Hydrogen fueling systems and methods
According to aspects, hydrogen fueling systems and methods are provided, including vehicle-to-vehicle communication techniques, hydrogen cooling techniques and/or hydrogen dispenser control techniques that facilitate improving aspects of a hydrogen fueling station.
Latest Ivys Inc. Patents:
This application claims the benefit under 35 U.S.C. § 120 and is a continuation (CON) of U.S. application Ser. No. 17/374,268, entitled “HYDROGEN FUELING SYSTEMS AND METHODS” filed on Jul. 13, 2021, which claims priority under 35 U.S.C. § 119 to U.S. Provisional Application Ser. No. 63/195,435, filed Jun. 1, 2021 and titled HYDROGEN FUELING SYSTEMS AND METHODS, to U.S. Provisional Application Ser. No. 63/131,953, filed Dec. 30, 2020 and titled VEHICLE COMMUNICATION IN HYDROGEN GAS DISPENSING SYSTEMS, to U.S. Provisional Application Ser. No. 63/057,163, filed Jul. 27, 2020 and titled VEHICLE TO DISPENSER COMMUNICATION METHODS AND APPARATUS, to U.S. Provisional Application Ser. No. 63/057,150, filed Jul. 27, 2020 and titled HYDROGEN DISPENSER METHODS AND APPARATUS, to U.S. Provisional Application Ser. No. 63/057,159, filed Jul. 27, 2020 and titled HYDROGEN COOLING METHODS AND APPARATUS, to U.S. Provisional Application Ser. No. 63/051,181, filed Jul. 13, 2020 and titled VEHICLE TO DISPENSER COMMUNICATION METHODS AND APPARATUS, each application of which is herein incorporated by reference in its entirety.
BACKGROUNDHydrogen fuel cell vehicles (HFCV) are emerging as a zero-emission alternative to internal combustion engine vehicles. HFCVs operate by providing compressed hydrogen to a fuel cell stack which converts the hydrogen into electricity to drive an electric motor. Similar to internal combustion engine vehicles, HFCVs are equipped with fuel tanks that must be refilled periodically. To safely and/or efficiently dispense hydrogen gas to a vehicle, a number of parameters are typically required, including tank volume, measured pressure and measured temperature. Conventionally, fueling parameters are communicated between a hydrogen gas dispenser and the vehicle using the set of protocols specified by the Infrared Data Association (IrDA) for optical line-of-sight (LOS) wireless communication. IrDA provides a communication scheme with a low bit error rate suitable for communication between a dispenser on a vehicle.
HFCVs often have fuel tanks that utilize Compressed Hydrogen Storage Systems (CHSS), which are very sensitive to high temperatures. Many current fueling protocols adopted by hydrogen refueling stations require gaseous hydrogen fuel to be cooled between −40° C. to −17.5° C. prior to dispending to the vehicle in order to ensure the vehicle's CHSS maintain their bulk gas temperatures below 85° C. regardless of ambient or previous driving conditions. Current fueling stations typically employ one of two types of heat exchangers to cool hydrogen gas for dispensing into the fuel tank of an HFCV.
A first conventional heat exchanger includes a large cast aluminum block (typically, in a range between 600-1000 kg) that is buried underneath the fuel dispenser and that is cooled to very low temperatures by a refrigeration or condenser unit (also referred to as a “chiller” or “cooler”) via refrigeration tubing about which the aluminum block was cast. The aluminum block is also cast with stainless steel tubing through which hydrogen gas is passed to cool the hydrogen gas before dispensing the hydrogen into the fuel tank of the vehicle. Specifically, heat exchange between the hydrogen gas flowing through the stainless-steel tubing and the chilled aluminum block cools the hydrogen gas to the low temperatures needed for HFCV dispensing.
A second conventional heat exchanger employs a diffusion-bonded heat exchanger that uses a conventional plate-to-plate configuration that is designed for high pressure. The diffusion-bonded heat exchanger is fluidly coupled to a reservoir of coolant that is brought down to the low temperatures needed for hydrogen gas dispensing by a large refrigeration unit (chiller). Chilled coolant from the reservoir is passed through the diffusion-bonded heat exchanger along with hydrogen gas to cool the hydrogen gas before dispensing into the fuel tank of the HFCV.
SUMMARYSome embodiments include a hydrogen gas fueling station comprising a roadside unit positioned at the fueling station and configured to communicate with a first on-board unit associated with a first vehicle, and a first dispenser communicatively coupled to the roadside unit and configured to dispense hydrogen gas via a first nozzle, the first dispenser configured to provide first nozzle information corresponding to the first nozzle to the first vehicle when the first vehicle has engaged with the first nozzle, wherein the roadside unit is configured to receive feedback from the first vehicle responsive to the first nozzle identification information via a first connection established with the first on-board unit.
Some embodiments include method of performing vehicle-to-nozzle pairing comprising establishing a first connection between a roadside unit positioned at a fueling station and a first on-board unit associated with a first vehicle, engaging a first nozzle of a first dispenser with a first vehicle, providing first nozzle information corresponding to the first nozzle to the first vehicle, receiving feedback from the first vehicle responsive to the first nozzle identification information via the first connection, and associating the first connection with the first nozzle based on the received feedback.
Some embodiments include a fueling station comprising a roadside unit positioned at the fueling station and configured to communicate with a plurality of on-board units associated with respective vehicles via a respective wireless connection established between the roadside unit and each of the plurality of on-board units, and at least one controller configured to process fueling information received via each respective wireless connection and configured to cause at least one action to be performed based on the received fueling information.
Some embodiments include a method comprising establishing a wireless connection between a roadside unit positioned at a fueling station and each of a plurality of on-board units associated with respective vehicles, receiving fueling information via each wireless connection, and performing at least one action at the fueling station in response to the received fueling information.
Some embodiments includes fueling station comprising a roadside unit positioned at the fueling station and configured to communicate with a plurality of on-board units associated with respective vehicles via a respective wireless connection between the roadside unit and each of the plurality of on-board units, and at least one controller coupled to the roadside unit, the at least one controller configured to process fueling information received via each respective wireless connection and configured to cause at least one action to be performed based on an expected refueling demand determined from the received fueling information.
Some embodiments include a method comprising establishing a wireless connection between a roadside unit positioned at a fueling station and each of a plurality of on-board units associated with respective vehicles, receiving fueling information via each wireless connection, and performing at least one action at the fueling station based on an expected refueling demand determined from the received fueling information.
Some embodiments include a fueling station comprising a roadside unit positioned at the fueling station and configured to communicate with a first on-board unit associated with a first vehicle via a first wireless connection established between the roadside unit and the on-board unit, and at least one controller configured to receive a nozzle reservation request via the first wireless connection and configured to negotiate a nozzle reservation via the first wireless connection.
Some embodiments include a method comprising establishing a wireless connection between a roadside unit positioned at a fueling station and a first on-board unit associated with a first vehicle, receiving a nozzle reservation request via the first wireless connection, and negotiating a nozzle reservation via the first wireless connection.
Some embodiments include a fueling station comprising a first roadside unit positioned at the fueling station and configured to communicate with a plurality of on-board units associated with respective vehicles via a respective wireless connection between the roadside unit and each of the plurality of on-board units, and at least one controller coupled to the first roadside unit, the at least one controller configured to process fueling information received from the roadside unit via each respective wireless connection, determine status information indicative of refueling capability of the fueling station, and provide the status information to at least one of the plurality of on-board units via the respective wireless connection.
