of the electronic detection device 118 of FIG. 1. For instance, at point 136 the frequency of the sensor 116 of FIG. 1 has been increased beyond the resonant frequency 132 to reduce the output of the sensor 116 of FIG. 1 to a level which is lower than the saturation level 134 of the electronic detection device 118 of FIG. 1 to avoid oversaturating the electronic detection device 118. Similarly, at point 138 the frequency of the sensor 116 of FIG. 1 has been decreased below the resonant frequency 132 to reduce the output of the sensor 116 of FIG. 1 to a level which is lower than the saturation level 134 of the electronic detection device 118 of FIG. 1 to avoid oversaturating the electronic detection device 118.

FIG. 3 illustrates a cross-section through one embodiment of a segment of fluid delivery line 104 coupled to the electronic transmitting device 114, the transmitter portion 116A of the sensor 116, the receiver portion 116B of the sensor 116, and the electronic detection device 118. The transmitter and receiver portions 116A and 116B of the sensor 116 comprises piezoelectric crystals compressed against each side of the fluid delivery line 104 creating more surface area for uniform acoustic coupling and better signal to noise ratio. This arrangement of the transmitter and receiver portions 116A and 116B of the sensor 116 enables the transmission and detection of an ultrasonic signal through a target volume of the fluid delivery line 104. The electronic transmitting device 114 generates a nominal 5.25 MHz ultrasonic signal directed from the transmitter 116A portion of the sensor 116, through the fluid delivery line 104, to the receiver portion 116B of the sensor 116 connected to the electronic detection device 118. When fluid is present in the fluid delivery line 104 at the position of the sensor 116, the receiver portion 116B of the sensor 116 and the electronic detection device 118 generate a larger electrical signal than when air is present at the same position. Because of an inversion in the electronics of the electronic detection device 118, the software of the processing device 108 will receive a low signal when fluid is present at the location of the sensor 116, and a high signal when air is present at the location of the sensor 116. When a cassette is loaded into the pump device 106, the segment of the fluid delivery line 104 distal to the cassette is clamped into place in front of the sensor 116. This enables reliable and repeatable sensor performance over multiple cassettes.

FIG. 4 illustrates a top view through one embodiment of the piezoelectric crystals of the transmitter portion 116A of the sensor 116 of FIG. 3. As shown, the height Hof the transmitter portion 116A comprises 0.100 inches and the width W of the transmitter portion 116A comprises 0.100 inches. The dimensions of the receiver portion 116B of the sensor 116 of FIG. 1 are identical to the transmitter portion 116A. In other embodiments, the dimensions of the transmitter and receiver portions 116A and 116B of the sensor 116 may vary.

The ability of the ultrasonic signal to propagate from the transmitter portion 116A to the receiver portion 116B of the sensor 116 is governed by the acoustic impedance of the materials. The matching layers of the transducers of the transmitter and receiver portions 116A and 116B are designed to control the amplitude of the reflections at the piezo-matching layer and matching layer-fluid delivery line interfaces. The other significant component of the signal path is the fluid or air inside the fluid delivery line 104. The acoustic impedances (Za) @ 20° C. of interest are as follows: water=1.5×106 kg/(m2 s); PVC=3.3×106 kg/(m2 s); and air=413.2 kg/(m2 s). Reflections of the ultrasonic signal occur at material boundaries and are governed by the differences in acoustic impedance. The reflection coefficient (RC) is defined as: RC=(Za−Zal)/(Za+Zal). A high RC indicates that the signal will not pass through the boundary. For the PVC to water interface, the RC=0.375 which indicates that a majority of the signal will pass through the interface. For the PVC to air interface, the RC=0.999 which indicates that a negligible, but non-zero portion of the signal energy will pass through the interface.

The electronic detection device 118 converts the signal received by the receiver portion 116B of the sensor 116 from an analog signal to a digital electrical signal as governed by the equation: Vout=λ Tpiezo σ/Drvr, where Vout=the electrical signal received by the receiver portion 116B of the sensor; λ=the strain on the piezo crystal due to the ultrasonic wave; σ=the stress on the piezo crystal due to the ultrasonic wave; Tpiezo=the thickness of the piezo crystal; Drvr=the mechanical displacement of the piezo by the ultrasonic crystal. Thus, when fluid is in the fluid delivery line 104, the receiver portion 116B of the sensor 116 is able to collect a large amount of ultrasonic energy since fluid is a better conductor than air. This appears as a low voltage at the analog-to-digital converter of the electronic detection device 118 because the signal received by the receiver portion 116B of the sensor 116 is inverted electrically. The position of the fluid (for instance a fluid droplet) inside the fluid delivery line 104 relative to the transmitter and receiver portions 116A and 116B of the sensor 116 also influences the amount of energy the receiver portion 116B of the sensor detects. When air is in the fluid delivery line 104, the receiver portion 116B of the sensor 116 collects little energy.

The processing device 108 of FIG. 1 includes software components that receive the signal received by the receiver portion 116B of the sensor 116 and converted to a digital signal though the electronic detection device 118. The processing device 108 processes the received digital signal, and generates an alarm, using the alarm device 110 of FIG. 1, when the one or more algorithms stored in the programming code indicates that an amount of air over the air threshold is present.

FIG. 5 illustrates a flowchart of one embodiment of a method 140 for arranging and using an infusion system. The method 140 may utilize the infusion system of FIG. 1. In other embodiments, the method 140 may utilize varying systems. In step 142, a resonant frequency of at least one sensor is determined. Step 142 may be done during calibration of the at least one sensor. In another embodiment, step 142 may be done at a varying time such as when in use in the field. In step 144, a saturation level of an analog-to-digital converter is determined. Step 144 may be done during calibration of the analog-to-digital converter. Advantageously in another embodiment, step 144 may be done at a varying time such as when in use in the field. In step 146, the at least one sensor is disposed adjacent to a fluid delivery line. In one embodiment, step 146 may comprise disposing a transmitter portion of the at least one sensor and a receiver portion of the at least one sensor on opposed sides of the fluid delivery line. In step 148, a pump is connected to the fluid delivery line. In step 150, the analog-to-digital converter is electronically connected to the at least one sensor. In step 152, at least one processor is electronically connected to the pump, to the at least one sensor, and to the analog-to-digital converter.

In step 154, the at least one processor is programmed to operate the at least one sensor at a modified frequency which is different than the resonant frequency of the at least one sensor in order to reduce an amplitude of an output of a signal transmitted from the at least one sensor to a level which is lower than the saturation level of the analog-to-digital converter to avoid over-saturating the analog-to-digital converter. In one embodiment, step 154 may be done during calibration of the at least one sensor. Advantageously in another embodiment, step 154 may be done at a varying time such as when in use in the field. In still another embodiment, any or each of steps 142, 144, and 154 may be done prior to steps 146, 148, 150, and 152.

In step 156, infusion fluid is pumped, with the pump, from an infusion container through the fluid delivery line. In step 158, the signal is transmitted from the transmitter portion of the at least one sensor, while operating at the modified frequency which is different than the resonant frequency of the at least one sensor, through the fluid delivery line. In step 160, the transmitted signal is received with the receiver portion of the at least one sensor. In step 162, the signal received by the receiver portion of the at least one sensor is converted from analog to digital using the analog-to-digital converter without over-saturating the analog-to-digital converter. In step 164, a determination is made, using the at least one processor, whether air, fluid, or some combination thereof is in the fluid delivery line based on the converted digital signal. In step 166, if the determination is made in step 164 that air is disposed in the fluid delivery line, the at least one processor turns on an alarm to indicate to a user that air is disposed in the fluid delivery line. In one embodiment, if the determination is made in step 164 that air is disposed in the fluid delivery line, then in step 166 the at least one processor turns on the alarm and shuts down the infusion system to stop the delivery of infusion fluid through the fluid delivery line. In other embodiments, the method 140 may be altered to vary the order or substance of any of the steps, to delete one or more steps, or to add one or more steps.

FIG. 6 illustrates a flowchart of one embodiment of a method 170 for detecting air in a fluid delivery line of an infusion system. The method 170 may utilize the infusion system of FIG. 1. In other embodiments, the method 170 may utilize varying systems. In step 172, a saturation level of an analog-to-digital converter may be determined. Step 172 may be done during calibration of the analog-to-digital converter. In other embodiments, step 172 may be done at a varying time such as when in use in the field. In step 174, a resonant frequency of at least one sensor is determined. Step 174 may be done during calibration of the at least one sensor. Advantageously in other embodiments, step 174 may be done at a varying time such as when in use in the field. In step 176, a modified frequency of the at least one sensor may be determined during calibration of the at least one sensor and the analog-to-digital converter to be different than the resonant frequency of the at least one sensor to result in an amplitude of an output of the signal transmitted from the at least one sensor being lower than the saturation level of the analog-to-digital converter to avoid over-saturating the analog-to-digital converter. In other embodiments, step 176 may be done at a varying time such as when in use in the field.

In step 178, infusion fluid is pumped through a fluid delivery line adjacent to the at least one sensor. In step 180, a signal is transmitted and received, using the at least one sensor, into and from the fluid delivery line. Step 180 further comprises the at least one sensor operating, using at least one processor, at the modified frequency which is different than the resonant frequency of the at least one sensor in order to reduce an amplitude of an output of the signal transmitted from the at least one sensor to a level which is lower than the saturation level of the analog-to-digital converter to avoid over-saturating the analog-to-digital converter. In one embodiment, step 180 comprises transmitting the signal from a transmitter portion of the at least one sensor disposed on one side of the fluid delivery line, while operating at the modified frequency which is different than the resonant frequency of the at least one sensor, to a receiver portion of the at least one sensor disposed on an opposed side of the fluid delivery line.

In step 182, the signal received by the at least one sensor is converted from analog to digital using the analog-to-digital converter. In step 184, a determination is made using the at least one processor whether air, fluid, or some combination thereof is in the fluid delivery line based on the converted digital signal. In step 186, if the determination is made in step 184 that air is disposed in the fluid delivery line, the at least one processor turns on an alarm to indicate to a user that air is disposed in the fluid delivery line. In one embodiment, if the determination is made in step 184 that air is disposed in the fluid delivery line, then in step 186 the at least one processor turns on the alarm and shuts down the infusion system to stop the delivery of infusion fluid through the fluid delivery line. In other embodiments, the method 170 may be altered to vary the order or substance of any of the steps, to delete one or more steps, or to add one or more steps.

FIG. 7 is a graph 190 illustrating five different curves 192, 194, 196, 198, and 200 showing for five different illustrative sensors, which could each be tried for the sensor 116 in the infusion system of FIG. 1, how their respective signal strength varies as their modified frequency varies. The frequency performance for each sensor is plotted on the X-axis of the graph 190. The signal output of each sensor is plotted on the Y-axis of the graph 190. The electronic detection device 118 of FIG. 1 requires a minimum useful signal strength of greater than or equal to 100 mVpp. The electronic detection device 118 of FIG. 1 is over-saturated when the output of any of the sensors exceeds the saturation level 202 which is approximately 750 mVpp.

Curve 192 has a sensor output of below the minimum useful signal of 100 mVpp no matter how the modified frequency is varied. As a result this sensor should not be used because the signal is too weak. Curve 194 has a sensor output of below the minimum useful signal of 100 mVpp at some modified frequencies, and a sensor output of greater than or equal to the minimum useful signal of 100 mVpp at other modified frequencies yet the entire curve is below the saturation level 202 of 750 mVpp. As a result, this sensor can be used at any modified frequency which results in a signal output of greater than or equal to the minimum useful signal of 100 mVpp which is in the approximate range of between 4.3 MHz to 5.7 MHz as shown by curve 194. Curve 196 has a sensor output of below the minimum useful signal of 100 mVpp at some modified frequencies, and a sensor output of greater than or equal to the minimum useful signal of 100 mVpp at other modified frequencies yet the entire curve is below the saturation level 202 of 750 mVpp. As a result, this sensor can be used at any modified frequency which results in a signal output of greater than or equal to the minimum useful signal of 100 mVpp which is in the approximate range of between 4.2 MHz to 5.8 MHz as shown by curve 196.

Curve 198 has a sensor output of below the minimum useful signal of 100 mVpp at some modified frequencies, and a sensor output of greater than or equal to the minimum useful signal of 100 mVpp at other modified frequencies. Additionally, curve 198 has a sensor output of below the saturation level 202 of 7 50 mVpp at some modified frequencies, and a sensor output of above the saturation level 202 of 750 mVpp at other modified frequencies. As a result, this sensor can be used at any modified frequency which results in a signal output of greater than or equal to the minimum useful signal of 100 mVpp and results in a signal output of less than the saturation level 202 of 7 50 m V pp which is in the approximate range of between 3.4 MHz to 5.9 MHz as shown by curve 198. In order to obtain a modified frequency which results in a signal output of greater than or equal to the minimum useful signal of 100 mVpp and results in a signal output of less than the saturation level 202 of 750 mVpp, Applicants have discovered that the modified frequency for curve 198 needs to be within ±36% from the resonant frequency 199 of 5.3 MHz and within ±31% from the minimum or maximum saturation frequencies 201 and 203 which result in the saturation level of 750 mVpp. Preferably, the highest modified frequency is selected which results in a signal output as high as possible without exceeding the saturation level and is above the minimum useful signal strength.

Curve 200 has a sensor output of below the minimum useful signal of 100 mVpp at some modified frequencies, and a sensor output of greater than or equal to the minimum useful signal of 100 mVpp at other modified frequencies. Additionally, curve 200 has a sensor output of below the saturation level 202 of 7 50 mVpp at some modified frequencies, and a sensor output of above the saturation level 202 of 750 mVpp at other modified frequencies. As a result, this sensor can be used at any modified frequency which results in a signal output of greater than or equal to the minimum useful signal strength of 100 mVpp and results in a signal output of less than the saturation level 202 of 750 mVpp which is in the approximate range of between 3.5 MHz to 6.0 MHz as shown by curve 200. In order to obtain a modified frequency which results in a signal output of greater than or equal to the minimum useful signal of 100 mVpp and results in a signal output of less than the saturation level 202 of 750 mVpp, Applicants have discovered that the modified frequency for curve 200 needs to be within ±34% from the resonant frequency 205 of 5.3 MHz and within ±27% from the minimum or maximum saturation frequencies 207 and 209 which result in the saturation level of 750 mVpp. Preferably, the highest modified frequency is selected which results in a signal output as high as possible without exceeding the saturation level and which is above the minimum useful signal strength. In one embodiment, this modified frequency may be chosen so that the signal output is within 5% of the saturation level. In another embodiment, this modified frequency may be chosen so that the signal output is within 10% of the saturation level. In other embodiments, varied modified frequencies may be chosen.