Some embodiments include a method comprising establishing a wireless connection between a roadside unit positioned at a fueling station and each of a plurality of on-board units associated with respective vehicles, receiving fueling information received via each respective wireless connection, determining status information indicative of refueling capability of the fueling station, and providing the status information to at least one of the plurality of on-board units via the respective wireless connection.
Some embodiments include a hydrogen cooling system comprising a large-volume reservoir for holding coolant, a small-capacity refrigeration unit coupled to the large-volume reservoir to reduce a temperature of coolant held in the large-volume reservoir, and a heat exchanger configured to thermally couple coolant held by the large-volume reservoir to hydrogen gas flowing through the heat exchanger via heat exchange with the coolant.
Some embodiments include a hydrogen cooling system comprising a large-volume reservoir for holding coolant, a small-capacity refrigeration unit fluidly coupled to the large-volume reservoir to reduce the temperature of coolant held in the large-volume reservoir, and a heat exchanger fluidly coupled to the large-volume reservoir and a hydrogen gas source, the heat exchanger configured to cool hydrogen gas from the hydrogen gas source using coolant from the large-volume reservoir.
Some embodiments include a hydrogen fueling system comprising a first dispenser configured to dispense hydrogen gas via a first nozzle, a second dispenser configured to dispense hydrogen gas via a second nozzle, a large-volume reservoir for holding coolant, a small-capacity refrigeration unit coupled to the large-volume reservoir to reduce a temperature of coolant held in the large-volume reservoir, a first heat exchanger coupled to the large-volume reservoir and configured to chill hydrogen gas via heat transfer with coolant held by the large-volume reservoir and provide chilled hydrogen gas to the first dispenser for dispensing via the first nozzle, and a second heat exchanger coupled to the large-volume reservoir and configured to chill hydrogen gas via heat transfer with coolant held by the large-volume reservoir and provide chilled hydrogen gas to the second dispenser for dispensing via the second nozzle.
Some embodiments include a hydrogen fueling system comprising a first dispenser configured to dispense hydrogen gas via a first nozzle, a second dispenser configure to dispense hydrogen gas via a second nozzle, a large-volume reservoir for holding coolant, a small-capacity refrigeration unit coupled to the large-volume reservoir to reduce a temperature of coolant held in the large-volume reservoir, and a first heat exchanger coupled to the large-volume reservoir and configured to chill hydrogen gas via heat transfer with coolant held by the large-volume reservoir and provide chilled hydrogen gas to the first dispenser for dispensing via the first nozzle and to the second dispenser for dispensing via the second nozzle.
Some embodiments include a hydrogen fueling system comprising a first dispenser configured to dispense hydrogen gas via a first nozzle, a second dispenser configure to dispense hydrogen gas via a second nozzle, a first large-volume reservoir for holding coolant, a second large-volume reservoir for holding coolant, a small-capacity refrigeration unit coupled to the first large-volume reservoir and the second large-volume reservoir to reduce a temperature of coolant held in the first large-volume reservoir and the second large-volume reservoir, a first heat exchanger coupled to the large-volume reservoir and configured to chill hydrogen gas via heat transfer with coolant held the first large-volume reservoir and provide chilled hydrogen gas to the first dispenser for dispensing via the first nozzle, and a second heat exchanger coupled to the second large-volume reservoir and configured to chill hydrogen gas via heat transfer with coolant held by the second large-volume reservoir and provide chilled hydrogen gas to the second dispenser for dispensing via the second nozzle.
Some embodiments include a hydrogen cooling system comprising a first reservoir comprising a first tank configured to hold first coolant comprising at least one phase-change material, a refrigeration unit coupled to the first reservoir to chill the first coolant to cause the phase-change material held by the first tank to change from a first state to a second state, and a first heat exchanger configured to thermally couple the first coolant held by the first reservoir to hydrogen gas flowing through the heat exchanger via heat exchange with the first coolant.
Some embodiments include a hydrogen cooling system comprising a first reservoir comprising a first tank configured to hold first coolant comprising at least one phase change material, a second reservoir comprising second tank configured to hold second coolant, a refrigeration unit coupled to the first reservoir to chill the at least one phase change material to cause the phase change material to change from a first state to a second state, and coupled to the second reservoir to chill the second coolant, and a first heat exchanger configured to thermally couple the first coolant and hydrogen gas flowing through the heat exchanger to chill the hydrogen gas to a first temperature via heat exchange with the first coolant, and a second heat exchanger configured to thermally couple the second coolant and the hydrogen gas chilled to the first temperature to chill the hydrogen gas to a second temperature via heat exchange with the second coolant and to provide the chilled hydrogen gas to at least one first dispenser.
Some embodiments include a hydrogen fueling system comprising a first dispenser configured to dispense hydrogen gas via a first nozzle, a second dispenser configured to dispense hydrogen gas via a second nozzle, a large-volume reservoir for holding coolant, a single small-capacity refrigeration unit fluidly coupled to the large-volume reservoir to reduce the temperature of coolant held in the large-volume reservoir, a first heat exchanger fluidly coupled to the large-volume reservoir and a hydrogen gas source, the first heat exchanger configured to provide cooled hydrogen gas for dispensing by the first dispenser via the first nozzle, and a second heat exchanger fluidly coupled to the large-volume reservoir and a hydrogen gas source, the heat exchanger configured to provide cooled hydrogen gas for dispensing by the second dispenser via the second nozzle.
Some embodiments include a hydrogen fueling system comprising a first dispenser configured to dispense hydrogen gas via a first nozzle, a second dispenser configure to dispense hydrogen gas via a second nozzle, a large-volume reservoir for holding coolant, a small-capacity refrigeration unit fluidly coupled to the large-volume reservoir to reduce the temperature of coolant held in the large-volume reservoir, and a first heat exchanger fluidly coupled to the large-volume reservoir and a hydrogen gas source, the first heat exchanger configured to provide cooled hydrogen gas to the first dispenser for dispensing via the first nozzle and to the second dispenser for dispensing via the second nozzle.
Some embodiments include a hydrogen fueling system comprising a first dispenser configured to dispense hydrogen gas via a first nozzle, a second dispenser configure to dispense hydrogen gas via a second nozzle, a first large-volume reservoir for holding coolant, a second large volume reservoir for holding coolant, a small-capacity refrigeration unit fluidly coupled to the first large-volume reservoir and the second large-volume reservoir to reduce the temperature of coolant held in the first and second large-volume reservoirs, a first heat exchanger fluidly coupled to the first large-volume reservoir and a hydrogen gas source, the first heat exchanger configured to provide cooled hydrogen gas for dispensing by the first dispenser via the first nozzle, and a second heat exchanger fluidly coupled to the second large-volume reservoir and a hydrogen gas source, the heat exchanger configured to provide cooled hydrogen gas for dispensing by the second dispenser via the second nozzle.
Some embodiments include a hydrogen cooling system comprising a first reservoir comprising a first tank holding at least one phase change material, a refrigeration unit coupled to the first reservoir to chill the at least one phase change material to cause the phase change material held by the first tank to change from a first state to a second state, and a first heat exchanger to receive hydrogen from a hydrogen gas source and provide hydrogen gas to at least one first dispenser, the first heat exchanger coupled to the first reservoir to chill the hydrogen gas from the hydrogen gas source to provide chilled hydrogen to the at least one first dispenser.