In other embodiments, other sensors may be used which have different sensor signal strength performance at varied modified frequencies. In one embodiment, a sensor may be used which has a modified frequency of within ±50% from the resonant frequency and within ±50% from a saturation frequency. In another embodiment, a sensor may be used which has a modified frequency of within ±40% from the resonant frequency and within ±40% from a saturation frequency. In another embodiment, a sensor may be used which has a modified frequency of within ±30% from the resonant frequency and within ±30% from a saturation frequency. In another embodiment, a sensor may be used which has a modified frequency of within ±20% from the resonant frequency and within ±20% from a saturation frequency. In another embodiment, a sensor may be used which has a modified frequency of within ±10% from the resonant frequency and within ±10% from a saturation frequency.

FIG. 8 illustrates a flowchart of one embodiment of a method 210 for determining the modified frequency of an infusion system. The method 210 may utilize the infusion system of FIG. 1. In other embodiments, the method 210 may utilize varying systems. The method 210 may be incorporated into any of the other methods disclosed herein including the methods illustrated in FIGS. 5 and 6 of this disclosure. In step 212, a determination is made as to whether the maximum signal output of the sensor at any modified frequency is greater than or equal to the minimum useful signal strength required by the electronic detection device. If the determination is made in step 212 that the maximum signal output of the sensor at any modified frequency is not greater than or equal to the minimum useful signal strength then in step 213 a new sensor is chosen and then step 212 is repeated until the determination is made in step 212 that the maximum signal output of the sensor at any modified frequency is greater than or equal to the minimum useful signal strength. Once the determination is made in step 212 that the maximum signal output of the sensor at any modified frequency is greater than or equal to the minimum useful signal strength, then the method proceeds from step 212 to step 214.

In step 214, a determination is made as to whether the signal output of the sensor at the resonant frequency is less than the saturation level of the electronic detection device. If the determination is made in step 214 that the signal output of the sensor at the resonant frequency is less than the saturation level of the electronic detection device, then the method proceeds to step 216. In step 216, the sensor is operated at a modified frequency which is equal to the resonant frequency of the sensor.

If the determination is made in step 214 that the signal output of the sensor at the resonant frequency is not less than the saturation level of the electronic detection device, then the method proceeds to step 218. In step 218, the sensor is operated at a modified frequency which results in a signal output which is less than the saturation level of the electronic detection device but greater than the minimum useful signal strength of the electronic detection device. Preferably, in step 218 the sensor is operated at the highest modified frequency which results in a signal output as high as possible without exceeding the saturation level of the electronic detection device and which is above the minimum useful signal strength of the electronic detection device. In one embodiment of step 218, the sensor may be operated at a modified frequency within 5% of the saturation level. In another embodiment of step 218, the sensor may be operated at a modified frequency within 10% of the saturation level. In other embodiments of step 218, the sensor may be operated at varied modified frequencies. In other embodiments, the method 210 may be altered to vary the order or substance of any of the steps, to delete one or more steps, or to add one or more steps.

One or more embodiments of the disclosure may improve the accuracy and reliability of the detection of air in infusion systems. One or more embodiments of the disclosure may be incorporated during calibration of one or more components of the infusion system. One or more embodiments of the disclosure may be done in the field without having to replace existing sensors of the infusion system by performing a field service procedure. This reduces the cost of sensor replacement and reduces the amount of replacement parts that must be kept in inventory. The disclosure also can accommodate greater variability and thus increases the yield of sensor assemblies that can be used.

The Abstract is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true scope of the subject matter described herein. Furthermore, it is to be understood that the disclosure is defined by the appended claims. Accordingly, the disclosure is not to be restricted except in light of the appended claims and their equivalents.

Claims

1. An infusion system configured to detect air in an infusion line, said infusion system comprising one or more hardware processors configured to:

control an operating frequency of a first sensor, said first sensor configured to transmit a first signal in a fluid delivery line;
receive a digital signal from an analog to digital converter, said analog to digital converter configured to convert a detected signal responsive to the transmitted first signal from analog to digital;
determine that the detected first signal is saturated;
change the operating frequency of the sensor based on the determination of saturation; and
detect an air indication in the infusion line based on the changed operating frequency.

2. The infusion system of claim 1, wherein the changed operating frequency is different than a resonant frequency of the sensor.

3. The infusion system of claim 2, wherein the resonant frequency of the sensor is predetermined.

4. The infusion system of claim 1, wherein the sensor is responsive to signals above a minimum level.

5. The infusion system of claim 4, wherein the changed operating frequency exceeds the minimum level for detected signals.

6. The infusion system of claim 1, wherein the changed operating frequency is within ±50% of the resonant frequency.

7. A method of detecting air in an infusion pump, the method comprising:

controlling an operating frequency of a first sensor, wherein said first sensor is configured to transmit a first signal in a fluid delivery line;
receiving a digital signal from an analog to digital converter, said analog to digital converter configured to convert a detected signal responsive to the transmitted first signal from analog to digital;
determining that the detected first signal is saturated;
changing the operating frequency of the sensor based on the determination of saturation; and
detecting air in an infusion line based on the changed operating frequency.

8. The method of claim 7, wherein the changed operating frequency is different than a resonant frequency of the sensor.

9. The method of claim 7, further comprising transmitting a second signal at the changed operating frequency.

10. The method of claim 7, further comprising determining a minimum level for received signals.

11. The method of claim 10, wherein the changed operating frequency causes the detected signals to exceed the minimum level.

12. The method of claim 7, wherein the changed operating frequency is within ±50% of the resonant frequency.

13. An infusion system configured to detect air in an infusion line, said infusion system comprising one or more hardware processors configured to:

control an operating frequency of a first sensor, said first sensor configured to transmit a first signal in a fluid delivery line;
receive a digital signal from an analog to digital converter, said analog to digital converter configured to convert a detected signal responsive to the transmitted first signal from analog to digital;
change the operating frequency of the sensor to avoid saturation of the sensor; and
detect an air indication in the infusion line based on the changed operating frequency.
Referenced Cited
U.S. Patent Documents
3401337 September 1968 Beusman et al.
3484681 December 1969 Grady, Jr. et al.
3699320 October 1972 Zimmerman et al.
3727074 April 1973 Keller et al.
3731679 May 1973 Wilhelmson et al.
3768084 October 1973 Haynes
3770354 November 1973 Tsuruta et al.
3778702 December 1973 Finger
3806821 April 1974 Niemeyer et al.
3838565 October 1974 Carlyle
3854038 December 1974 McKinley
3886459 May 1975 Hufford et al.
3890554 June 1975 Yoshitake et al.
3894431 July 1975 Muston et al.
3898637 August 1975 Wolstenholme
3901231 August 1975 Olson
3909693 September 1975 Yoshitake et al.
3910701 October 1975 Henderson
3911343 October 1975 Oster
3919608 November 1975 Usami et al.
3921622 November 1975 Cole
3930404 January 6, 1976 Ryden, Jr.
3933431 January 20, 1976 Trujillo et al.
3935876 February 3, 1976 Massie et al.
3944963 March 16, 1976 Hively
3966358 June 29, 1976 Heimes et al.
3971980 July 27, 1976 Jungfer et al.
3974681 August 17, 1976 Namery
3974683 August 17, 1976 Martin
3985467 October 12, 1976 Lefferson
3990444 November 9, 1976 Vial
3997888 December 14, 1976 Kremer
4005724 February 1, 1977 Courtot
4014206 March 29, 1977 Taylor
4038982 August 2, 1977 Burke
4039269 August 2, 1977 Pickering
4048474 September 13, 1977 Olesen
4049954 September 20, 1977 Da Costa Vieira et al.
4055175 October 25, 1977 Clemens et al.
4068521 January 17, 1978 Cosentino et al.
4078562 March 14, 1978 Friedman
4089227 May 16, 1978 Falgari et al.
4094318 June 13, 1978 Burke
4105028 August 8, 1978 Sadlier et al.
4114144 September 12, 1978 Hyman
4151845 May 1, 1979 Clemens
4155362 May 22, 1979 Jess
4173224 November 6, 1979 Marx
4181610 January 1, 1980 Shintani et al.
4183244 January 15, 1980 Kohno et al.
4195515 April 1, 1980 Smoll
4210138 July 1, 1980 Jess et al.
4213454 July 22, 1980 Shim
4217993 August 19, 1980 Jess et al.
4240294 December 23, 1980 Grande
4240438 December 23, 1980 Updike et al.
4244365 January 13, 1981 McGill
4256437 March 17, 1981 Brown
4261356 April 14, 1981 Turner et al.
4264861 April 28, 1981 Radu et al.
4265240 May 5, 1981 Jenkins
4270532 June 2, 1981 Franetzki et al.
4277226 July 7, 1981 Archibald et al.
4278085 July 14, 1981 Shim
4280495 July 28, 1981 Lampert
4282872 August 11, 1981 Franetzki et al.
4286202 August 25, 1981 Clancy et al.
4290346 September 22, 1981 Bujan
4291692 September 29, 1981 Bowman et al.
4292405 September 29, 1981 Mascoli
4298357 November 3, 1981 Permic
4308866 January 5, 1982 Jeliffe
4312341 January 26, 1982 Zissimopoulos
4319568 March 16, 1982 Tregoning
4322201 March 30, 1982 Archibald
4323849 April 6, 1982 Smith
4324662 April 13, 1982 Schnell
4328800 May 11, 1982 Marx
4328801 May 11, 1982 Marx
4333045 June 1, 1982 Oltendorf
4343316 August 10, 1982 Jespersen
4344429 August 17, 1982 Gupton et al.
4346707 August 31, 1982 Whitney et al.
4360019 November 23, 1982 Portner et al.
4366384 December 28, 1982 Jensen
4367736 January 11, 1983 Gupton
4370983 February 1, 1983 Lichtenstein et al.
4373527 February 15, 1983 Fischell
4379452 April 12, 1983 DeVries
4381005 April 26, 1983 Bujan
4384578 May 24, 1983 Winkler
4385247 May 24, 1983 Satomi
4391598 July 5, 1983 Thompson
4392849 July 12, 1983 Petre et al.
4394862 July 26, 1983 Shim
4395259 July 26, 1983 Prestele et al.
4397194 August 9, 1983 Soltz
4399362 August 16, 1983 Cormier et al.
4407659 October 4, 1983 Adam
4411651 October 25, 1983 Schulman
4418565 December 6, 1983 St. John
4432699 February 21, 1984 Beckman et al.
4432761 February 21, 1984 Dawe
4432762 February 21, 1984 Dawe
4443218 April 17, 1984 Decant, Jr. et al.
4444546 April 24, 1984 Pazemenas
4447191 May 8, 1984 Bilstad et al.
4447224 May 8, 1984 Decant, Jr. et al.
4453931 June 12, 1984 Pastrone
4457751 July 3, 1984 Rodler
4463301 July 31, 1984 Moriguchi et al.
4464170 August 7, 1984 Clemens
4467654 August 28, 1984 Murakami et al.
4468222 August 28, 1984 Lundquist
4468601 August 28, 1984 Chamran et al.
4469481 September 4, 1984 Kobayashi
4475666 October 9, 1984 Bilbrey et al.
4475901 October 9, 1984 Kraegen et al.
4477756 October 16, 1984 Moriguchi
4479760 October 30, 1984 Bilstad et al.
4480218 October 30, 1984 Hair
4480483 November 6, 1984 McShane
4483202 November 20, 1984 Ogua et al.
4487601 December 11, 1984 Lindemann
4492909 January 8, 1985 Hartwig
4496346 January 29, 1985 Mosteller
4498843 February 12, 1985 Schneider et al.
4501531 February 26, 1985 Bilstad et al.
4504263 March 12, 1985 Steuer
4507112 March 26, 1985 Hillel
4510266 April 9, 1985 Eertink
4515584 May 7, 1985 Abe et al.
4519792 May 28, 1985 Dawe
4521212 June 4, 1985 Ruschke
4525163 June 25, 1985 Slavik et al.
4526568 July 2, 1985 Clemens et al.
4526574 July 2, 1985 Pekkarinen
4529401 July 16, 1985 Leslie et al.
4533350 August 6, 1985 Danby et al.
4543955 October 1, 1985 Schroeppel
4551134 November 5, 1985 Slavik et al.
4553958 November 19, 1985 LeCocq
4559036 December 17, 1985 Wunsch
4559037 December 17, 1985 Franetzki et al.
4559044 December 17, 1985 Robinson
4559454 December 17, 1985 Kramer
4565500 January 21, 1986 Jeensalute et al.
4583981 April 22, 1986 Urquhart et al.
4587473 May 6, 1986 Turvey
4607520 August 26, 1986 Dam
4617014 October 14, 1986 Cannon et al.
4624661 November 25, 1986 Arimond
4627835 December 9, 1986 Fenton, Jr.
4633878 January 6, 1987 Bombardieri
4634426 January 6, 1987 Kamen
4634427 January 6, 1987 Hannula et al.
4636144 January 13, 1987 Abe et al.
4637813 January 20, 1987 DeVries
4645489 February 24, 1987 Krumme
4648869 March 10, 1987 Bobo, Jr.
4652260 March 24, 1987 Fenton, Jr. et al.
4658244 April 14, 1987 Meijer
4668216 May 26, 1987 Martin
4668945 May 26, 1987 Aldrovandi et al.
4673334 June 16, 1987 Allington et al.
4673389 June 16, 1987 Archibald et al.
4676776 June 30, 1987 Howson et al.
4677359 June 30, 1987 Enami et al.
4678979 July 7, 1987 Hori
4678998 July 7, 1987 Muramatsu
4679562 July 14, 1987 Luksha
4683428 July 28, 1987 Gete
4685903 August 11, 1987 Cable et al.
4690673 September 1, 1987 Blomquist
4691153 September 1, 1987 Nishimura
4692145 September 8, 1987 Weyant
4696671 September 29, 1987 Epstein et al.
4697129 September 29, 1987 Enami et al.
4702675 October 27, 1987 Aldrovandi et al.
4705506 November 10, 1987 Archibald et al.
4710106 December 1, 1987 Iwata et al.
4714462 December 22, 1987 DiDomenico
4714463 December 22, 1987 Archibald et al.
4718576 January 12, 1988 Tamura et al.
4720636 January 19, 1988 Benner
4722224 February 2, 1988 Scheller et al.
4722734 February 2, 1988 Kolin
4731051 March 15, 1988 Fischell
4731057 March 15, 1988 Tanaka et al.
4737711 April 12, 1988 O'Hare
4739346 April 19, 1988 Buckley
4741732 May 3, 1988 Crankshaw et al.
4741736 May 3, 1988 Brown
4748857 June 7, 1988 Nakagawa
4751445 June 14, 1988 Sakai
4756706 July 12, 1988 Kerns et al.
4758228 July 19, 1988 Williams
4763525 August 16, 1988 Cobb
4764166 August 16, 1988 Spani et al.
4764697 August 16, 1988 Christiaens
4769001 September 6, 1988 Prince
4776842 October 11, 1988 Franetzki et al.
4781687 November 1, 1988 Wall
4784576 November 15, 1988 Bloom et al.
4785184 November 15, 1988 Bien et al.
4785799 November 22, 1988 Schoon et al.
4785969 November 22, 1988 McLaughlin
4786800 November 22, 1988 Kamen
4789014 December 6, 1988 DiGianfilippo
4797655 January 10, 1989 Orndal et al.
4803389 February 7, 1989 Ogawa et al.
4803625 February 7, 1989 Fu et al.
4818186 April 4, 1989 Pastrone et al.
4820281 April 11, 1989 Lawler
4821558 April 18, 1989 Pastrone et al.
4828545 May 9, 1989 Epstein et al.
4828693 May 9, 1989 Lindsay
4829448 May 9, 1989 Balding et al.
4838856 June 13, 1989 Mulreany et al.
4838857 June 13, 1989 Strowe et al.
4840542 June 20, 1989 Abbott
4842584 June 27, 1989 Pastrone et al.
4845487 July 4, 1989 Frantz et al.
4846792 July 11, 1989 Bobo et al.
4850805 July 25, 1989 Madsen et al.
4851755 July 25, 1989 Fincher
4854324 August 8, 1989 Hirschman et al.
4856339 August 15, 1989 Williams
4857048 August 15, 1989 Simons et al.
4857050 August 15, 1989 Lentz et al.
4858154 August 15, 1989 Anderson et al.
4863425 September 5, 1989 Slate et al.
4865584 September 12, 1989 Epstein et al.
4869722 September 26, 1989 Heyman
4874359 October 17, 1989 White et al.
4881413 November 21, 1989 Georgi et al.
4882575 November 21, 1989 Kawahara
4884013 November 28, 1989 Jackson et al.
4884065 November 28, 1989 Crouse et al.
4886422 December 12, 1989 Takeuchi et al.
4898576 February 6, 1990 Philip
4898578 February 6, 1990 Rubalcaba, Jr.
4906103 March 6, 1990 Kao
4908017 March 13, 1990 Howson et al.
4908019 March 13, 1990 Urquhart et al.
4910475 March 20, 1990 Lin
4919595 April 24, 1990 Likuski et al.
4919596 April 24, 1990 Slate et al.
4925444 May 15, 1990 Orkin et al.
4927411 May 22, 1990 Pastrone et al.
4930358 June 5, 1990 Motegi et al.
4936820 June 26, 1990 Dennehey
4936828 June 26, 1990 Chiang
4938079 July 3, 1990 Goldberg
4943279 July 24, 1990 Samiotes et al.
4946439 August 7, 1990 Eggers
4947856 August 14, 1990 Beard
4950235 August 21, 1990 Slate et al.
4950244 August 21, 1990 Fellingham
4959050 September 25, 1990 Bobo, Jr.
4966579 October 30, 1990 Polaschegg
4968941 November 6, 1990 Rogers
4972842 November 27, 1990 Korten et al.
4976687 December 11, 1990 Martin
4978335 December 18, 1990 Arthur, III
4979940 December 25, 1990 Lapp et al.
4981467 January 1, 1991 Bobo et al.
5000663 March 19, 1991 Gorton
5000739 March 19, 1991 Kulisz et al.
5006050 April 9, 1991 Cooke et al.
5010473 April 23, 1991 Jacobs
5014714 May 14, 1991 Millay et al.
5014798 May 14, 1991 Glynn
5018945 May 28, 1991 D'Silva
5026348 June 25, 1991 Venegas
5028857 July 2, 1991 Taghezout
5032112 July 16, 1991 Fairchild et al.
5034004 July 23, 1991 Crankshaw
5035143 July 30, 1991 Latimer et al.
5041086 August 20, 1991 Koenig et al.
5043706 August 27, 1991 Oliver
5045069 September 3, 1991 Imparato
5049047 September 17, 1991 Polaschegg et al.
5052230 October 1, 1991 Lang
5053747 October 1, 1991 Slate et al.
5055761 October 8, 1991 Mills
5056992 October 15, 1991 Simons
5058161 October 15, 1991 Weiss
5059171 October 22, 1991 Bridge
5063603 November 5, 1991 Burt
5064412 November 12, 1991 Henke et al.
5078683 January 7, 1992 Sancoff et al.
5084663 January 28, 1992 Olsson
5084828 January 28, 1992 Kaufman et al.
5088981 February 18, 1992 Howson et al.
5096385 March 17, 1992 Georgi et al.
5097505 March 17, 1992 Weiss
5100380 March 31, 1992 Epstein et al.
5102392 April 7, 1992 Sakai et al.
5103211 April 7, 1992 Daoud et al.
5104374 April 14, 1992 Bishko et al.
5108367 April 28, 1992 Epstein et al.
5109850 May 5, 1992 Blanco et al.
5116203 May 26, 1992 Nartwick et al.
5116312 May 26, 1992 Blakenship et al.
5116316 May 26, 1992 Sertic
5123275 June 23, 1992 Daoud et al.
5124627 June 23, 1992 Okada
5125499 June 30, 1992 Saathoff et al.
5131816 July 21, 1992 Brown
5132603 July 21, 1992 Yoshimoto
5153827 October 6, 1992 Coutre et al.
5158441 October 27, 1992 Aid
5161222 November 3, 1992 Montejo et al.
5174472 December 29, 1992 Raque et al.
5176631 January 5, 1993 Koenig
5176646 January 5, 1993 Kuroda
5179340 January 12, 1993 Rogers
5180287 January 19, 1993 Natwick et al.
5181910 January 26, 1993 Scanlon
5186057 February 16, 1993 Everhart
5188603 February 23, 1993 Vaillancourt
5190522 March 2, 1993 Wocicki et al.
5191795 March 9, 1993 Fellingham et al.
5192340 March 9, 1993 Grant et al.
5194796 March 16, 1993 Domeki et al.
5198776 March 30, 1993 Carr
5200090 April 6, 1993 Ford
5205819 April 27, 1993 Ross et al.
5206522 April 27, 1993 Danby et al.
5207642 May 4, 1993 Orkin et al.
5211626 May 18, 1993 Frank et al.
5213573 May 25, 1993 Sorich et al.
5215450 June 1, 1993 Tamari
5216597 June 1, 1993 Beckers
5219099 June 15, 1993 Spence et al.
5219327 June 15, 1993 Okada
5221268 June 22, 1993 Barton et al.
5229713 July 20, 1993 Bullock et al.
5232476 August 3, 1993 Grant
5233571 August 3, 1993 Wirtschafter
5237309 August 17, 1993 Frantz et al.
5242406 September 7, 1993 Gross et al.
5242408 September 7, 1993 Jhuboo et al.
5243982 September 14, 1993 Möstl et al.
5244463 September 14, 1993 Cordner, Jr. et al.
5244568 September 14, 1993 Lindsay et al.
5254096 October 19, 1993 Rondelet et al.
5256155 October 26, 1993 Yerlikaya et al.
5256156 October 26, 1993 Kern et al.
5256157 October 26, 1993 Samiotes et al.
5260665 November 9, 1993 Goldberg
5257206 October 26, 1993 Hanson
5267980 December 7, 1993 Dirr et al.
5274316 December 28, 1993 Evans et al.
5276610 January 4, 1994 Maeda et al.
5280728 January 25, 1994 Sato et al.