Some embodiments include a hydrogen cooling system comprising a first reservoir comprising a first tank configured to hold first coolant comprising at least one phase-change material, a second reservoir comprising a second tank configured to hold second coolant, a refrigeration unit coupled to the first reservoir to chill the at least one phase-change material to cause the at least one phase-change material to change from a first state to a second state, and coupled to the second reservoir to chill the second coolant, a first heat exchanger configured to thermally couple the first coolant and hydrogen gas flowing through the first heat exchanger to chill the hydrogen gas to a first temperature via heat exchange with the first coolant, and a second heat exchanger configured to thermally couple the second coolant and the hydrogen gas chilled to the first temperature to chill the hydrogen gas to a second temperature via heat exchange with the second coolant and to provide the chilled hydrogen gas to at least one first dispenser.
Some embodiments include a hydrogen cooling system comprising a first reservoir comprising a first tank holding at least one phase change material, a second reservoir comprising second tank holding at least one non-phase change coolant, a refrigeration unit coupled to the first reservoir to chill the at least one phase change material to cause the phase change material held by the first tank to change from a first state to a second state, and coupled to the second reservoir to chill the at least one non-phase change coolant, a first heat exchanger to receive hydrogen from a hydrogen gas source, the first heat exchanger coupled to the first reservoir to chill the hydrogen gas to a first temperature via heat exchange with the at least one phase change material, and a second heat exchanger to receive the hydrogen gas at the first temperature from the first heat exchanger, the second heat exchanger coupled to the second reservoir to chill the hydrogen gas via heat exchange with the at least one non-phase change material to chill the hydrogen gas to a second temperature and provide the hydrogen gas to at least one first dispenser.
Some embodiments include an annular heat exchanger comprising a shell having a coolant inlet and a coolant outlet, at least one coil comprising nickel alloy tubing concentrically arranged within the shell, the at least one coil having a hydrogen inlet and a hydrogen outlet, and a plurality of copper fins brazed to the at least one nickel alloy coil using silver or silver alloy, wherein the annular heat exchanger is configured to chill hydrogen gas that is caused to flow through the at least one coil via the hydrogen inlet and the hydrogen outlet by heat exchange with coolant that is caused to circulate through the shell via the coolant inlet and the coolant outlet.
Some embodiments include annular heat exchanger comprising a shell having a coolant inlet and a coolant outlet, at least one coil comprising tubing concentrically arranged within the shell, the tubing having a wall thickness between 0.03 and 0.06 inches and a length between 30 and 50 feet, the at least one coil further comprising a hydrogen inlet and a hydrogen outlet and having between 20 and 35 turns, and a plurality of fins attached to the at least one coil, wherein the annular heat exchanger is configured to chill hydrogen gas that is caused to flow through the at least one coil via the hydrogen inlet and the hydrogen outlet via heat exchange with coolant that is caused to circulate through the shell via the coolant inlet and the coolant outlet.
Some embodiments include a hydrogen gas dispenser configured to receive hydrogen gas from a hydrogen gas supply and provide the hydrogen gas to a fuel tank of a vehicle during a fueling event, the hydrogen gas dispenser comprising at least one nozzle configured to engage with the fuel tank to dispense hydrogen gas to the fuel tank during the fueling event, a valve bank comprising a plurality of fixed-size orifice valves arranged in parallel, the bank configured to receive hydrogen gas from the hydrogen gas supply and to deliver hydrogen gas passing through one or more of the plurality of fixed-size orifice valves that have been opened, and a dispenser controller coupled to the bank and configured to selectively open or close the plurality of fixed-size orifice valves to deliver gas at desired target pressures and/or target flow rates to the at least one nozzle.
Some embodiments include a hydrogen gas dispenser configured to receive hydrogen gas from a hydrogen gas supply and provide the hydrogen gas to a fuel tank of a vehicle during a fueling event, the hydrogen gas dispenser comprising at least one nozzle configured to engage with the fuel tank to dispense hydrogen gas to the fuel tank during the fueling event, a variable-size valve comprising a valve stem that when rotated changes a size of the valve opening, the variable-size valve coupled to receive hydrogen gas from the hydrogen gas such that changing the size of the valve opening results in a change in a flow rate of hydrogen gas passing through the valve opening, a direct drive servo motor coupled to the valve stem of the variable-size valve, the direct drive servo motor configured to rotate the valve stem to change the size of the valve opening, wherein one rotation of the direct drive servo motor results in one rotation of the valve stem, and a dispenser controller coupled to the direct drive servo motor and configured to cause the direct drive servo motor to rotate to change the size of the valve opening to provide hydrogen gas at desired flow rates based on target pressures and/or target flow rates of the fuel tank of the vehicle during the fueling event.
Some embodiments include coaxial tubing for piping hydrogen gas between components of a hydrogen fueling station, the coaxial tubing comprising inner tubing configured to allow hydrogen gas to be piped between one or more components of the hydrogen fueling station, middle tubing arranged concentrically about the inner tubing such that when phase change material is contained in the middle tubing, the phase change material is positioned to thermally couple to hydrogen gas flowing through the inner tubing, and outer tubing arranged concentrically about the middle tubing such that when coolant is conveyed through the outer tubing, the coolant thermally couples to the phase-change material when present.
Some embodiments include a hydrogen fueling system comprising coaxial tubing comprising inner tubing configured to allow hydrogen gas to be piped between one or more components of the hydrogen fueling station, middle tubing arranged concentrically about the inner tubing so that a phase change material contained in the middle tubing thermally couples to hydrogen gas flowing through the inner tubing, and outer tubing arranged concentrically about the middle such that when coolant is conveyed through the outer tubing, the coolant thermally couples to the phase-change material contained in the middle tubing, and a chiller system configured to chill coolant to a temperature sufficient to cause a state transition of the phase-change material, the chiller system coupled to the coaxial tubing to convey chilled coolant through the outer tubing to cause the state transition of the phase-change material contained in the middle tubing.
Various aspects and embodiments of the disclosed technology will be described with reference to the following figures. It should be appreciated that the figures are not necessarily drawn to scale. Items appearing in multiple figures are indicated by the same reference number in all the figures in which they appear.
Existing communication between a vehicle and a hydrogen fueling station is generally limited to a LOS link between the vehicle and the hydrogen dispenser, conventionally implemented using a one-way IrDA connection established between an infrared transmitter disposed near the vehicle's fuel tank and an infrared receiver on the dispenser nozzle brought into close proximity when the nozzle is inserted into the vehicle's fuel tank. Once this unidirectional communication link is established, the vehicle can transmit fueling parameters such as tank volume and current tank conditions such as tank pressure and temperature. This conventional approach has a number of drawbacks recognized by the inventors, including limited bandwidth, unidirectionality, equipment reliability and cost (approximately $3K per nozzle), etc.
The inventors have recognized that vehicle-to-vehicle and vehicle-to-infrastructure communications, referred to as V2X, can be employed to expand the communication capabilities between vehicles and hydrogen fueling stations to improve the refueling process in a number of ways, including providing a higher bandwidth, bi-directional communication channel capable of safely and securely exchanging a much richer set of data between vehicles and fueling stations. According to some embodiments, a vehicle is equipped with an on-board unit (OBU) configured to wirelessly communicate with a road-side unit (RSU) located at a fueling station to exchange, among other data, fueling parameters, status information on the fueling station, and the like.
The inventors have further developed techniques to determine which vehicle is engaged with which nozzle at a fueling station, a process referred to as vehicle-to-nozzle pairing. As discussed above, conventional systems employed an IrDA communication link between a vehicle and a dispenser established between an IrDA transmitter disposed proximate the vehicle's fuel and tank and an IrDA receiver (typically a circular array of IrDA receivers) disposed on the nozzle dispenser. Because an IrDA link could only be established between a nozzle and the vehicle to which the nozzle was engaged, there was no ambiguity to resolve. However, in a V2X wireless network, a fueling station may communicate with numerous vehicles within a zone of communication of the fueling station. As a result, the fueling station typically needs to resolve which vehicle is engaged at a given nozzle prior to performing a refueling event. According to some embodiments, vehicle-to-nozzle pairing comprises providing nozzle information to a vehicle and receiving feedback from the vehicle via a wireless connection (e.g., a V2X connection) in response to receiving the nozzle information via a V2X connection established between the fueling station and the vehicle. The feedback from the vehicle may be used to associate the nozzle with the wireless connection to perform vehicle-to-nozzle pairing. The inventors have also recognized the importance of allowing refueling events to be performed anonymously. To ensure that vehicle anonymity can be maintained, the inventors have developed vehicle-to-nozzle pairing techniques and refueling processes that do not require a vehicle to provide information that identifies the vehicle or its operator, examples of which are described in further detail below.
Following below are further detailed descriptions of various concepts related to, and embodiments of, vehicle communication systems and methods for facilitating refueling of hydrogen fuel cell vehicles. It should be appreciated that the embodiments described herein may be implemented in any of numerous ways. Examples of specific implementations are provided below for illustrative purposes only. It should be appreciated that the embodiments and the features/capabilities provided may be used individually, all together, or in any combination of two or more, as aspects of the technology described herein are not limited in this respect.
Fueling station 1200 comprises one or more hydrogen dispensers (e.g., dispensers 1220a, 1220b, etc.) that dispense hydrogen fuel stored at and/or generated by fueling station 1200 via nozzles (e.g., nozzles 1225a, 1225b, etc.) configured to engage with the fuel tank of an HFVC. Fueling station 1200 further comprises road-side unit (RSU) 1250 (alternatively referred to as a wayside unit) configured to communicate with vehicles equipped with an OBU (e.g., vehicle 1110 equipped with OBU 1150). RSU 1250 also includes one or more transceivers configured to transmit and receive information wirelessly, for example, to communicate with OBUs, other RSU's or any other devices configured for wireless communications. RSU may be coupled to one or more controllers (e.g., one or more processors, chips or chip sets, programmable logic controllers, systems-on-chip (SOC), etc.) configured to perform any one or combination of vehicle communication techniques described herein. As used herein, an RSU coupled to one or more controllers refers to communicative coupling between any of the controllers that are part of the RSU (e.g., on-unit processors, co-processors, PLC's, etc.) and/or any controllers that are communicatively coupled to the RSU (e.g., via a wired or wireless communication link) at the fueling station. Furthermore, acts described herein as being performed by the RSU refer to acts performed by the RSU and/or any controller to which the RSU is coupled at the fueling station.
In the embodiment illustrated in
According to some embodiments, V2X communication may be accomplished using the 5.9 GHz band allocated for dedicated short-range communication (DSRC). However, V2X may implemented in other ways such as via 4G, 5G, 802.11x or using other suitable standards and/or protocols operating in the same or different radio frequency bands, as the aspects are not limited to any particular type of V2X communication. Wireless connection 1050 does not require LOS so that fueling station 1200, via RSU 1250, can broadcast and/or exchange data with any OBU with which a connection has been established that is within range of RSU 1250 (e.g., within a kilometer of the fueling station), or within a larger zone of communication using a vehicle hopping technique, examples of which are described in further detail below. It will be understood that fueling station is illustrated to show schematically a exemplary communication coupling of certain components of the fueling station, and that fueling station may include other components not illustrated, such as hydrogen cooling systems (e.g., any of the exemplary hydrogen cooling systems described herein).
In
According to some embodiments, establishing wireless connections and information exchange occur in a wireless access in vehicular environment (WAVE) that enables safe and secure communications between RSUs and OBUs, as discussed in further detail in Appendix A of U.S. Provisional Application No. 63/131,953 (′953 Provisional) incorporated by reference herein. Alternatively, or in addition to, other wireless communication channels and protocols may be used to establish connections and exchange information between a fueling station and vehicles within a zone of communication of the fueling station, some further examples of which are described in Appendix A of the ′953 Provisional.
The V2X environment illustrated in
According to some embodiments, a fueling station can communicate with vehicles that are out-of-range using a technique referred to herein as vehicle hopping by which messages between a fueling station and a destination vehicle may be routed through one or more intermediary vehicles. For example,
The direct connections established in CAN 3000 can be utilized to establish an indirect connection between RSU 3250 and any of the OBUs in the network, even those that are not within range of RSU 3250. According to some embodiments, established direct connections are used as pass-throughs that enable RSU 3250 to establish an indirect connection and thereafter route messages to and receive messages from any of the OBUs in the network via secure indirect connections. According to some embodiments, the communication protocol allows for the same security features to be used to ensure that indirect connections are also safe and secure (e.g., authorized and authenticated). After an indirect connection is established, information can be exchanged via this indirect connection by routing messages from vehicle to vehicle until the messages reach the specified destination.
By using vehicle hopping techniques, a fueling station can expand its zone of communication to exchange information with vehicles over a wider geographic area. For example,
Referring again to act 1410, to establish a wireless connection, an OBU and an RSU may exchange security information (e.g., signed digital certificates) confirming that the OBU and RSU are both authorized to establish a connection and to authenticate the OBU and RSU devices. The specifics of the security information exchange will depend on the protocol supporting the V2X communication. According to some embodiments, the V2X communication is a DSRC connection that complies with, for example, IEEE 1609, IEEE 802.11P, SAE J2735 and/or any of the protocols discussed in the ′953 Provisional, and the security information exchange is implemented via WAVE. Once a connection has been established, data can be securely exchanged between the OBU and the RSU. As discussed above, some embodiments implement OBU/RSU pairing without requiring vehicle or vehicle operator identification, thereby allowing a secure connection to be established and subsequent data exchange to be conducted while maintaining vehicle anonymity.
Act 1420 comprises exchanging data between the OBU and RSU over the established connection. In many conventional systems, information exchange between a vehicle and a fueling station was limited to data that could be transmitted over a IrDA link, which was limited not only in bandwidth but was also typically limited to unidirectional transmission of data from the vehicle to the dispenser nozzle. Establishing a V2X connection allows a richer set of information to be exchanged between a vehicle and a fueling station. For example, conventional IrDA links were sufficient for transmitting a minimum set of tank parameters needed by the fueling station to refuel the vehicle. According to some embodiments, a V2X connection has orders of magnitude higher bandwidth, allowing for significantly more information to be exchanged bi-directionally between a fueling station and a vehicle. According to some embodiments, the RSU at a fueling station (e.g., RSU 1250) may obtain tank information from the vehicle via the OBU over the established connection in real-time or near real-time.
As discussed above, some embodiments of a V2X communication system allow for a many-to-many connections to be established (e.g., an RSU may establish a direct connection with a plurality of OBU within range of the RSU and/or may establish an indirect connection with one or more out-of-range OBUs via vehicle hopping, as discussed above in connection with the exemplary embodiments illustrated in
Act 1430 comprises performing one or more actions at the fueling station based at least in part on information exchanged between the RSU and one or more OBUs associated with vehicles within the zone of communication of the fueling station. According to some embodiments, a fueling station may obtain tank information from multiple vehicles in the vicinity and evaluate the information to perform one or more predictive actions at the fueling station based on an expected demand at the fueling station. For example, information exchanged in act 1420 may indicate that several vehicles in the vicinity are low on fuel and will likely need to refuel at the station in the near-term. In response, the fueling station may evaluate the status of the fueling systems (e.g., assess the current capacity of the fueling station to deliver hydrogen fuel at certain temperature levels). On the other hand, information exchanged in act 1420 may suggest that there are no HFCVs in the area or that those that are within range of the fueling station are not currently in need of refueling. Based on the predicted demand, fueling station 1200 can ready itself to best meet the predicted demand (e.g., power up or power down certain components of the fueling station such as components of the hydrogen fueling station), alert vehicles in the vicinity as to status, wait times, etc., prepare for future fueling demands at the fueling station and/or identify trends or patterns in fueling demands to optimize the ability of the fueling station to meet fueling demands throughout the day.