5283510 February 1, 1994 Tamaki et al.
5287851 February 22, 1994 Beran et al.
5292306 March 8, 1994 Wynkoop et al.
5295967 March 22, 1994 Rondelet et al.
5298021 March 29, 1994 Sherer
5303585 April 19, 1994 Lichte
5304126 April 19, 1994 Epstein et al.
5304216 April 19, 1994 Wallace
5308333 May 3, 1994 Skakoon
5317506 May 31, 1994 Coutre et al.
5319363 June 7, 1994 Welch et al.
5319979 June 14, 1994 Abrahamson
5321392 June 14, 1994 Skakoon et al.
5325170 June 28, 1994 Bornhop
5325728 July 5, 1994 Zimmerman et al.
5328460 July 12, 1994 Lord et al.
5330634 July 19, 1994 Wong et al.
5333497 August 2, 1994 Braend et al.
5336051 August 9, 1994 Tamari
5338157 August 16, 1994 Blomquist
5342298 August 30, 1994 Michaels
5343734 September 6, 1994 Maeda et al.
5343885 September 6, 1994 Grant
5346466 September 13, 1994 Yerlikaya et al.
5356378 October 18, 1994 Doan et al.
5359271 October 25, 1994 Husher
D352778 November 22, 1994 Irvin et al.
5364346 November 15, 1994 Schrezenmeir
5366346 November 22, 1994 Danby
5368562 November 29, 1994 Blomquist et al.
5374865 December 20, 1994 Yoshimura et al.
5376070 December 27, 1994 Purvis et al.
5378231 January 3, 1995 Johnson et al.
5382232 January 17, 1995 Hague et al.
5383369 January 24, 1995 Khuri-Yakub et al.
5389071 February 14, 1995 Kawahara et al.
5389078 February 14, 1995 Zalesky et al.
5392638 February 28, 1995 Kawahara
5394732 March 7, 1995 Johnson et al.
5395320 March 7, 1995 Padda et al.
5399171 March 21, 1995 Bowman et al.
5406954 April 18, 1995 Tomita
5408326 April 18, 1995 Priestley
5415528 May 16, 1995 Ogden et al.
5417119 May 23, 1995 Smoll
5417222 May 23, 1995 Dempsey et al.
5417395 May 23, 1995 Fowler et al.
5418443 May 23, 1995 Kikuchi
5421208 June 6, 1995 Packard et al.
5423748 June 13, 1995 Uhala
5423749 June 13, 1995 Merte et al.
5423759 June 13, 1995 Campbell
5428284 June 27, 1995 Kaneda et al.
5429485 July 4, 1995 Dodge
5429601 July 4, 1995 Conley
5429602 July 4, 1995 Hauser
5431627 July 11, 1995 Pastrone et al.
5434508 July 18, 1995 Ishida
5437624 August 1, 1995 Langley et al.
5444316 August 22, 1995 Ohya et al.
5444378 August 22, 1995 Rogers
5445621 August 29, 1995 Poli et al.
5450758 September 19, 1995 Smoll
5451881 September 19, 1995 Finger
5455423 October 3, 1995 Mount et al.
5455851 October 3, 1995 Chaco et al.
5463906 November 7, 1995 Spani et al.
5464392 November 7, 1995 Epstein et al.
5465082 November 7, 1995 Chaco
5469851 November 28, 1995 Lipschutz
5473948 December 12, 1995 Moss et al.
5480294 January 2, 1996 Di Perna et al.
5482438 January 9, 1996 Anderson et al.
5485408 January 16, 1996 Blomquist
5486286 January 23, 1996 Peterson et al.
5489265 February 6, 1996 Montalvo et al.
5495566 February 27, 1996 Kwatinetz
5496273 March 5, 1996 Pastrone et al.
5505696 April 9, 1996 Miki
5505828 April 9, 1996 Wong et al.
5507288 April 16, 1996 Bocker et al.
5507412 April 16, 1996 Ebert et al.
5520637 May 28, 1996 Pager et al.
5522798 June 4, 1996 Johnson et al.
5522799 June 4, 1996 Furukawa
5527630 June 18, 1996 Nagata
5533389 July 9, 1996 Kamen et al.
5537853 July 23, 1996 Finburgh et al.
5542040 July 30, 1996 Chang et al.
5545140 August 13, 1996 Conero et al.
5547470 August 20, 1996 Johnson et al.
5551850 September 3, 1996 Williamson et al.
5554013 September 10, 1996 Owens et al.
5554115 September 10, 1996 Thomas et al.
5558638 September 24, 1996 Evers et al.
5562615 October 8, 1996 Nassif
5563486 October 8, 1996 Yamamoto et al.
5572105 November 5, 1996 Nojima et al.
5573502 November 12, 1996 LeCocq et al.
5583280 December 10, 1996 Mo et al.
5584667 December 17, 1996 Davis
5584806 December 17, 1996 Amano
5586868 December 24, 1996 Lawless et al.
5590653 January 7, 1997 Aida et al.
5594786 January 14, 1997 Chaco et al.
5600073 February 4, 1997 Hill
5601420 February 11, 1997 Warner et al.
5609575 March 11, 1997 Larson et al.
5609576 March 11, 1997 Voss
5611784 March 18, 1997 Barresi et al.
5616124 April 1, 1997 Hague et al.
5620312 April 15, 1997 Hyman et al.
5620608 April 15, 1997 Rosa et al.
5626140 May 6, 1997 Feldman et al.
5626151 May 6, 1997 Linden
5626563 May 6, 1997 Dodge et al.
5627443 May 6, 1997 Kimura et al.
5628309 May 13, 1997 Brown
5628731 May 13, 1997 Dodge et al.
5630710 May 20, 1997 Tune et al.
5634896 June 3, 1997 Bryant et al.
5637095 June 10, 1997 Nason et al.
5640075 June 17, 1997 Brasseur et al.
5640150 June 17, 1997 Atwater
5643212 July 1, 1997 Coutre et al.
5648710 July 15, 1997 Ikeda
5649536 July 22, 1997 Ogura et al.
5651775 July 29, 1997 Walker et al.
5657000 August 12, 1997 Ellingboe
5658133 August 19, 1997 Anderson et al.
5658250 August 19, 1997 Blomquist et al.
5659234 August 19, 1997 Cresens
5661245 August 26, 1997 Svoboda et al.
5662612 September 2, 1997 Niehoff
5665065 September 9, 1997 Colman et al.
5669877 September 23, 1997 Blomquist
5672154 September 30, 1997 Sillén et al.
5672832 September 30, 1997 Cucci et al.
5681285 October 28, 1997 Ford et al.
5681286 October 28, 1997 Niehoff
5685844 November 11, 1997 Marttila
5685866 November 11, 1997 Lopez
5687717 November 18, 1997 Halpern et al.
5689229 November 18, 1997 Chaco et al.
5691613 November 25, 1997 Gutwillinger
5695464 December 9, 1997 Viallet
5695473 December 9, 1997 Olsen
5697899 December 16, 1997 Hillman et al.
5697916 December 16, 1997 Schraga
5712795 January 27, 1998 Layman et al.
5713856 February 3, 1998 Eggers et al.
5714691 February 3, 1998 Hill
5718562 February 17, 1998 Lawless et al.
5718569 February 17, 1998 Holst
5720721 February 24, 1998 Dumas et al.
5722417 March 3, 1998 Rudolph
5728074 March 17, 1998 Castellano et al.
5728948 March 17, 1998 Bignell et al.
5733257 March 31, 1998 Sternby
5733259 March 31, 1998 Valcke et al.
5734464 March 31, 1998 Gibbs
5738659 April 14, 1998 Neer et al.
5743856 April 28, 1998 Oka et al.
5744027 April 28, 1998 Connell et al.
5744929 April 28, 1998 Miyazaki
5745378 April 28, 1998 Barker et al.
5752813 May 19, 1998 Tyner et al.
5752918 May 19, 1998 Fowler et al.
5752919 May 19, 1998 Schrimpf
5755691 May 26, 1998 Hilborne
5758643 June 2, 1998 Wong et al.
5761072 June 2, 1998 Bardsley, Jr. et al.
5764034 June 9, 1998 Bowman et al.
5766155 June 16, 1998 Hyman et al.
5772635 June 30, 1998 Dastur et al.
5778256 July 7, 1998 Darbee
5781442 July 14, 1998 Engleson et al.
5782805 July 21, 1998 Meinzer et al.
5788669 August 4, 1998 Peterson
5788674 August 4, 1998 McWilliams
5789923 August 4, 1998 Shimoyama et al.
5792069 August 11, 1998 Greenwald et al.
5793211 August 11, 1998 Shimoyama et al.
5795327 August 18, 1998 Wilson et al.
5798934 August 25, 1998 Saigo et al.
5800387 September 1, 1998 Duffy et al.
5803712 September 8, 1998 Davis et al.
5803917 September 8, 1998 Butterfield
5805455 September 8, 1998 Lipps
5807322 September 15, 1998 Lindsey et al.
5810770 September 22, 1998 Chin et al.
5813972 September 29, 1998 Nazarian et al.
5814004 September 29, 1998 Tamari
5814015 September 29, 1998 Gargano et al.
5816779 October 6, 1998 Lawless et al.
5822715 October 13, 1998 Worthington et al.
5827179 October 27, 1998 Lichter et al.
5827223 October 27, 1998 Butterfield
5832448 November 3, 1998 Brown
5836910 November 17, 1998 Duffy et al.
5841261 November 24, 1998 Nojima et al.
5841284 November 24, 1998 Takahashi
5843035 December 1, 1998 Bowman
5848971 December 15, 1998 Fowler et al.
5850344 December 15, 1998 Conkright
5857843 January 12, 1999 Leason et al.
5864330 January 26, 1999 Haynes
5865805 February 2, 1999 Ziemba
5867821 February 2, 1999 Ballantyne et al.
5871465 February 16, 1999 Vasko
5872453 February 16, 1999 Shimoyama et al.
5875195 February 23, 1999 Dixon
5882300 March 16, 1999 Malinouskas et al.
5882339 March 16, 1999 Beiser et al.
5885245 March 23, 1999 Lynch et al.
5889379 March 30, 1999 Yanagi et al.
5891051 April 6, 1999 Han et al.
5894209 April 13, 1999 Takagi et al.
5897493 April 27, 1999 Brown
5897498 April 27, 1999 Canfield, II et al.
5898292 April 27, 1999 Takemoto et al.
5899665 May 4, 1999 Makino et al.
5901150 May 4, 1999 Jhuboo et al.
5904666 May 18, 1999 DeDecker et al.
5904668 May 18, 1999 Hyman et al.
5905207 May 18, 1999 Schalk
5906598 May 25, 1999 Giesier
5910252 June 8, 1999 Truitt et al.
5915240 June 22, 1999 Karpf
5920263 July 6, 1999 Huttenhoff et al.
5923159 July 13, 1999 Ezell
5924074 July 13, 1999 Evans
5927349 July 27, 1999 Martucci
5932119 August 3, 1999 Kaplan et al.
5932987 August 3, 1999 McLoughlin
5935099 August 10, 1999 Peterson et al.
5935106 August 10, 1999 Olsen
5938634 August 17, 1999 Packard
5938636 August 17, 1999 Kramer et al.
5941846 August 24, 1999 Duffy et al.
5944660 August 31, 1999 Kimball et al.
5947911 September 7, 1999 Wong et al.
5954527 September 21, 1999 Jhuboo et al.
5954696 September 21, 1999 Ryan et al.
5956023 September 21, 1999 Lyle et al.
5956501 September 21, 1999 Brown
5957885 September 28, 1999 Bollish et al.
5957890 September 28, 1999 Mann et al.
5971594 October 26, 1999 Sahai et al.
5973497 October 26, 1999 Bergk et al.
5975081 November 2, 1999 Hood et al.
5989222 November 23, 1999 Cole et al.
5990838 November 23, 1999 Burns et al.
5991525 November 23, 1999 Shah et al.
5993393 November 30, 1999 Ryan et al.
5994876 November 30, 1999 Canny et al.
5997476 December 7, 1999 Brown
6000828 December 14, 1999 Leet
6003006 December 14, 1999 Colella et al.
6003388 December 21, 1999 Oeftering
6012034 January 4, 2000 Hamparian et al.
6017318 January 25, 2000 Gauthier et al.
6017493 January 25, 2000 Cambron
6021392 February 1, 2000 Lester et al.
6023977 February 15, 2000 Langdon et al.
6024539 February 15, 2000 Blomquist
6027441 February 22, 2000 Cantu
6028412 February 22, 2000 Shine et al.
6032676 March 7, 2000 Moore
6033561 March 7, 2000 Schoendorfer
6036017 March 14, 2000 Bayliss, IV
6068612 May 30, 2000 Bowman
6068615 May 30, 2000 Brown et al.
6073106 June 6, 2000 Rozen et al.
6077246 June 20, 2000 Kullas et al.
6083206 July 4, 2000 Molko
6089104 July 18, 2000 Chang
6104295 August 15, 2000 Gaisser et al.
6110152 August 29, 2000 Kovelman
6110153 August 29, 2000 Davis
RE36871 September 12, 2000 Epstein et al.
6120459 September 19, 2000 Nitzan et al.
6122536 September 19, 2000 Sun et al.
6142008 November 7, 2000 Cole et al.
6150942 November 21, 2000 O'Brien
6157914 December 5, 2000 Seto et al.
6158288 December 12, 2000 Smith
6158965 December 12, 2000 Butterfield et al.
6159147 December 12, 2000 Lichter et al.
6159186 December 12, 2000 Wickham et al.
6164921 December 26, 2000 Moubayed et al.
6168561 January 2, 2001 Cantu
6178827 January 30, 2001 Feller
6182667 February 6, 2001 Hanks et al.
6186141 February 13, 2001 Pike et al.
6189105 February 13, 2001 Lopes
6192752 February 27, 2001 Blaine
6195589 February 27, 2001 Ketcham
6202711 March 20, 2001 Martucci
6203528 March 20, 2001 Deckert
6208107 March 27, 2001 Maske et al.
6212936 April 10, 2001 Meisberger
6213972 April 10, 2001 Butterfield
6231320 May 15, 2001 Lawless et al.
6234176 May 22, 2001 Domae et al.
6236326 May 22, 2001 Murphy et al.
6237398 May 29, 2001 Porat et al.
6241704 June 5, 2001 Peterson et al.
6248067 June 19, 2001 Causey, III et al.
6250132 June 26, 2001 Drzewiecki
6259355 July 10, 2001 Chaco et al.
6259587 July 10, 2001 Sheldon et al.
6261065 July 17, 2001 Nayak
6262946 July 17, 2001 Khuri-Yakub et al.
6267559 July 31, 2001 Mossman et al.
6267725 July 31, 2001 Dubberstein et al.
6269340 July 31, 2001 Ford et al.
6270455 August 7, 2001 Brown
6271813 August 7, 2001 Palalau
6277072 August 21, 2001 Bardy
6277099 August 21, 2001 Strowe et al.
6280380 August 28, 2001 Bardy
6280391 August 28, 2001 Olson et al.
6280408 August 28, 2001 Sipin
6283761 September 4, 2001 Joao
6285155 September 4, 2001 Maske et al.
6312378 November 6, 2001 Bardy
6322516 November 27, 2001 Masuda et al.
6330351 December 11, 2001 Yasunaga
6336053 January 1, 2002 Beatty
6337675 January 8, 2002 Toffolo et al.
6345539 February 12, 2002 Rawes et al.
6347553 February 19, 2002 Morris et al.
6349740 February 26, 2002 Cho et al.
6358225 March 19, 2002 Butterfield
6358387 March 19, 2002 Kopf-Sill et al.
6362591 March 26, 2002 Moberg
6385505 May 7, 2002 Lipps
6386050 May 14, 2002 Yin et al.
6394958 May 28, 2002 Bratteli et al.
6396583 May 28, 2002 Clare
6398760 June 4, 2002 Danby
6405076 June 11, 2002 Taylor et al.
6408679 June 25, 2002 Kline-Schoder et al.
6413238 July 2, 2002 Maget
6416291 July 9, 2002 Butterfield et al.
6418334 July 9, 2002 Unger et al.
6418535 July 9, 2002 Kulakowski et al.
6445053 September 3, 2002 Cho
6456245 September 24, 2002 Crawford
6457346 October 1, 2002 Kline-Schoder et al.
6463785 October 15, 2002 Kline-Schoder et al.
6467331 October 22, 2002 Kline-Schoder et al.
6468242 October 22, 2002 Wilson et al.
6475178 November 5, 2002 Krajewski
6481980 November 19, 2002 Vandlik
6482158 November 19, 2002 Mault
6482185 November 19, 2002 Hartmann
6485263 November 26, 2002 Bryant et al.
6485418 November 26, 2002 Yasushi et al.
6485465 November 26, 2002 Moberg et al.
6487916 December 3, 2002 Gomm et al.
6489896 December 3, 2002 Platt