The inventors have developed a number of predictive techniques and responsive operations to facilitate optimal fueling station performance (i.e., to maximize availability and/or minimize refueling times) to handle changing fueling demands throughout the day, examples of which are discussed in further detail below. Any one or combination of optimizations may be performed, including but not limited to, minimizing energy consumption, maximizing fuel availability, reducing refueling times, conducting dispenser scheduling (e.g., nozzle reservations), ascertaining demand trends, planning for peak demand hours, providing navigation information to vehicles, redirecting vehicles to other fueling stations, etc., examples of which are discussed in further detail below.
The one or more actions performed at the fueling station may include a fueling event in which the fueling station delivers fuel to the tank of one of the vehicles. For example, the data exchanged in act 1420 may include feedback from a vehicle to which a dispenser nozzle has been engaged from which the fueling station performs vehicle-to-nozzle pairing, examples of which are described in connection with
Fueling station 2200 comprises a first dispenser 2220a and a second dispenser 2220b configured to dispense hydrogen gas via a first nozzle 2225a and second nozzle 2225b, respectively. While exemplary dispensers 2220a and 2220b are shown having a single nozzle, one or both of dispensers 2220a and 2220b may include multiple nozzles via which hydrogen gas may be dispensed. Furthermore, while exemplary fueling station 2200 is illustrated as including two dispensers, some embodiments include fewer or additional dispensers. For example, a fueling station may include one single-nozzle or multi-nozzle dispenser or may include multiple single-nozzle or multi-nozzle dispensers, as the aspects are not limited to any particular configuration of dispensers and nozzles.
In the embodiment illustrated in
Wireless connections (e.g., wireless connections 2050a, 2050b and 2050c) may be established between RSU 2250 and the respective OBU of any vehicle within the zone of communication of the fueling station. For example, wireless connections 2050a and 2050b may be direct connections to vehicles 1100a and 1100b and wireless connection 2050c may be an indirect connection to vehicle 1100c via vehicle 1100b using vehicle hopping techniques. Once a wireless connection has been established, information can be exchanged between vehicles and the various components of the fueling station including, but not limited to, any one or combination of fueling information (e.g., tank parameters), fueling station status (e.g., hydrogen gas availability, predicted fill times, etc.), navigation information, payment information, etc. In exemplary system 5000, vehicle 1100a is located at fueling station 2200 for refueling. When nozzle 2225a is engaged with vehicle 1100 via fuel receptacle 1125, dispenser 2200a provides first nozzle information 1025 corresponding to nozzle 2225a to the first vehicle. Responsive to first nozzle information 1025, feedback from vehicle 1100a is provided via wireless connection 2050a that the fueling station can use to pair nozzle 2225a with vehicle 1100a to initiate a fueling event.
Because RSU 2250 may have established wireless connections with multiple vehicles (e.g., vehicle 1100b, 1100c, etc.), the fueling station needs to resolve which vehicle has engaged with which nozzle (e.g., the fueling station needs to identity which of the vehicle that it is communicating with has engaged with the nozzle so that it can ascertain which tank parameters belong the vehicle engaged for refueling). By providing nozzle information and receiving feedback responsive to the nozzle information, vehicle-to-nozzle pairing can be performed without requiring the vehicle to provide identification information specific to the vehicle or the vehicle's operator. An exemplary method that allows vehicle-to-nozzle pairing to be performed anonymously is described below in connection with
Act 1620 comprises engaging a dispenser nozzle with a vehicle to begin a refueling process. For example, a vehicle operator or fueling station personnel may attach a dispenser nozzle to a fuel receptacle of the vehicle. Because a wireless connection may be established with multiple vehicles in a zone of communication of the fueling station, the fueling station may not be able to ascertain which vehicle has engaged with the dispenser nozzle. For example, a fueling station may obtain tank information (e.g., tank size, measured tank pressure and temperature, etc.) from multiple vehicles via respective wireless connections but be unable to determine which information corresponds to the vehicle that has engaged with the dispenser nozzle for refueling. Accordingly, the fueling station may need to resolve the correct pairing between dispenser nozzle and vehicle to safely and correctly refuel the vehicle. At conventional fueling stations, a dispenser nozzle could only receive tank information from the vehicle to which the nozzle was engaged due to the LOS limitations of the IrDA link over which this information is transmitted so that vehicle-to-nozzle pairing was accomplished simply by engaging the dispenser nozzle with the vehicle and establishing the IrDA link.
Act 1630 comprises providing nozzle information corresponding to the dispenser nozzle to the vehicle engaged with the dispenser nozzle. Nozzle information may comprise information of any type (or of multiple different types) and may be provided in any suitable manner, such as transmitting nozzle information electronically to the vehicle (e.g., via a low power radio frequency transmitter, such as an RFID tag), delivering nozzle information as a fluid flow signature (e.g., a hydrogen gas flow pattern), or a combination of both, as discussed in further detail below in connection with
Act 1640 comprises receiving feedback from the vehicle responsive to the nozzle identification information via the wireless connection. The feedback from the vehicle will depend on the manner in which nozzle information was provided to the vehicle. For example, the nozzle information may include a nozzle ID (e.g., a nozzle ID number) provided to the vehicle (e.g., electronically) that the vehicle parrots back to the fueling station via the wireless connection established between the fueling station RSU and the vehicle OBU. As another example, the nozzle information may include a fluid flow signature delivered to the fuel tank that causes changes in tank parameters (e.g., tank pressure) transmitted by the vehicle to the fueling station via the RSU/OBU wireless connection. As yet another example, nozzle information may include both a nozzle ID and a fluid flow signature so that feedback received from the vehicle via the wireless connection comprises both the nozzle ID and changes in transmitted tank parameters resulting from delivering the flow signature to the vehicle's fuel tank.
Act 1650 comprises associating the wireless connection between the fueling station and the vehicle (e.g., a V2X connection between the fueling station RSU and the vehicle OBU) with the corresponding dispenser nozzle based on the received feedback to pair the dispenser nozzle with the vehicle. Thereafter, the fueling station knows that fueling information (e.g., tank parameters) received over the wireless connection corresponds to the vehicle engaged with the paired nozzle and can be used to initiate a fueling event with that vehicle via the paired nozzle (act 1660). For example, fueling information received via the wireless connection over which the feedback was received may be routed via the fueling station's communication network to the dispenser having the paired nozzle so that the dispenser can control the fueling of the vehicle's tank, aspects of which are described in further detail below.
By providing nozzle information to the vehicle and receiving feedback from the vehicle responsive to the nozzle information, the fueling station can accomplish vehicle-to-nozzle pairing without requiring the vehicle to provide vehicle identification or vehicle operator identification information to the fueling station. However, in some circumstances, the vehicle may provide (or may have provided) identification information voluntarily in order to perform actions such as automatic payment, nozzle reservation, etc. Thus, vehicle-to-nozzle pairing method 1600 allows for, but does not require, vehicle anonymity. If vehicle identification information is provided to the fueling station, this information may be used during vehicle-to-nozzle pairing (e.g., to confirm that a vehicle that has made a nozzle reservation is the same vehicle engaged with the nozzle) and/or may be used during the fueling event (e.g., to perform automatic payment), as discussed in further detail below.
According to some embodiments, a vehicle may engage with a dispenser nozzle prior to establishing a wireless connection with the fueling. In such circumstances, the act of engaging the dispenser nozzle with the vehicle and/or the act of providing nozzle information to the vehicle may trigger the fueling station or the vehicle to initiate establishing a wireless connection between, for example, a fueling station RSU and the vehicle's OBU. As such, act 1610 need not be performed first, but instead may be performed after the vehicle engages, or in response to the vehicle engaging with a dispenser nozzle at the fueling station and/or after or in response to nozzle information being provided by the dispenser via the nozzle to the vehicle, as the aspects are not limited in this respect.
The nozzle ID may be any type of identifier that can be used to differentiate the nozzle from the other nozzles at the fueling station at a given moment in time. According to some embodiments, a nozzle ID corresponding to a given nozzle is changed each time a nozzle is engaged with a vehicle. For example, the nozzle ID can be changed for each nozzle by configuring the respective dispenser(s) (e.g., a dispenser controller or other computing unit) to generate a random or pseudo-random number and assign the generated number to a nozzle that has been engaged with a vehicle, select from a set of predetermined nozzle IDs, or perform any other suitable technique of assigning a nozzle ID to each nozzle so that no two nozzles are assigned the same nozzle ID at the same time and so that the nozzle ID of a nozzle changes periodically, after each fueling event and/or in response to some other event, as the aspects are not limited in this respect. According to some embodiments, nozzle IDs assigned to different nozzles are changed periodically (e.g., hourly, daily, etc.) as an alternative, or in addition to, changing the nozzle each time a nozzle is engaged with a vehicle.
Act 1740 comprises receiving feedback from the vehicle responsive to providing nozzle information, including receiving the nozzle ID that was provided to the vehicle in act 1730 as feedback via a wireless connection established between the vehicle and fueling station (e.g., a V2X connection established in act 1610 between the fueling station RSU and the vehicle's OBU), For example, the vehicle may parrot the nozzle ID received from the nozzle (e.g., via a nozzle transmitter such as an RFID tag, Bluetooth® transmitter, IrDA transmitter, etc.) back to the fueling station via the wireless connection between the fueling station and the vehicle. As discussed above, a wireless connection between the fueling station may be established before or after the nozzle is engaged with the vehicle and/or before or after the nozzle ID is electrically transmitted to the vehicle, and may be triggered by performing either of these acts in circumstances where a wireless connection is not already established.
Act 1750 comprises associating the wireless connection established between the fueling station and the vehicle with the dispenser nozzle engaged with the vehicle based at least in part on receiving the nozzle ID via the wireless connection. According to some embodiments, when a nozzle ID is received via the wireless connection, the fueling station may associate the wireless connection with the dispenser nozzle identified by or corresponding to the received nozzle ID so that information received from the vehicle via the wireless connection (e.g., fueling information such as tank parameters, fueling protocols, etc.) may be routed to the dispenser comprising the corresponding nozzle to control a subsequent fueling event (e.g., a fueling event initiated in act 1660 as discussed above in connection with
According to some embodiments, the fueling station distributes information received over each established wireless connection between the fueling station and vehicles within the zone of communication to each of the dispensers. When a nozzle ID is received via one of the wireless connections, the fueling station may indicate to the dispenser comprising the corresponding nozzle which wireless connection the nozzle ID was received over so that the dispenser knows to use information received via that wireless connection to control a subsequent fueling event via the identified nozzle. Accordingly, associating a wireless connection with a nozzle engaged with a vehicle may include routing fueling information received via the wireless connection to the corresponding dispenser, or indicating to the corresponding dispenser which fueling information presently being distributed to the dispenser should be used to control a fueling event at the corresponding nozzle.
According to some embodiments, nozzle ID transmitters 2227a and 2227b include a wireless transmitter for wirelessly transmitting a nozzle ID to a wireless receiver of a vehicle engaged with the nozzle. In embodiments configured to communicate wirelessly, wireless nozzle ID transmitters and receivers may communicate using any suitable communication technology including, but not limited to, radio frequency communication, optical communication, etc., provided the communication range is limited to prevent unintentional communication links from being established between a dispenser nozzle and a vehicle to which the nozzle has not been engaged. For example, wireless nozzle ID transmitters may comprise a low power RFID transmitter (e.g., an RFID tag) positioned on the nozzle so that a corresponding wireless receiver on the vehicle can receive information from the transmitter only when the nozzle is engaged with the fueling receptacle of the vehicle (or when the vehicle's ID receiver is in such close proximity to ensure that only that vehicle can receive nozzle information from the nozzle). As another example, wireless nozzle ID transmitters may comprise an IrDA transmitter that similarly prevents a communication link from being established unless and until the corresponding nozzle has been engaged with the vehicle. Thus, in the exemplary system illustrated in
According to some embodiments, nozzle ID transmitters 2227a and 2227b include a physical connection for transmitting a nozzle ID to a receiver of a vehicle engaged with the nozzle via a “wired connection” using any suitable electrical connection between the nozzle ID transmitter and the receiver at the vehicle. For example, the dispenser nozzle may be configured so that when the nozzle is correctly engaged with the fueling receptacle so that the nozzle can dispense fuel to the vehicle's fuel tank, the nozzle ID transmitter also makes a physical connection with the receiver at the vehicle to create a wired link over which information 1025′ (including the nozzle ID) may be transmitted.
According to some embodiments, each time a nozzle is engaged with a vehicle the nozzle is assigned a different nozzle ID. For example, dispensers 2225a′ and 2225b′ may change the nozzle ID corresponding to a nozzle each time the nozzle is engaged with a different vehicle. The nozzle ID can be changed for each nozzle by configuring dispensers (e.g., a dispenser controller or other computing unit) to generate a random or pseudo-random number and assign the generated number to a nozzle that has been engaged with a vehicle, select from a set of predetermined nozzle IDs, or any other suitable manner of assigning a nozzle ID to each nozzle so that no two nozzles are assigned the same ID at the same time. According to some embodiments, nozzle IDs assigned to different nozzles are changed periodically (e.g., hourly, daily, etc.) as an alternative, or in addition to, changing the nozzle each time a nozzle is engaged with a vehicle.
In response to receiving a nozzle ID, the vehicle may transmit the nozzle ID back to the fueling station via a wireless connection established between the fueling station and the vehicle. For example, in the system illustrated in
Act 1940 comprises delivering a fluid flow signature to the vehicle via the dispenser nozzle. For example, the dispenser may control the flow of hydrogen gas through the nozzle in a specific on/off pattern so that the fuel tank of the vehicle engaged with the nozzle experiences the delivered fluid flow signature. The fluid flow signature may be any pattern of flow that results in one or more detectable changes in the tank parameters (e.g., a detectable change in measured tank pressure) in response to the fluid flow signature being delivered to the fuel tank of the vehicle engaged to the nozzle. According to some embodiments, the fluid flow signature delivered via a nozzle is changed each time the nozzle is engaged with a different vehicle and/or the fluid flow signature delivered via the nozzle may be changed periodically (e.g., hourly, daily, etc.). The specific fluid flow signature delivered via a nozzle may be assigned in any manner, either statically or dynamically, so that no two nozzles deliver the same fluid flow signature at the same time (or during a same interval of time), thus allowing the nozzle to be identified based on the fluid flow signature delivered to the vehicle currently engaged with the nozzle.