6494694 December 17, 2002 Lawless et al.
6494831 December 17, 2002 Koritzinsky
6497680 December 24, 2002 Holst et al.
6503221 January 7, 2003 Briggs
6512944 January 28, 2003 Kovtun et al.
6516667 February 11, 2003 Broad et al.
6517482 February 11, 2003 Eiden et al.
6519569 February 11, 2003 White et al.
6529751 March 4, 2003 Van Driel et al.
6531708 March 11, 2003 Malmstrom
6539315 March 25, 2003 Adams et al.
6540672 April 1, 2003 Simonsen et al.
6544212 April 8, 2003 Galley et al.
6544228 April 8, 2003 Heitmeier
6558125 May 6, 2003 Futterknecht
6558351 May 6, 2003 Steil et al.
6562012 May 13, 2003 Brown et al.
6564825 May 20, 2003 Lowery et al.
6565509 May 20, 2003 Say et al.
6568416 May 27, 2003 Tucker et al.
6572542 June 3, 2003 Houben et al.
6572545 June 3, 2003 Knobbe et al.
6572576 June 3, 2003 Brugger et al.
6578422 June 17, 2003 Lam et al.
6578435 June 17, 2003 Gould et al.
6581117 June 17, 2003 Klein et al.
RE38189 July 15, 2003 Walker et al.
6585675 July 1, 2003 O'Mahony et al.
6589229 July 8, 2003 Connelly et al.
6589792 July 8, 2003 Malachowski
6599281 July 29, 2003 Struys et al.
6599282 July 29, 2003 Burko
6602191 August 5, 2003 Quy
6605072 August 12, 2003 Struys et al.
6606047 August 12, 2003 Börjesson et al.
6609047 August 19, 2003 Lipps
6615674 September 9, 2003 Ohnishi
6616633 September 9, 2003 Butterfield et al.
6617564 September 9, 2003 Ockerse et al.
6618916 September 16, 2003 Eberle et al.
6622542 September 23, 2003 Derek
6622561 September 23, 2003 Lam et al.
D481121 October 21, 2003 Evans
6629449 October 7, 2003 Kline-Schoder et al.
6634233 October 21, 2003 He
6640246 October 28, 2003 Gardy, Jr. et al.
6641533 November 4, 2003 Causey, III et al.
6641541 November 4, 2003 Lovett et al.
6648861 November 18, 2003 Platt et al.
6652455 November 25, 2003 Kocher
6653937 November 25, 2003 Nelson et al.
6659980 December 9, 2003 Moberg et al.
D485356 January 13, 2004 Evans
6685668 February 3, 2004 Cho et al.
6685678 February 3, 2004 Evans et al.
6689069 February 10, 2004 Bratteli et al.
6689091 February 10, 2004 Bui et al.
6692241 February 17, 2004 Watanabe et al.
6716004 April 6, 2004 Vandlik
6719535 April 13, 2004 Rakestraw et al.
6721582 April 13, 2004 Trepagnier et al.
6722211 April 20, 2004 Ciobanu et al.
6725200 April 20, 2004 Rost
6725721 April 27, 2004 Venczel
6731989 May 4, 2004 Engleson et al.
6732595 May 11, 2004 Lynnworth
6738052 May 18, 2004 Manke et al.
6740072 May 25, 2004 Starkweather et al.
6741212 May 25, 2004 Kralovec et al.
6748808 June 15, 2004 Lam et al.
6749403 June 15, 2004 Bryant et al.
6752787 June 22, 2004 Causey, III et al.
6753842 June 22, 2004 Williams et al.
6759007 July 6, 2004 Westberg
6760643 July 6, 2004 Lipps
6768920 July 27, 2004 Lange
6773412 August 10, 2004 O'Mahony
6780156 August 24, 2004 Haueter et al.
6783328 August 31, 2004 Lucke et al.
6785573 August 31, 2004 Kovtun et al.
6786885 September 7, 2004 Hochman et al.
6789426 September 14, 2004 Yaralioglu et al.
6790198 September 14, 2004 White et al.
6793625 September 21, 2004 Cavallaro et al.
6801227 October 5, 2004 Bocionek et al.
6805671 October 19, 2004 Stergiopoulos et al.
6807965 October 26, 2004 Hickle
6809653 October 26, 2004 Mann et al.
6813964 November 9, 2004 Clark et al.
6814547 November 9, 2004 Childers
6824528 November 30, 2004 Faries
6830558 December 14, 2004 Flaherty et al.
6840113 January 11, 2005 Fukumura et al.
6846161 January 25, 2005 Kline
6852094 February 8, 2005 Beck
6852104 February 8, 2005 Blomquist
6854338 February 15, 2005 Khuri-Yakub et al.
6857318 February 22, 2005 Silber et al.
6869425 March 22, 2005 Briggs et al.
6873268 March 29, 2005 Lebel et al.
6883376 April 26, 2005 He
6885881 April 26, 2005 Leonhardt
6887216 May 3, 2005 Hochman et al.
6898301 May 24, 2005 Iwanaga
6907361 June 14, 2005 Molenaar
6907792 June 21, 2005 Ohnishi
6915170 July 5, 2005 Engleson et al.
6920795 July 26, 2005 Bischoff et al.
6923763 August 2, 2005 Kovatchev et al.
6928338 August 9, 2005 Buchser et al.
6929619 August 16, 2005 Fago et al.
6929751 August 16, 2005 Bowman
6932114 August 23, 2005 Sparks
6932796 August 23, 2005 Sage et al.
6935192 August 30, 2005 Sobek et al.
6936029 August 30, 2005 Mann et al.
6941005 September 6, 2005 Lary et al.
6942636 September 13, 2005 Holst et al.
6945954 September 20, 2005 Hochman et al.
6958705 October 25, 2005 Lebel et al.
6964204 November 15, 2005 Clark et al.
6973374 December 6, 2005 Ader
6974437 December 13, 2005 Lebel et al.
6975922 December 13, 2005 Duncan et al.
6978779 December 27, 2005 Haveri et al.
6979326 December 27, 2005 Mann et al.
6981960 January 3, 2006 Cho et al.
6984218 January 10, 2006 Nayak et al.
6985768 January 10, 2006 Hemming et al.
6985870 January 10, 2006 Martucci et al.
6986347 January 17, 2006 Hickle
6986753 January 17, 2006 Bui
6997905 February 14, 2006 Gillespie, Jr. et al.
6997920 February 14, 2006 Mann et al.
7006005 February 28, 2006 Nazarian et al.
7017623 March 28, 2006 Tribble et al.
7021148 April 4, 2006 Kuhn
7025743 April 11, 2006 Mann et al.
7029455 April 18, 2006 Flaherty
7029456 April 18, 2006 Ware et al.
7059184 June 13, 2006 Kanouda et al.
7060059 June 13, 2006 Keith et al.
7069793 July 4, 2006 Ishikawa et al.
7072725 July 4, 2006 Bristol et al.
7074209 July 11, 2006 Evans et al.
7080557 July 25, 2006 Adnan
7082843 August 1, 2006 Clark et al.
7087444 August 8, 2006 Wong et al.
7092796 August 15, 2006 Vanderveen
7092797 August 15, 2006 Gaines et al.
7093502 August 22, 2006 Kupnik et al.
7096729 August 29, 2006 Repko et al.
7103419 September 5, 2006 Engleson et al.
7104763 September 12, 2006 Bouton et al.
7104769 September 12, 2006 Davis
7108680 September 19, 2006 Rohr et al.
7109878 September 19, 2006 Mann et al.
7115113 October 3, 2006 Evans et al.
7117041 October 3, 2006 Engleson et al.
7137964 November 21, 2006 Flaherty
7141037 November 28, 2006 Butterfield et al.
7152490 December 26, 2006 Freund, Jr. et al.
7154397 December 26, 2006 Zerhusen et al.
7161488 January 9, 2007 Frasch
7162290 January 9, 2007 Levin
7162927 January 16, 2007 Selvan et al.
7171277 January 30, 2007 Engleson et al.
7174789 February 13, 2007 Orr et al.
7185288 February 27, 2007 McKeever
7197943 April 3, 2007 Lee et al.
7201734 April 10, 2007 Hickle
7204823 April 17, 2007 Estes et al.
7206715 April 17, 2007 Vanderveen et al.
7213009 May 1, 2007 Pestotnik
7220240 May 22, 2007 Struys et al.
7229430 June 12, 2007 Hickle et al.
7230529 June 12, 2007 Ketcherside
7232430 June 19, 2007 Carlisle
7238164 July 3, 2007 Childers et al.
7247154 July 24, 2007 Hickle
7253779 August 7, 2007 Greer et al.
7254425 August 7, 2007 Lowery et al.
7258534 August 21, 2007 Fathallah et al.
7267664 September 11, 2007 Rizzo
7267665 September 11, 2007 Steil et al.
7272529 September 18, 2007 Hogan et al.
7278983 October 9, 2007 Ireland et al.
7291123 November 6, 2007 Baraldi et al.
7293461 November 13, 2007 Gimdt
7294109 November 13, 2007 Lovett et al.
7296482 November 20, 2007 Schaffer et al.
7300418 November 27, 2007 Zaleski
7305883 December 11, 2007 Khuri-Yakub et al.
7327273 February 5, 2008 Hung et al.
7338470 March 4, 2008 Katz
7347836 March 25, 2008 Peterson et al.
7347854 March 25, 2008 Shelton et al.
7354420 April 8, 2008 Steil et al.
7356382 April 8, 2008 Vanderveen
7360999 April 22, 2008 Nelson et al.
7364562 April 29, 2008 Braig et al.
7367942 May 6, 2008 Grage et al.
7369948 May 6, 2008 Ferenczi et al.
7384410 June 10, 2008 Eggers et al.
7397166 July 8, 2008 Morgan et al.
7398183 July 8, 2008 Holland et al.
7399277 July 15, 2008 Saidara et al.
7402153 July 22, 2008 Steil et al.
7402154 July 22, 2008 Mendez
7407489 August 5, 2008 Mendez
7414534 August 19, 2008 Kroll et al.
7415895 August 26, 2008 Kurisaki et al.
7426443 September 16, 2008 Simon
7430675 September 30, 2008 Lee et al.
7447566 November 4, 2008 Knauper et al.
7447643 November 4, 2008 Olson
7452190 November 18, 2008 Bouton et al.
7454314 November 18, 2008 Holland et al.
7471994 December 30, 2008 Ford et al.
7477997 January 13, 2009 Kaplit
7482818 January 27, 2009 Greenwald et al.
7483756 January 27, 2009 Engleson et al.
7490021 February 10, 2009 Holland et al.
7491187 February 17, 2009 Van Den Berghe et al.
7503903 March 17, 2009 Carlisle et al.
7517332 April 14, 2009 Tonelli et al.
7523401 April 21, 2009 Aldridge
7545075 June 9, 2009 Huang et al.
7556616 July 7, 2009 Fathallah et al.
7561986 July 14, 2009 Vanderveen et al.
7571024 August 4, 2009 Duncan et al.
7605730 October 20, 2009 Tomioka et al.
7645258 January 12, 2010 White et al.
7654127 February 2, 2010 Krulevitch et al.
7657443 February 2, 2010 Crass
7668731 February 23, 2010 Martucci et al.
7678048 March 16, 2010 Urbano et al.
7693697 April 6, 2010 Westenskow et al.
7699806 April 20, 2010 Ware et al.
7705727 April 27, 2010 Pestotnik
7766873 August 3, 2010 Moberg et al.
7775126 August 17, 2010 Eckhardt
7775127 August 17, 2010 Wade
7785284 August 31, 2010 Baralsi et al.
7785313 August 31, 2010 Mastrototaro
7786909 August 31, 2010 Udupa et al.
7806886 October 5, 2010 Kanderian, Jr. et al.
7826981 November 2, 2010 Goode, Jr. et al.
7847276 December 7, 2010 Carlisle
7860583 December 28, 2010 Condurso et al.
7871394 January 18, 2011 Halbert et al.
7876443 January 25, 2011 Bernacki
7895053 February 22, 2011 Holland et al.
7895882 March 1, 2011 Carlisle
7896834 March 1, 2011 Smisson, III
7896842 March 1, 2011 Palmroos et al.
7905710 March 15, 2011 Wang et al.
7933780 April 26, 2011 de La Huerga
7945452 May 17, 2011 Fathallah et al.
7976508 July 12, 2011 Hoag
7981073 July 19, 2011 Mollstam
7981082 July 19, 2011 Wang et al.
7998134 August 16, 2011 Fangrow
8002736 August 23, 2011 Patrick et al.
8034020 October 11, 2011 Dewey
8038593 October 18, 2011 Friedman et al.
8065161 November 22, 2011 Howard et al.
8067760 November 29, 2011 Carlisle
8075514 December 13, 2011 Butterfield et al.
8075546 December 13, 2011 Carlisle et al.
8078983 December 13, 2011 Davis et al.
8121857 February 21, 2012 Galasso et al.
8149131 April 3, 2012 Blomquist
8175668 May 8, 2012 Nabutovsky et al.
8177739 May 15, 2012 Cartledge et al.
8180440 May 15, 2012 McCombie et al.
8185322 May 22, 2012 Schroeder et al.
8197444 June 12, 2012 Bazargan et al.
8219413 July 10, 2012 Martinez et al.
8221395 July 17, 2012 Shelton et al.
8226597 July 24, 2012 Jacobson et al.
8231578 July 31, 2012 Fathallah et al.
8234128 July 31, 2012 Martucci et al.
8271106 September 18, 2012 Wehba et al.
8287514 October 16, 2012 Miller et al.
8291337 October 16, 2012 Gannin et al.
8313308 November 20, 2012 Lawless et al.
8317698 November 27, 2012 Lowery
8317750 November 27, 2012 Ware et al.
8317752 November 27, 2012 Cozmi et al.
8318094 November 27, 2012 Bayandorian et al.
8340792 December 25, 2012 Condurso et al.
8347731 January 8, 2013 Genosar
8359338 January 22, 2013 Butterfield et al.
8361021 January 29, 2013 Wang et al.
8378837 February 19, 2013 Wang et al.
8388598 March 5, 2013 Steinkogler
8398616 March 19, 2013 Budiman
8403908 March 26, 2013 Jacobson et al.
8409164 April 2, 2013 Fangrow
8449524 May 28, 2013 Braig et al.
8469942 June 25, 2013 Kow et al.
8477307 July 2, 2013 Yufa et al.
8494879 July 23, 2013 Davis et al.
8504179 August 6, 2013 Blomquist
8517990 August 27, 2013 Teel et al.
8518021 August 27, 2013 Stewart et al.
8522832 September 3, 2013 Lopez et al.
8523797 September 3, 2013 Lowery et al.
8539812 September 24, 2013 Stringham et al.
8543416 September 24, 2013 Palmroos et al.
8577692 November 5, 2013 Silkaitis et al.
8622990 January 7, 2014 Estes et al.
8630722 January 14, 2014 Condurso et al.
8665214 March 4, 2014 Forutanpour et al.
8666769 March 4, 2014 Butler et al.
8700421 April 15, 2014 Feng et al.
8706233 April 22, 2014 Su et al.
8721584 May 13, 2014 Braithwaite et al.
8728020 May 20, 2014 Caleffi et al.
8758306 June 24, 2014 Lopez et al.
8761906 June 24, 2014 Condurso et al.
8768719 July 1, 2014 Wehba et al.
8771251 July 8, 2014 Ruchti et al.
8792981 July 29, 2014 Yudovsky et al.
8821432 September 2, 2014 Unverdorben
8823382 September 2, 2014 Rondoni et al.
8857269 October 14, 2014 Johnson et al.
8858185 October 14, 2014 Johnson et al.
8905965 December 9, 2014 Mandro et al.
8964185 February 24, 2015 Luo et al.
9005150 April 14, 2015 Ware et al.
9026370 May 5, 2015 Rubalcaba et al.
9084855 July 21, 2015 Ware et al.
9114217 August 25, 2015 Sur et al.
9134735 September 15, 2015 Lowery et al.
9134736 September 15, 2015 Lowery et al.
9138526 September 22, 2015 Ware et al.
9190010 November 17, 2015 Vik et al.
9240002 January 19, 2016 Hume et al.
9272089 March 1, 2016 Jacobson et al.
9333291 May 10, 2016 Jacobson et al.
9381296 July 5, 2016 Arrizza et al.
9393362 July 19, 2016 Cozmi et al.
9468718 October 18, 2016 Hung et al.
9498583 November 22, 2016 Sur et al.
9545475 January 17, 2017 Borges et al.
9707341 July 18, 2017 Dumas, III et al.
9764087 September 19, 2017 Peterfreund et al.
9852265 December 26, 2017 Treacy et al.
9883987 February 6, 2018 Lopez et al.
9943269 April 17, 2018 Muhsin et al.
9995611 June 12, 2018 Ruchti et al.
10022498 July 17, 2018 Ruchti et al.
10046112 August 14, 2018 Oruklu et al.
10089055 October 2, 2018 Fryman
10099009 October 16, 2018 Anderson et al.
10166328 January 1, 2019 Oruklu et al.
10342917 July 9, 2019 Shubinsky et al.
10430761 October 1, 2019 Hume et al.
10463788 November 5, 2019 Day
10549248 February 4, 2020 Brown et al.
10578474 March 3, 2020 Ruchti et al.
10596316 March 24, 2020 Dumas, III et al.
10635784 April 28, 2020 Rubalcaba, Jr. et al.
10656894 May 19, 2020 Fryman
10682102 June 16, 2020 Declerck
10709885 July 14, 2020 Janders et al.
10850024 December 1, 2020 Day et al.
10874793 December 29, 2020 Oruklu et al.
11004035 May 11, 2021 Hume et al.
11029911 June 8, 2021 Fryman
11090431 August 17, 2021 Dumas, III et al.
11135360 October 5, 2021 Jacobson et al.
11246985 February 15, 2022 Gylland et al.
11298456 April 12, 2022 Shubinsky et al.
11324888 May 10, 2022 Shubinsky et al.
11344668 May 31, 2022 Sileika et al.
11344673 May 31, 2022 Lindo et al.
11376361 July 5, 2022 Ruchti et al.
11378430 July 5, 2022 Ruchti et al.
11395875 July 26, 2022 Rubalcaba, Jr. et al.
11433177 September 6, 2022 Oruklu et al.
20010007636 July 12, 2001 Butterfield
20010014769 August 16, 2001 Bufe et al.
20010015099 August 23, 2001 Blaine
20010016056 August 23, 2001 Westphal et al.
20010032099 October 18, 2001 Joao
20010037060 November 1, 2001 Thompson et al.
20010041869 November 15, 2001 Causey et al.
20010044731 November 22, 2001 Coffman et al.
20020003892 January 10, 2002 Iwanaga
20020007116 January 17, 2002 Zatezalo et al.
20020013545 January 31, 2002 Soltanpour et al.
20020013551 January 31, 2002 Zaitsu et al.
20020015018 February 7, 2002 Shimazu et al.
20020018720 February 14, 2002 Carlisle et al.
20020029776 March 14, 2002 Blomquist
20020031838 March 14, 2002 Meinhart et al.
20020032583 March 14, 2002 Joao
20020040208 April 4, 2002 Flaherty et al.
20020044059 April 18, 2002 Reeder et al.
20020045806 April 18, 2002 Baker, Jr. et al.
20020082728 June 27, 2002 Mueller et al.
20020083771 July 4, 2002 Khuri-Yakub et al.
20020085952 July 4, 2002 Ellingboe et al.
20020087115 July 4, 2002 Hartlaub
20020093641 July 18, 2002 Ortyn
20020095486 July 18, 2002 Bahl
20020099282 July 25, 2002 Knobbe et al.
20020099334 July 25, 2002 Hanson et al.
20020143580 October 3, 2002 Bristol et al.
20020147389 October 10, 2002 Cavallaro et al.
20020152239 October 17, 2002 Bautista-Lloyd et al.
20020159900 October 31, 2002 Lawless et al.
20020168278 November 14, 2002 Jeon et al.
20020173703 November 21, 2002 Lebel et al.
20020183693 December 5, 2002 Peterson et al.
20030009244 January 9, 2003 Engleson
20030013959 January 16, 2003 Grunwald et al.
20030018289 January 23, 2003 Ng et al.
20030018308 January 23, 2003 Tsai
20030025602 February 6, 2003 Medema et al.
20030028082 February 6, 2003 Thompson
20030030001 February 13, 2003 Cooper et al.
20030045840 March 6, 2003 Burko
20030050621 March 13, 2003 Lebel et al.
20030060688 March 27, 2003 Ciarniello et al.
20030060765 March 27, 2003 Campbell et al.
20030065537 April 3, 2003 Evans
20030065589 April 3, 2003 Giacchetti
20030073954 April 17, 2003 Moberg et al.
20030079746 May 1, 2003 Hickle
20030083583 May 1, 2003 Kovtun et al.
20030091442 May 15, 2003 Bush et al.
20030104982 June 5, 2003 Wittmann et al.
20030106553 June 12, 2003 Vanderveen
20030125662 July 3, 2003 Bui
20030130616 July 10, 2003 Steil
20030135087 July 17, 2003 Hickle et al.
20030136193 July 24, 2003 Fujimoto
20030139701 July 24, 2003 White et al.
20030140928 July 31, 2003 Bui et al.
20030141981 July 31, 2003 Bui et al.
20030143746 July 31, 2003 Sage, Jr.
20030144878 July 31, 2003 Wilkes et al.
20030158508 August 21, 2003 DiGianfilippo
20030160683 August 28, 2003 Blomquist
20030163789 August 28, 2003 Blomquist
20030173408 September 18, 2003 Mosher, Jr. et al.
20030186833 October 2, 2003 Huff et al.
20030187338 October 2, 2003 Say et al.
20030200116 October 23, 2003 Forrester
20030204274 October 30, 2003 Ullestad et al.
20030204416 October 30, 2003 Acharya
20030212364 November 13, 2003 Mann et al.
20030212379 November 13, 2003 Bylund et al.
20030216682 November 20, 2003 Junker
20030217962 November 27, 2003 Childers et al.
20030233071 December 18, 2003 Gillespie, Jr. et al.
20040030277 February 12, 2004 O'Mahony et al.
20040047736 March 11, 2004 Nose et al.
20040057226 March 25, 2004 Berthou et al.
20040064342 April 1, 2004 Browne et al.
20040073125 April 15, 2004 Lovett et al.
20040073161 April 15, 2004 Tachibana
20040077996 April 22, 2004 Jasperson et al.
20040082908 April 29, 2004 Whitehurst
20040082918 April 29, 2004 Evans et al.
20040104271 June 3, 2004 Martucci et al.
20040119753 June 24, 2004 Zencke
20040120825 June 24, 2004 Bouton et al.
20040128162 July 1, 2004 Schlotterbeck et al.
20040128163 July 1, 2004 Goodman et al.
20040133166 July 8, 2004 Moberg et al.
20040145114 July 29, 2004 Ippolito et al.
20040147034 July 29, 2004 Gore et al.
20040149823 August 5, 2004 Aptekar
20040152970 August 5, 2004 Hunter et al.
20040158193 August 12, 2004 Bui et al.
20040167464 August 26, 2004 Ireland et al.
20040167465 August 26, 2004 Kohler
20040167804 August 26, 2004 Simpson
20040172222 September 2, 2004 Simpson et al.
20040172283 September 2, 2004 Vanderveen
20040172289 September 2, 2004 Kozic et al.
20040172301 September 2, 2004 Mihai et al.
20040172302 September 2, 2004 Martucci et al.
20040176984 September 9, 2004 White et al.
20040181314 September 16, 2004 Zaleski
20040193025 September 30, 2004 Steil et al.
20040193325 September 30, 2004 Bonderud
20040193328 September 30, 2004 Butterfield et al.
20040193453 September 30, 2004 Butterfield et al.
20040204638 October 14, 2004 Diab et al.
20040204673 October 14, 2004 Flaherty et al.
20040220517 November 4, 2004 Starkweather et al.
20040225252 November 11, 2004 Gillespie et al.
20040225409 November 11, 2004 Duncan et al.
20040232219 November 25, 2004 Fowler
20040247445 December 9, 2004 Nelson et al.
20040253123 December 16, 2004 Xie et al.
20040254434 December 16, 2004 Goodnow et al.
20040254513 December 16, 2004 Shang et al.
20050021006 January 27, 2005 Tonnies
20050021297 January 27, 2005 Hartlaub
20050022274 January 27, 2005 Campbell et al.
20050038680 February 17, 2005 McMahon
20050055242 March 10, 2005 Bello et al.
20050055244 March 10, 2005 Mullan et al.
20050063831 March 24, 2005 Fathallah et al.
20050065465 March 24, 2005 Lebel et al.
20050075544 April 7, 2005 Shapiro et al.
20050096593 May 5, 2005 Pope et al.
20050099624 May 12, 2005 Staehr
20050107923 May 19, 2005 Vanderveen
20050108057 May 19, 2005 Cohen et al.
20050119597 June 2, 2005 O'Mahony et al.
20050119914 June 2, 2005 Batch
20050131739 June 16, 2005 Rabinowitz et al.
20050135047 June 23, 2005 Fathallah et al.
20050137522 June 23, 2005 Aoki
20050143864 June 30, 2005 Blomquist
20050145010 July 7, 2005 Vanderveen et al.
20050171503 August 4, 2005 Van Den Berghe et al.
20050171815 August 4, 2005 Vanderveen
20050177045 August 11, 2005 Degertekin et al.
20050177096 August 11, 2005 Bollish et al.
20050182306 August 18, 2005 Sloan
20050182355 August 18, 2005 Bui
20050182366 August 18, 2005 Vogt et al.
20050187515 August 25, 2005 Varrichio et al.
20050192529 September 1, 2005 Butterfield et al.
20050192557 September 1, 2005 Brauker et al.
20050197554 September 8, 2005 Polcha
20050197621 September 8, 2005 Poulsen et al.
20050197649 September 8, 2005 Shelton et al.
20050204828 September 22, 2005 Lee et al.
20050209563 September 22, 2005 Hopping et al.
20050209793 September 22, 2005 Yamada
20050224083 October 13, 2005 Crass
20050235732 October 27, 2005 Rush
20050238506 October 27, 2005 Mescher et al.
20050240305 October 27, 2005 Bogash et al.
20050273059 December 8, 2005 Mernoe et al.
20050277890 December 15, 2005 Stewart et al.
20050279419 December 22, 2005 Tribble et al.
20060002799 January 5, 2006 Schann et al.
20060009727 January 12, 2006 O'Mahony et al.
20060009734 January 12, 2006 Martin
20060042633 March 2, 2006 Bishop et al.
20060047270 March 2, 2006 Shelton
20060053036 March 9, 2006 Coffman et al.
20060064020 March 23, 2006 Burnes et al.
20060064053 March 23, 2006 Bollish et al.
20060079768 April 13, 2006 Small et al.
20060079831 April 13, 2006 Gilbert
20060100746 May 11, 2006 Leibner-Druska
20060100907 May 11, 2006 Holland et al.
20060106649 May 18, 2006 Eggers et al.
20060116639 June 1, 2006 Russell
20060117856 June 8, 2006 Orr et al.
20060117867 June 8, 2006 Froehlich et al.
20060122867 June 8, 2006 Eggers et al.
20060135939 June 22, 2006 Brown
20060135940 June 22, 2006 Joshi
20060136095 June 22, 2006 Rob et al.
20060136271 June 22, 2006 Eggers et al.
20060140798 June 29, 2006 Kutsuzawa
20060143051 June 29, 2006 Eggers et al.
20060173260 August 3, 2006 Gaoni et al.
20060173406 August 3, 2006 Hayes et al.
20060181695 August 17, 2006 Sage, Jr.
20060187069 August 24, 2006 Duan
20060190302 August 24, 2006 Eggers et al.
20060195022 August 31, 2006 Trepagnier et al.
20060200007 September 7, 2006 Brockway et al.
20060200369 September 7, 2006 Batch et al.
20060211404 September 21, 2006 Cromp et al.
20060224140 October 5, 2006 Junker
20060224141 October 5, 2006 Rush et al.
20060224181 October 5, 2006 McEwen et al.
20060226088 October 12, 2006 Robinson et al.
20060226089 October 12, 2006 Robinson et al.
20060226090 October 12, 2006 Robinson et al.
20060229918 October 12, 2006 Fotsch et al.
20060235353 October 19, 2006 Gelfand et al.
20060255149 November 16, 2006 Retter et al.
20060258985 November 16, 2006 Russell
20060260416 November 23, 2006 Sage et al.
20060264895 November 23, 2006 Flanders
20060265246 November 23, 2006 Hoag
20060266128 November 30, 2006 Clark et al.
20060270971 November 30, 2006 Gelfand et al.
20060271286 November 30, 2006 Rosenberg
20060272421 December 7, 2006 Frinak et al.
20060275142 December 7, 2006 Bouton et al.
20070015972 January 18, 2007 Wang et al.
20070036511 February 15, 2007 Lundquist et al.
20070060796 March 15, 2007 Kim
20070060871 March 15, 2007 Istoc
20070060872 March 15, 2007 Hall et al.
20070060874 March 15, 2007 Nesbitt et al.
20070062250 March 22, 2007 Krulevitch et al.
20070065363 March 22, 2007 Dalal et al.
20070078314 April 5, 2007 Grounsell
20070083152 April 12, 2007 Williams, Jr. et al.
20070084286 April 19, 2007 Ajay
20070084288 April 19, 2007 Thomas et al.
20070088271 April 19, 2007 Richards
20070088333 April 19, 2007 Levin et al.
20070093753 April 26, 2007 Krulevitcvh et al.
20070094045 April 26, 2007 Cobbs et al.
20070094046 April 26, 2007 Cobbs et al.
20070100222 May 3, 2007 Mastrototaro et al.
20070100665 May 3, 2007 Brown
20070112298 May 17, 2007 Mueller et al.
20070118405 May 24, 2007 Campbell et al.
20070129618 June 7, 2007 Goldberger et al.
20070142822 June 21, 2007 Remde
20070156452 July 5, 2007 Batch
20070156456 July 5, 2007 McGillin et al.
20070179436 August 2, 2007 Braig et al.
20070180916 August 9, 2007 Tian et al.
20070191817 August 16, 2007 Martin
20070214003 September 13, 2007 Holland et al.
20070215545 September 20, 2007 Bissler et al.
20070233035 October 4, 2007 Wehba et al.
20070233049 October 4, 2007 Wehba et al.
20070240497 October 18, 2007 Robinson et al.
20070250339 October 25, 2007 Mallett et al.
20070255250 November 1, 2007 Moberg et al.
20070257788 November 8, 2007 Carlson
20070267945 November 22, 2007 Sudol
20070270747 November 22, 2007 Remde
20070274843 November 29, 2007 Vanderveen et al.
20070289384 December 20, 2007 Sakai et al.
20080009684 January 10, 2008 Corsetti et al.
20080028868 February 7, 2008 Konzelmann et al.
20080033361 February 7, 2008 Evans et al.
20080039777 February 14, 2008 Katz et al.
20080048211 February 28, 2008 Khuri-Yakub et al.
20080058773 March 6, 2008 John
20080060448 March 13, 2008 Wiest et al.
20080065420 March 13, 2008 Tirinato et al.
20080071210 March 20, 2008 Moubayed et al.
20080071496 March 20, 2008 Glascock
20080071580 March 20, 2008 Marcus et al.
20080077116 March 27, 2008 Dailey et al.
20080091466 April 17, 2008 Butler et al.
20080097288 April 24, 2008 Levin et al.
20080097289 April 24, 2008 Steil et al.
20080097317 April 24, 2008 Alholm et al.
20080098798 May 1, 2008 Riley et al.
20080119822 May 22, 2008 Knauper
20080125701 May 29, 2008 Moberg et al.
20080139907 June 12, 2008 Rao et al.
20080145249 June 19, 2008 Smisson
20080169044 July 17, 2008 Osborne et al.
20080172030 July 17, 2008 Blomquist et al.
20080177254 July 24, 2008 Shelton et al.
20080184784 August 7, 2008 Dam
20080188789 August 7, 2008 Galavotti et al.
20080188796 August 7, 2008 Steil et al.
20080200870 August 21, 2008 Palmroos et al.
20080208484 August 28, 2008 Butterfield et al.
20080214919 September 4, 2008 Harmon et al.
20080221521 September 11, 2008 Getz et al.
20080221522 September 11, 2008 Moberg et al.
20080243055 October 2, 2008 Fathallah et al.
20080262469 October 23, 2008 Bristol et al.
20080269663 October 30, 2008 Arnold et al.