Act 1950 comprises associating the connection established in act 1610 with the nozzle engaged with the vehicle based at least in part on one or more tank parameters received via the connection established in act 1610. As discussed above, act 1930 may be repeated at any desired frequency so that the fueling station can monitor changes in one or more tank parameters over time to match those changes to the expected response of the fuel tank to the fluid flow signature delivered to the vehicle in act 1640. For example, the fueling station may monitor one or more tank parameters received via the established connection and may associate the connection with the nozzle that delivered a given fluid flow signature (e.g., the specific fluid flow signature delivered in act 1940) when changes in the one or more tank parameters match an expected response of the fuel tank to receiving the given fluid flow signature. That is, when changes in the one or more tank parameters received via the established connection reflects the expected response to the fluid flow signature, the fueling station can ascertain which connection is associated with the vehicle engaged at the corresponding nozzle, thus allowing or facilitating the vehicle-to-nozzle pairing to be resolved.
For example, referring again to
Act 10050 comprises associating the connection over which the feedback was received with the nozzle engaged with the vehicle. For example, act 10050 may include any of the actions described in connection with acts 1750 and 1950 of
As discussed, the V2X communication techniques discussed above allow a fueling station to establish a controller area network (CAN) communicatively connecting vehicles in-range of the fueling station's RSU (e.g., as described in connection with the CAN illustrated in
According to some embodiments, based on information received from vehicles in the CAN, the fueling station can predict the near-term demand on the fueling station from the number of vehicles needing refueling and can configure the fueling station to meet those demands and/or to reduce energy consumption when the information indicates the ability to do so.
In the embodiment illustrated in
According to some embodiments, the fueling station may respond to information received via the CAN to disable operation of one or more refrigeration units (e.g., power down one or more refrigeration units or one or more components of a refrigeration unit), associated pumps, etc. of a hydrogen cooling system to reduce power consumption at the fueling station when information received via the CAN indicates a level of demand that allows the fueling station to operate in a reduced power state. For example, disabling operation of a refrigeration unit may comprise powering down or turning off one or more components of the refrigeration unit to save on power that would otherwise be consumed to reduce and/or maintain the temperature of coolant used by a hydrogen cooling system to chill hydrogen gas. Disabling operation of a component (e.g., a refrigeration unit, dispenser, pump, motor, etc.) may involve powering down or turning off some portions of the component while keeping some portions of the component powered up.
According to some embodiments, the fueling station responds to information received via the CAN to enable operation of one or more refrigeration units (e.g., power up one or more refrigeration units or one or more components of a refrigeration unit), associated pumps, etc. of a hydrogen cooling system when information received via the CAN indicates the need to do so to meet the likely near-term refueling demands on the fueling station. For example, enabling operation of a refrigeration unit may comprise powering up or turning on one or more components of the refrigeration unit that were previously disabled to resume reducing and/or maintaining the temperature of coolant used by a hydrogen cooling system to chill hydrogen gas. Enabling operation of a component (e.g., a refrigeration unit, dispenser, pump, motor, etc.) refers generally to powering up or turning on portions of the component needed to operate and/or resume operation. Further examples of using information received via the CAN to reduce power consumption, optimize performance and/or otherwise configure components of the fueling station are discussed in further detail in connection with the exemplary hydrogen cooling systems described below.
According to some embodiments, the fueling station may respond to information received from the CAN to provide information to vehicles with which the fueling station has established a connection such as status information on the fueling station or status information of another fueling station, fuel availability, estimated wait times, the availability of fuel at different temperature classes, estimated wait times, navigation information to the fueling station or other fueling stations, etc. (e.g., when performing act 1420 in the exemplary methods illustrated in
Any combination of the above information may be transmitted from the fueling station RSU to OBUs of vehicles having established connections with the RSU, and the vehicles' ECM can display this information to the vehicle operator and/or recommend that the operator of the vehicle drive to the fueling station when the conditions at the fueling station are favorable and/or suitable or recommend that the operator of the vehicle continue to a different fueling station where conditions may be more favorable and/or suitable. In embodiments in which navigation information to one or more fueling stations is provided, this navigation information can be used to guide the operator of the vehicle to the fueling station that can best meet the current needs of the vehicle. In this way, helpful fueling information may be provided to vehicles to assist in refueling vehicles and/or current fueling demands of vehicles in a zone of communication can be distributed across multiple fueling stations to optimally meet that demand.
According to some embodiments, the fueling station may respond to information received from the CAN to perform nozzle reservation for a vehicle so that the vehicle can be assured of having an available nozzle at which to refuel when the vehicle arrives at a fueling station (e.g., at a specified reservation time, within a specified reservation window, any time after a specified earliest reservation time, etc.).
In the exemplary nozzle reservation method illustrated in
Negotiating the reservation may include any processing needed to confirm a nozzle reservation for the requested reservation and may include both data exchange (e.g., act 1426 as part of data exchange 1420) and performing action at the fueling station (e.g., act 1426 as part of act 1430). For example, negotiating the reservation may include one or any combination of determining whether there is one or more dispensers at the fueling station that are capable of fulfilling the reservation or can be made ready to fulfill the reservation, further data exchange with the OBU to obtain additional information, modifying one or more parameters of the requested reservation, proposing one or more parameters for the requested reservation, providing a reservation identifier, confirming the reservation, etc. Once the nozzle reservation has been negotiated, one or more actions may be performed at the fueling station to prepare for fulfilling of the reservation (act 1436) including, but not limited to, associating information with the reservation, informing one or more dispensers of the reservation, powering up one or more components of the fueling station to make sure that the requested fueling event can be performed when the vehicle arrives for its reservation, etc., examples of which are described in further detail below. When the vehicle with the reservation arrives at the fueling station, the fueling station fulfills the reservation (act 1438) by performing a fueling event via a reserved dispenser.
A fueling station may prepare for a reservation (e.g., may perform act 1436) in any number of suitable ways. For example, if multiple dispenser nozzles are ready and available (or can be made to be ready and available prior to the reservation time) to perform the reserved fueling event, each available dispenser may be informed of the reservation. In this way, any of the available dispensers may still be used to perform intervening fueling events so long as at least one dispenser remains ready to fulfill the reservation. As such, vehicles that may arrive at the fueling station prior to the reservation need not be inconvenienced by inadvertently pulling up to a specific dispenser that has been temporarily dedicated to fulfilling a reservation and instead can utilize the dispenser unless and until only one dispenser nozzle remains that can fulfill the reservation. The dispenser numbers, for example, of dispensers that can fulfill the reservation may be conveyed to the vehicle with the reservation so that the vehicle can refuel at any of those dispensers. Dispenser availability can be updated (e.g., by performing further data exchange 1420) as needed prior to the reservation in the event that intervening vehicles utilizing one or more dispensers to refuel cause that dispenser to be unavailable to fulfill the reservation. According to some embodiments, a single dispenser (or a single nozzle of a multi-nozzle dispenser) is assigned to fulfill a reservation and therefore may be unavailable to other vehicles during some prescribed time unless the dispenser is capable of performing one or more refueling events and still be able to fulfill the reservation.