20080269714 October 30, 2008 Mastrototaro et al.
20080269723 October 30, 2008 Mastrototaro et al.
20080275384 November 6, 2008 Mastrototaro et al.
20080300572 December 4, 2008 Rankers et al.
20090001908 January 1, 2009 Shubinsky et al.
20090005703 January 1, 2009 Fasciano
20090006061 January 1, 2009 Thukral et al.
20090006129 January 1, 2009 Thukral
20090006133 January 1, 2009 Weinert
20090015824 January 15, 2009 Shubinsky et al.
20090043171 February 12, 2009 Rule
20090054743 February 26, 2009 Stewart
20090054754 February 26, 2009 McMahon et al.
20090069743 March 12, 2009 Krishnamoorthy et al.
20090077248 March 19, 2009 Castellucci et al.
20090082676 March 26, 2009 Bennison
20090088731 April 2, 2009 Campbell et al.
20090097029 April 16, 2009 Tokhtuev et al.
20090099866 April 16, 2009 Newman
20090105636 April 23, 2009 Hayter et al.
20090112155 April 30, 2009 Zhao
20090114037 May 7, 2009 Smith
20090119330 May 7, 2009 Sampath et al.
20090124963 May 14, 2009 Hogard et al.
20090124964 May 14, 2009 Leach et al.
20090126825 May 21, 2009 Eliuk et al.
20090131861 May 21, 2009 Braig et al.
20090135196 May 28, 2009 Holland et al.
20090143726 June 4, 2009 Bouton et al.
20090144025 June 4, 2009 Bouton et al.
20090144026 June 4, 2009 Bouton et al.
20090149743 June 11, 2009 Barron et al.
20090156922 June 18, 2009 Goldberger et al.
20090156975 June 18, 2009 Robinson et al.
20090157040 June 18, 2009 Jacobson et al.
20090177146 July 9, 2009 Nesbitt et al.
20090177188 July 9, 2009 Steinkogler
20090177248 July 9, 2009 Roberts
20090177769 July 9, 2009 Roberts
20090177992 July 9, 2009 Rubalcaba et al.
20090178485 July 16, 2009 Thomas et al.
20090183147 July 16, 2009 Davis et al.
20090192367 July 30, 2009 Braig et al.
20090198347 August 6, 2009 Kirzinger
20090205426 August 20, 2009 Balschat et al.
20090209938 August 20, 2009 Aalto-Setala
20090209945 August 20, 2009 Lobl et al.
20090212966 August 27, 2009 Panduro
20090221890 September 3, 2009 Saffer et al.
20090223294 September 10, 2009 Thomas et al.
20090227939 September 10, 2009 Memoe et al.
20090264720 October 22, 2009 Torjman et al.
20090270810 October 29, 2009 DeBelser
20090270833 October 29, 2009 DeBelser
20090281460 November 12, 2009 Lowery et al.
20100022988 January 28, 2010 Wochner
20100280430 November 4, 2010 Caleffi et al.
20100036310 February 11, 2010 Hillman
20100056992 March 4, 2010 Hayter
20100057042 March 4, 2010 Hayter
20100069892 March 18, 2010 Steinbach et al.
20100077866 April 1, 2010 Graboi et al.
20100079760 April 1, 2010 Bernacki
20100094251 April 15, 2010 Estes et al.
20100106082 April 29, 2010 Zhou
20100114027 May 6, 2010 Jacobson et al.
20100121170 May 13, 2010 Rule
20100121415 May 13, 2010 Skelton et al.
20100130933 May 27, 2010 Holland et al.
20100131434 May 27, 2010 Magent et al.
20100141460 June 10, 2010 Tokhtuev et al.
20100147081 June 17, 2010 Thomas et al.
20100152554 June 17, 2010 Steine et al.
20100160854 June 24, 2010 Gauthier
20100168535 July 1, 2010 Robinson et al.
20100177375 July 15, 2010 Seyfried
20100185142 July 22, 2010 Kamen et al.
20100185182 July 22, 2010 Alme et al.
20100198034 August 5, 2010 Thomas et al.
20100198182 August 5, 2010 Lanigan et al.
20100198183 August 5, 2010 Lanigan et al.
20100211002 August 19, 2010 Davis
20100212407 August 26, 2010 Stringham et al.
20100212675 August 26, 2010 Walling et al.
20100214110 August 26, 2010 Wang et al.
20100217154 August 26, 2010 Deshmukh et al.
20100217621 August 26, 2010 Schoenberg
20100271218 October 28, 2010 Hoag et al.
20100271479 October 28, 2010 Heydlauf
20100273738 October 28, 2010 Valcke et al.
20100292634 November 18, 2010 Kircher
20100295686 November 25, 2010 Sloan et al.
20100298765 November 25, 2010 Budiman et al.
20100312039 December 9, 2010 Quirico et al.
20100317093 December 16, 2010 Turewicz et al.
20100317952 December 16, 2010 Budiman et al.
20100318025 December 16, 2010 John
20110000560 January 6, 2011 Miller et al.
20110001605 January 6, 2011 Kiani et al.
20110004186 January 6, 2011 Butterfield
20110009797 January 13, 2011 Kelly et al.
20110028885 February 3, 2011 Eggers et al.
20110040247 February 17, 2011 Mandro et al.
20110046558 February 24, 2011 Gravesen et al.
20110054276 March 3, 2011 Lowery
20110062703 March 17, 2011 Lopez et al.
20110064612 March 17, 2011 Franzoni et al.
20110071464 March 24, 2011 Palerm
20110071844 March 24, 2011 Cannon et al.
20110072379 March 24, 2011 Gannon
20110077480 March 31, 2011 Bloom et al.
20110078608 March 31, 2011 Gannon et al.
20110099313 April 28, 2011 Bolanowski
20110105983 May 5, 2011 Kelly et al.
20110106561 May 5, 2011 Eaton, Jr. et al.
20110107251 May 5, 2011 Guaitoli et al.
20110137241 June 9, 2011 DelCastilio et al.
20110144595 June 16, 2011 Cheng
20110152770 June 23, 2011 Diperna et al.
20110160649 June 30, 2011 Pan
20110162647 July 7, 2011 Huby et al.
20110172918 July 14, 2011 Tome
20110175728 July 21, 2011 Baker, Jr.
20110190598 August 4, 2011 Shusterman
20110190694 August 4, 2011 Lanier et al.
20110218514 September 8, 2011 Rebours
20110264006 October 27, 2011 Ali et al.
20110264043 October 27, 2011 Kotnick et al.
20110282321 November 17, 2011 Steil et al.
20110313390 December 22, 2011 Roy et al.
20110318198 December 29, 2011 Johnson et al.
20110319728 December 29, 2011 Petisce et al.
20110320049 December 29, 2011 Chossat et al.
20120025995 February 2, 2012 Moberg et al.
20120035535 February 9, 2012 Johnson et al.
20120059234 March 8, 2012 Barrett et al.
20120068001 March 22, 2012 Pushkarsky et al.
20120083760 April 5, 2012 Ledford et al.
20120089411 April 12, 2012 Srnka et al.
20120095433 April 19, 2012 Hungerford et al.
20120123322 May 17, 2012 Scarpaci et al.
20120143116 June 7, 2012 Ware et al.
20120180790 July 19, 2012 Montgomery
20120185267 July 19, 2012 Kamen et al.
20120191059 July 26, 2012 Cummings et al.
20120194341 August 2, 2012 Peichel et al.
20120203177 August 9, 2012 Lanier
20120222774 September 6, 2012 Husnu et al.
20120226350 September 6, 2012 Rudser et al.
20120245525 September 27, 2012 Pope et al.
20120259278 October 11, 2012 Hayes et al.
20120310204 December 6, 2012 Krogh et al.
20120323212 December 20, 2012 Murphy
20130006666 January 3, 2013 Schneider
20130009551 January 10, 2013 Knapp
20130012880 January 10, 2013 Blomquist
20130012917 January 10, 2013 Miller et al.
20130032634 February 7, 2013 McKirdy
20130041342 February 14, 2013 Bernini et al.
20130044111 February 21, 2013 VanGilder et al.
20130083191 April 4, 2013 Lowery et al.
20130085443 April 4, 2013 Lowery et al.
20130085689 April 4, 2013 Sur et al.
20130110538 May 2, 2013 Butterfield et al.
20130150766 June 13, 2013 Olde et al.
20130150821 June 13, 2013 Bollish et al.
20130158504 June 20, 2013 Ruchti et al.
20130184676 July 18, 2013 Kamen et al.
20130197930 August 1, 2013 Garibaldi et al.
20130201482 August 8, 2013 Munro
20130218080 August 22, 2013 Peterfreund et al.
20130116649 May 9, 2013 Kouyoumjian et al.
20130253430 September 26, 2013 Kouyoumjian et al.
20130261993 October 3, 2013 Ruchti et al.
20130274576 October 17, 2013 Amirouche et al.
20130281965 October 24, 2013 Kamen et al.
20130291116 October 31, 2013 Homer
20130296823 November 7, 2013 Melker et al.
20130296984 November 7, 2013 Burnett et al.
20130318158 November 28, 2013 Teng et al.
20130345658 December 26, 2013 Browne et al.
20130345666 December 26, 2013 Panduro et al.
20140039446 February 6, 2014 Day
20140067425 March 6, 2014 Dudar et al.
20140074030 March 13, 2014 Hung et al.
20140145915 May 29, 2014 Ribble et al.
20140180711 June 26, 2014 Kamen et al.
20140224829 August 14, 2014 Capone et al.
20140267563 September 18, 2014 Baca et al.
20140303591 October 9, 2014 Peterfreund et al.
20140303754 October 9, 2014 Nixon et al.
20140350513 November 27, 2014 Oruklu et al.
20140358077 December 4, 2014 Oruklu et al.
20150025453 January 22, 2015 Ledford et al.
20150033073 January 29, 2015 Yang et al.
20150065988 March 5, 2015 Holderle et al.
20150168958 June 18, 2015 Downie et al.
20150224252 August 13, 2015 Borges et al.
20150246175 September 3, 2015 Shubinsky et al.
20150265765 September 24, 2015 Yavorsky et al.
20150338340 November 26, 2015 Jiang et al.
20150343141 December 3, 2015 Lindo et al.
20150371004 December 24, 2015 Jones
20160042264 February 11, 2016 Borges et al.
20160103960 April 14, 2016 Hume et al.
20160110088 April 21, 2016 Vik et al.
20160144101 May 26, 2016 Pananen
20160151560 June 2, 2016 Toro et al.
20160151562 June 2, 2016 Magers et al.
20160151601 June 2, 2016 Cardelius et al.
20160158437 June 9, 2016 Biasi et al.
20160175517 June 23, 2016 Sileika et al.
20160193604 July 7, 2016 McFarland et al.
20160253460 September 1, 2016 Kanada
20160256622 September 8, 2016 Day et al.
20160339167 November 24, 2016 Ledford et al.
20170043089 February 16, 2017 Handler
20170354941 December 14, 2017 Brown et al.
20180018440 January 18, 2018 Sugawara
20190091401 March 28, 2019 Ruchti et al.
20190101425 April 4, 2019 Ruchti et al.
20190117890 April 25, 2019 Oruklu et al.
20190196770 June 27, 2019 Fryman
20190262535 August 29, 2019 Shubinsky et al.
20190282757 September 19, 2019 Gylland et al.
20200069864 March 5, 2020 Shubinsky et al.
20200113784 April 16, 2020 Lopez et al.
20200238007 July 30, 2020 Day
20210170101 June 10, 2021 Cavendish, Jr. et al.
20210260283 August 26, 2021 Oruklu et al.
20210295263 September 23, 2021 Hume et al.
20210397396 December 23, 2021 Fryman
20220296806 September 22, 2022 Shubinsky et al.
20220305200 September 29, 2022 Gylland et al.
Foreign Patent Documents
2013216679 September 2013 AU
PI0704229-9 November 2009 BR
2 113 473 March 1993 CA
2 551 817 July 2005 CA
31 12 762 January 1983 DE
34 35 647 July 1985 DE
35 30 747 March 1987 DE
37 20 664 January 1989 DE
38 27 444 February 1990 DE
197 34 002 September 1998 DE
199 01 078 February 2000 DE
198 40 965 March 2000 DE
198 44 252 March 2000 DE
199 32 147 January 2001 DE
102 49 238 May 2004 DE
103 52 456 July 2005 DE
0 282 323 September 1988 EP
0 291 727 November 1988 EP
0 319 272 June 1989 EP
0 319 275 June 1989 EP
0 335 385 October 1989 EP
0 337 092 October 1989 EP
0 341 582 November 1989 EP
0 370 162 May 1990 EP
0 387 724 September 1990 EP
0 429 866 June 1991 EP
0 441 323 August 1991 EP
0 453 211 October 1991 EP
0 462 405 December 1991 EP
0 501 234 September 1992 EP
0 516 130 December 1992 EP
0 519 765 December 1992 EP
0 643 301 March 1995 EP
0 683 465 November 1995 EP
0 431 310 January 1996 EP
0 589 439 August 1998 EP
0 880 936 December 1998 EP
0 954 090 November 1999 EP
0 960 627 December 1999 EP
1 174 817 January 2002 EP
1 177 802 February 2002 EP
1 197 178 April 2002 EP
1 500 025 April 2003 EP
1 813 188 August 2007 EP
1 490 131 December 2007 EP
2 062 527 May 2009 EP
2 228 004 September 2010 EP
2 243 506 October 2010 EP
2 381 260 October 2011 EP
254513 October 1981 ES
2717919 September 1995 FR
2 121 971 January 1984 GB
2 303 706 February 1997 GB
2 312 022 October 1997 GB
2 312 046 October 1997 GB
01-301118 December 1989 JP
01-308568 December 1989 JP
04-231966 August 1992 JP
07-502678 March 1995 JP
07-289638 November 1995 JP
11-128344 May 1999 JP
2000-111374 April 2000 JP
2000-510575 August 2000 JP
2000-515716 November 2000 JP
2001-356034 December 2001 JP
2002-506514 February 2002 JP
2002-131105 May 2002 JP
2003-038642 February 2003 JP
2003-050144 February 2003 JP
2005-021463 January 2005 JP
2005-524081 March 2005 JP
2006-517423 July 2006 JP
2007-071695 March 2007 JP
2007-518471 July 2007 JP
2007-520270 July 2007 JP
2007-275106 October 2007 JP
2008-249400 October 2008 JP
4322661 June 2009 JP
2010-063767 March 2010 JP
WO 84/000690 March 1984 WO
WO 84/000894 March 1984 WO
WO 90/007942 July 1990 WO
WO 91/000113 January 1991 WO
WO 91/016087 October 1991 WO
WO 91/016416 October 1991 WO
WO 93/004284 March 1993 WO
WO 95/016200 June 1995 WO
WO 95/031233 November 1995 WO
WO 96/008755 March 1996 WO
WO 96/025186 August 1996 WO
WO 96/028209 September 1996 WO
WO 96/041156 December 1996 WO
WO 97/010013 March 1997 WO
WO 97/030333 August 1997 WO
WO 98/004304 February 1998 WO
WO 98/012670 March 1998 WO
WO 98/014234 April 1998 WO
WO 98/019263 May 1998 WO
WO 98/044320 October 1998 WO
WO 98/056441 December 1998 WO
WO 99/015216 April 1999 WO
WO 99/051003 October 1999 WO
WO 99/052575 October 1999 WO
WO 00/013580 March 2000 WO
WO 00/013726 March 2000 WO
WO 00/041621 July 2000 WO
WO 01/014974 March 2001 WO
WO 01/033484 May 2001 WO
WO 01/033710 May 2001 WO
WO 02/005702 January 2002 WO
WO 02/009795 February 2002 WO
WO 02/027276 April 2002 WO
WO 02/066101 August 2002 WO
WO 02/087664 November 2002 WO
WO 03/006091 January 2003 WO
WO 03/053498 July 2003 WO
WO 03/093780 November 2003 WO
WO 2004/035115 April 2004 WO
WO 2004/060455 July 2004 WO
WO 2004/070556 August 2004 WO
WO 2004/070994 August 2004 WO
WO 2004/112579 December 2004 WO
WO 2005/018716 March 2005 WO
WO 2005/030489 April 2005 WO
WO 2005/036447 April 2005 WO
WO 2005/050526 June 2005 WO
WO 2005/057175 June 2005 WO
WO 2005/065146 July 2005 WO
WO 2005/065749 July 2005 WO
WO 2005/082450 September 2005 WO
WO 2005/118015 December 2005 WO
WO 2006/016122 February 2006 WO
WO 2006/022906 March 2006 WO
WO 2007/000426 January 2007 WO
WO 2007/033025 March 2007 WO
WO 2007/035567 March 2007 WO
WO 2007/087443 August 2007 WO
WO 2008/004560 January 2008 WO
WO 2008/019016 February 2008 WO
WO 2008/053193 May 2008 WO
WO 2008/059492 May 2008 WO
WO 2008/063429 May 2008 WO
WO 2008/067245 June 2008 WO
WO 2008/088490 July 2008 WO
WO 2008/134146 November 2008 WO
WO 2009/016504 February 2009 WO
WO 2009/023406 February 2009 WO
WO 2009/023407 February 2009 WO
WO 2009/023634 February 2009 WO
WO 2009/026420 February 2009 WO
WO 2009/039203 March 2009 WO
WO 2009/039214 March 2009 WO
WO 2009/049252 April 2009 WO
WO 2009/127683 October 2009 WO
WO 2009/141504 November 2009 WO
WO 2010/017279 February 2010 WO
WO 2010/075371 July 2010 WO
WO 2010/099313 September 2010 WO
WO 2010/114929 October 2010 WO
WO 2010/119409 October 2010 WO
WO 2010/124127 October 2010 WO
WO 2010/135646 November 2010 WO
WO 2010/135654 November 2010 WO
WO 2010/135670 November 2010 WO
WO 2010/135686 November 2010 WO
WO 2010/148205 December 2010 WO
WO 2011/017778 February 2011 WO
WO 2011/080188 July 2011 WO
WO 2011/109774 September 2011 WO
WO 2012/042763 April 2012 WO
WO 2012/082599 June 2012 WO
WO 2012/108910 August 2012 WO
WO 2012/167090 December 2012 WO
WO 2013/028524 February 2013 WO
WO 2013/036854 March 2013 WO
WO 2013/096769 June 2013 WO
WO 2014/004216 January 2014 WO
WO 2015/134478 September 2015 WO
WO 2017/051271 March 2017 WO
WO 2017/144366 August 2017 WO
WO 2017/197024 November 2017 WO
WO 2019/092680 May 2019 WO
WO 2020/214717 October 2020 WO
WO 2022/020184 January 2022 WO
Other references
  • Daimiwal et al., “Wireless Transfusion Supervision and Analysis Using Embedded System”, IEEE, 2010 International Conference ICBBT, China, Apr. 2010, pp. 56-60.
  • Alaedeen et al., “Total Parenteral Nutrition-Associated Hyperglycemia Correlates with Prolonged Mechanical Ventilation and Hospital Stay in Septic Infants”, Journal of Pediatric Surgery, Jan. 2006, vol. 41, No. 1, pp. 239-244.
  • ALARIS® Medical Systems, “Signature Edition® GOLD—Single & Dual Channel Infusion System”, San Diego, CA, USA, date unknown, but believed to be at least as early as Nov. 29, 2008, pp. 2-88 & 2-91.
  • Allegro, “3955—Full-Bridge PWM Microstepping Motor Drive”, Datasheet, 1997, pp. 16.
  • Aragon, Daleen RN, Ph.D., CCRN, “Evaluation of Nursing Work Effort and Perceptions About Blood Glucose Testing in Tight Glycemic Control”, American Journal of Critical Care, Jul. 2006, vol. 15, No. 4, pp. 370-377.
  • Baxter, “Baxter Receives 510(k) Clearance for Next-Generation SIGMA Spectrum Infusion Pump with Master Drug Library” Press Release, May 8, 2014, pp. 2. http://web.archive.org/web/20160403140025/http://www.baxter.com/news-media/newsroom/press-releases/2014/05_08_14_sigma.page.
  • Bequette, Ph.D., “A Critical Assessment of Algorithms and Challenges in the Development of a Closed-Loop Artificial Pancreas”, Diabetes Technology & Therapeutics, Feb. 28, 2005, vol. 7, No. 1, pp. 28-47.
  • Bequette, B. Wayne, Ph.D., “Analysis of Algorithms for Intensive Care Unit Blood Glucose Control”, Journal of Diabetes Science and Technology, Nov. 2007, vol. 1, No. 6, pp. 813-824.
  • Binder et al., “Insulin Infusion with Parenteral Nutrition in Extremely Low Birth Weight Infants with Hyperglycemia”, Journal of Pediatrics, Feb. 1989, vol. 114, No. 2, pp. 273-280.
  • Bode et al., “Intravenous Insulin Infusion Therapy: Indications, Methods, and Transition to Subcutaneous Insulin Therapy”, Endocrine Practice, Mar./Apr. 2004, vol. 10, Supplement 2, pp. 71-80.
  • Buhrdorf et al., “Capacitive Micromachined Ultrasonic Transducers and their Application”, Proceedings of the IEEE Ultrasonics Symposium, Feb. 2001, vol. 2, pp. 933-940.
  • Cannon, MD et al., “Automated Heparin-Delivery System to Control Activated Partial Thromboplastin Time”, Circulation, Feb. 16, 1999, vol. 99, pp. 751-756.
  • “CareAware® Infusion Management”, Cerner Store, as printed May 12, 2011, pp. 3, https://store.cerner.eom/items/7.
  • Chen et al. “Enabling Location-Based Services on Wireless LANs”, The 11th IEEE International Conference on Networks, ICON 2003, Sep. 28-Oct. 1, 2003, pp. 567-572.
  • Cheung et al., “Hyperglycemia is Associated with Adverse Outcomes in Patients Receiving Total Parenteral Nutrition”, Diabetes Care, Oct. 2005, vol. 28, No. 10, pp. 2367-2371.
  • Coley et al., “Performance of Three Portable Infusion-Pump Devices Set to Deliver 2 mL/hr”, American Journal of Health-System Pharmacy, Jun. 1, 1997, vol. 54, No. 11, pp. 1277-1280.
  • “Continually vs Continuously”, https://web.archive.org/web/20090813092423/http://www.diffen.com/difference/Continually_vs_Continuously, as accessed Aug. 13, 2009 in 4 pages.
  • “CritiCore® Monitor: Critical Fluid Output and Core Bladder Temperature Monitor”, BARD Urological Catheter Systems, Advertisement, 2005, pp. 2.
  • Davidson et al., “A Computer-Directed Intravenous Insulin System Shown to be Safe, Simple, and Effective in 120,618 h of Operation”, Diabetes Care, Oct. 2005, vol. 28, No. 10, pp. 2418-2423.
  • “Decision of the Administrative Council of Oct. 16, 2013 Amending Rule 135 and 164 of the Implementing Regulations to the European Patent Convention (CA/D 17/13)”, Official Journal EPO Nov. 2013, Nov. 2013, pp. 503-506. http://archive.epo.org/epo/pubs/oj013/11_13/11_5033.pdf.
  • “Decision of the Administrative Council of Oct. 27, 2009 Amending the Implementing Regulations to the European Patent Convention (CA/D 20/09)”, Official Journal EPO Dec. 2009, Dec. 2009, pp. 582-584. http://archive.epo.org/epo/pubs/oj009/12_09/12_5829.pdf.
  • Diabetes Close Up, Close Concerns AACE Inpatient Management Conference Report, Consensus Development Conference on Inpatient Diabetes and Metabolic Control, Washington, D.C., Dec. 14-16, 2003, pp. 1-32.
  • “Differential Pressure Transmitter, Series PD-39 X”, SensorsOne Ltd., Advertisement, Dec. 2005, pp. 2.
  • Dunster et al., “Flow Continuity of Infusion Systems at Low Flow Rates”, Anaesthesia and Intensive Care, Oct. 1995, vol. 23, No. 5, pp. 5.
  • Fogt et al., Development and Evaluation of a Glucose Analyzer for a Glucose-Controlled Insulin Infusion System (Biostator®), Clinical Chemistry, 1978, vol. 24, No. 8, pp. 1366-1372.
  • “Froth”, http://www.merriam-webster.com/dictionary/froth, as accessed May 13, 2015 in 1 page.
  • Goldberg et al., “Clinical Results of an Updated Insulin Infusion Protocol in Critically Ill Patients”, Diabetes Spectrum, 2005, vol. 18, No. 3, pp. 188-191.
  • Halpern et al., “Changes in Critical Care Beds and Occupancy in the United States 1985-2000: Differences Attributable to Hospital Size”, Critical Care Medical, Aug. 2006, vol. 34, No. 8, pp. 2105-2112.
  • Hospira, “Plum A+™ Infusion System” as archived Dec. 1, 2012, pp. 2. www.hospira.com/products_and_services/infusion_pumps/plum/index.
  • Hospira, “Plum XL™ Series Infusion System” Technical Service Manual, Feb. 2005, Lake Forest, Illinois, USA, pp. i-vii, 5-14, 8-3.
  • Ilfeld et al., “Delivery Rate Accuracy of Portable, Bolus-Capable Infusion Pumps Used for Patient-Controlled Continuous Regional Analgesia”, Regional Anesthesia and Pain Medicine, Jan.-Feb. 2003, vol. 28, No. 1, pp. 17-23.
  • Ilfeld et al., “Portable Infusion Pumps Used for Continuous Regional Analgesia: Delivery Rate Accuracy and Consistency”, Regional Anesthesia and Pain Medicine, Sep.-Oct. 2003, vol. 28, No. 5, pp. 424-432.
  • JMS Co., Ltd., “Infusion Pump: OT-701”, Tokyo, Japan, 2002, pp. 4.
  • Kim, M.D., et al., “Hyperglycemia Control of the Nil Per Os Patient in the Intensive Care Unit: Introduction of a Simple Subcutaneous Insulin Algorithm”, Nov. 2012, Journal of Diabetes Science and Technology, vol. 6, No. 6, pp. 1413-1419.
  • Kutcher et al., “The Effect of Lighting Conditions on Caries Interpretation with a Laptop Computer in a Clinical Setting”, Elsevier, Oct. 2006, vol. 102, No. 4, pp. 537-543.
  • Lamsdale et al., “A Usability Evaluation of an Infusion Pump by Nurses Using a Patient Simulator”, Proceedings of the Human Factors and Ergonomics Society 49th Annual Meeting, Sep. 2005, pp. 1024-1028.
  • Logan et al., “Fabricating Capacitive Micromachined Ultrasonic Transducers with a Novel Silicon-Nitride-Based Wafer Bonding Process”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, May 2009, vol. 56, No. 5, pp. 1074-1084.
  • Magaji et al., “Inpatient Management of Hyperglycemia and Diabetes”, Clinical Diabetes, 2011, vol. 29, No. 1, pp. 3-9.
  • Mauseth et al., “Proposed Clinical Application for Tuning Fuzzy Logic Controller of Artificial Pancreas Utilizing a Personalization Factor”, Journal of Diabetes Science and Technology, Jul. 2010, vol. 4, No. 4, pp. 913-922.
  • Maynard et al., “Subcutaneous Insulin Order Sets and Protocols: Effective Design and Implementation Strategies”, Journal of Hospital Medicine, Sep./Oct. 2008, vol. 3, Issue 5, Supplement 5, pp. S29-S41.
  • Merry et al., “A New, Safety-Oriented, Integrated Drug Administration and Automated Anesthesia Record System”, Anesthesia & Analgesia, Aug. 2001, vol. 93, No. 2 pp. 385-390.
  • Microchip Technology Inc., “MTA11200B; TrueGauge™ Intelligent Battery Management I.C.”, https://www.elektronik.ropla.eu/pdf/stock/mcp/mta11200b.pdf, 1995, pp. 44.
  • Moghissi, Etie, MD, FACP, FACE, “Hyperglycemia in Hospitalized Patients”, A Supplement to ACP Hospitalist, Jun. 15, 2008, pp. 32.
  • Nuckols et al., “Programmable Infusion Pumps in ICUs: An Analysis of Corresponding Adverse Drug Events”, Journal of General Internal Medicine, 2007, vol. 23, Supp. 1, pp. 41-45.
  • Pretty et al., “Hypoglycemia Detection in Critical Care Using Continuous Glucose Monitors: An in Silico Proof of Concept Analysis”, Journal of Diabetes Science and Technology, Jan. 2010, vol. 4, No. 1, pp. 15-24.
  • Saager et al., “Computer-Guided Versus Standard Protocol for Insulin Administration in Diabetic Patients Undergoing Cardiac Surgery”, Annual Meeting of the American Society of Critical Care Anesthesiologists, Oct. 13, 2006.
  • Sebald et al., “Numerical Analysis of a Comprehensive in Silico Subcutaneous Insulin Absorption Compartmental Model”, 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sep. 2-6, 2009, pp. 3901-3904.
  • SGS-Thomson Microelectronics, “L6219—Stepper Motor Drive”, Datasheet, Dec. 1996, pp. 10.
  • SGS-Thomson Microelectronics, “PBL3717A—Stepper Motor Drive”, Datasheet, Apr. 1993, pp. 11.
  • Simonsen, Michael Ph.D., POC Testing, New Monitoring Strategies on Fast Growth Paths in European Healthcare Arenas, Biomedical Business & Technology, Jan. 2007, vol. 30, No. 1, pp. 1-36.
  • Smith, Joe, “Infusion Pump Informatics”, CatalyzeCare: Transforming Healthcare, as printed May 12, 2011, pp. 2.
  • Tang et al., “Linear Dimensionality Reduction Using Relevance Weighted LDA”, Pattern Recognition, 2005, vol. 38, pp. 485-493, http://staff.ustc.edu.cn/˜ketang/papers/TangSuganYaoQin_PR04.pdf.
  • Thomas et al., “Implementation of a Tight Glycaemic Control Protocol Using a Web-Based Insulin Dose Calculator”, Anaesthesia, 2005, vol. 60, pp. 1093-1100.
  • Van Den Berghe, M.D., Ph.D., et al., “Intensive Insulin Therapy in Critically Ill Patients”, The New England Journal of Medicine, Nov. 8, 2001, vol. 345, No. 19, pp. 1359-1367.
  • Van Den Berghe, M.D., Ph.D., et al., “Intensive Insulin Therapy in the Medical ICU”, The New England Journal of Medicine, Feb. 2, 2006, vol. 354, No. 5, pp. 449-461.
  • Westbrook et al., “Errors in the Administration of Intravenous Medications in Hospital and the Role of Correct Procedures and Nurse Experience”, BMJ Quality & Safety, 2011, vol. 20, pp. 1027-1034.
  • Zakariah et al., “Combination of Biphasic Transmittance Waveform with Blood Procalcitonin Levels for Diagnosis of Sepsis in Acutely Ill Patients”, Critical Care Medicine, 2008, vol. 36, No. 5, pp. 1507-1512.
  • International Search Report and Written Opinion received in PCT Application No. PCT/US2014/039986, dated Oct. 17, 2014 in 14 pages.
  • International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/US2014/039986, dated Dec. 10, 2015 in 12 pages.
Patent History
Patent number: 11596737
Type: Grant
Filed: Aug 12, 2021
Date of Patent: Mar 7, 2023
Patent Publication Number: 20220031943
Assignee: ICU Medical, Inc. (San Clemente, CA)
Inventors: John Hicks Dumas, III (Libertyville, IL), Paul T. Kotnik (Commerce Township, MI), Kunal Sur (Evanston, IL), Anatoly S. Belkin (Glenview, IL), Timothy L. Ruchti (Gurnee, IL)
Primary Examiner: Walter L Lindsay, Jr.
Assistant Examiner: Milton Gonzalez
Application Number: 17/401,164
Classifications
Current U.S. Class: With Light Detector (e.g., Photocell) (356/28)
International Classification: A61M 5/168 (20060101); G01N 29/02 (20060101); A61M 5/142 (20060101); A61M 5/36 (20060101); G01N 29/34 (20060101); G01N 29/42 (20060101); H03M 1/12 (20060101);