According to some embodiments, the reservation request received by the fueling station via the established connection (e.g., act 1424) may include identification information associated with the vehicle or the vehicle's operator and this identification information may then be associated with the reservation (e.g., during act 1426 or 1436). That same identification information may then be conveyed to the fueling station during vehicle-to-nozzle pairing using any of the techniques described in the foregoing to confirm that the vehicle engaged at a nozzle has reserved the nozzle (e.g., when a single nozzle is assigned to fulfill the reservation) and/or to indicate that the subsequent refueling event fulfills that reservation (e.g., when any available dispenser can be used to fulfill the reservation).
According to some embodiments, nozzle reservation may be performed anonymously. For example, when a vehicle requests a nozzle reservation and the fueling station confirms the reservation (e.g., by performing acts 1424 and 1426), the fueling station may associate the established connection with the vehicle to that reservation (e.g., by assigning a unique reservation number to the established connection). Thus, when the fueling station associates that established connection with a given nozzle during vehicle-to-nozzle pairing using any of the techniques describe above, the fueling station can confirm that this connection also has the reservation associated with it. Anonymous nozzle reservation can therefore be performed both when a single dispenser is dedicated to the reservation or when any available dispenser can be used to fulfill the reservation. According to some embodiments using the above technique for anonymous nozzle reservation, the same connection with the fueling station over which the reservation request was made may need to be maintained through to the completion of the refueling event. However, according to some embodiments, when a reservation is made, the fueling station may assign a unique number to that reservation (e.g., a pseudo-random number of sufficient length that ensures the reservation cannot be spoofed) and convey that reservation number to the vehicle (e.g., during reservation negotiation 1426). Should the established connection be disconnected (either inadvertently or intentionally in act 1440), the vehicle may convey the unique reservation number to the fueling station when a connection between the vehicle and the fueling station is established prior to a fueling event (e.g., during act 1610 of refueling event 1600 illustrated in
According to some embodiments, a V2X connection with a vehicle and a fueling station is used to exchange payment information to allow automatic payment for a fueling event. For example, the vehicle may provide debit or credit card information or other information needed to perform any type of electronic payment to the fueling station over the established connection (e.g., via data exchange 1420) to facilitate secure transmission of payment information that allows the fueling system to process payment for a fueling event without needing the vehicle operator to interact with the dispenser (e.g., by inserting a debit or credit card into the dispenser) and/or fueling station personnel to pay for the fueling event, facilitating simpler and more convenient transactions and/or more efficient fueling events.
According to some embodiments, a fueling station uses information received from vehicles via the CAN to optimize a fueling event for individual vehicles. As discussed above, the increased bandwidth of V2X communications allows for a richer set of information about a vehicle to be transmitted to the fueling station (e.g., via data exchange 1420). For example, in addition to the limited set of tank parameters (e.g., tank pressure, tank temperature, tank size, etc.) transmitted via conventional LOS communications established between the vehicle and the dispenser via the nozzle, information about the specific fueling preferences, requirements and/or capabilities may be transmitted to the fueling station so that the dispenser can optimize a fill according to the preferences, requirements and/or capabilities of a specific vehicle conveyed to the fueling station via an established V2X connection. As a result, a dispenser may be configured to deliver a faster fill when information received from the vehicle confirms that the dispenser can do so safely.
According to some embodiments, a fueling protocol for the vehicle may be transmitted to the fueling station via the established V2X communication that can be used by the dispenser to optimize a fueling event for the vehicle. The fueling protocol may include, among other information, target tank pressure as a function of time that the dispenser should follow when performing a fueling event. This pressure profile can be used by the dispenser controller to vary the flow rate of hydrogen delivered to the fuel tank of a vehicle to follow the pressure profile specified by the fueling protocol. In this way, a dispenser can be configured to refuel a vehicle in accordance with the fueling protocol specified by the vehicle, further details of which are discussed in connection with the exemplary dispenser controllers described below.
According to some embodiments, information received by a fueling station via a CAN (e.g., via data exchange 1420) may be used to develop trend data on demand (e.g., time of day of peak demand, average demand for the fueling station, weekday vs. weekend demand, predominant type of vehicle being refueled during different times, etc.) that can be used to optimize the fueling station. For example, trend data can be used to create daily demand schedules that can be used by the fueling station to guide in the powering up or powering down one or more components of the fueling station. This information may be used to supplement and/or confirm current demand information received via the CAN. For example, the fueling station may determine from information received via the CAN that there may be little or no near-term demand but may decide to keep one or more components powered-up based the proximity in time to peak demand time captured by the trend data. Trend data may be used in multiple other ways such as determining an optimal configuration of components (e.g., hydrogen cooling system configuration), scheduling delivery of hydrogen gas, to guide in optimally configuring a new fueling station deployment or in other ways, as the aspects are not limited in this respect.
As discussed above, many current fueling protocols adopted by hydrogen refueling stations require hydrogen fuel to be cooled between −40° C. to −17.5° C. prior to dispensing to the vehicle to ensure the vehicle's fuel tank maintains bulk gas temperatures below 85° C. regardless of ambient temperatures or previous driving conditions. As discussed above, existing hydrogen gas fueling stations typically employ either a large chilled aluminum block that provides a thermal reservoir to cool hydrogen gas prior to dispensing or a diffusion-bonded heat exchanger that cools hydrogen gas by circulating chilled coolant through a plate-to-plate configuration. The inventors have recognized that while each technique has some advantages, both have significant drawbacks. Aluminum block heat exchanger systems are massive (e.g., 600-1000 kg) and costly (e.g., $100-150K per installation), and typically require breaking ground to bury the aluminum block beneath the dispenser, which may limit the locations for these installations and increases the cost. Additionally, contact resistance between the aluminum block and the stainless-steel tubing causes heat transfer inefficiency resulting in a low UA (overall heat transfer coefficient, U, multiplied by the heat transfer area, A) heat exchanger. Thus, aluminum block heat exchangers have relatively long fueling times (e.g., 5 minutes). Aluminum block heat exchangers generally are employed on a per dispenser basis so that multiple installations are required for fueling stations having multiple dispensers, making the aluminum block heat exchanger solution difficult and costly to scale. One advantage of aluminum block heat exchangers is that once cooled, the large thermal mass of the aluminum block allows the low temperature of the aluminum block to be maintained with relatively low energy output (e.g., 19 kW) so that relatively small capacity refrigeration units can be used maintain the target temperature of the aluminum block.
Conventional high UA heat exchanger systems (e.g., cooling systems that employ diffusion-bonded plate-to-plate heat exchangers) are typically even costlier (e.g., $200K per installation), but these systems provide for a high UA heat exchange allowing for faster fill times (e.g., on the order 2 minutes for some installations). Conventional diffusion-bonded heat exchanger systems employ relatively low volume coolant reservoirs (e.g., between 20-50 gallons) and large-capacity refrigeration unit (e.g., 35-70 kW capacity chillers) are required to maintain the low temperature of this low thermal mass coolant reservoir to meet peak fueling demands. Use of large-capacity chillers has a number of drawbacks. In particular, large-capacity chillers are themselves expensive and consume significant power and to the cost of operating these refrigeration units. Also, the large size of these chillers often prevents installation of the chiller proximate the dispenser. As a result, the coolant reservoir and chiller are typically installed some distance from the dispenser and must be connected to the heat exchanger at the dispenser with lengths of tubing.
The inventors have designed and developed high UA hydrogen cooling systems that address one or more of the above drawbacks associated with conventional hydrogen cooling systems. For example, the inventors have appreciated that the conventional approach of using a small-volume coolant reservoir and large-capacity refrigeration unit (chiller) results in both large and costly hydrogen cooling systems. The inventors recognized that by increasing the volume of the coolant reservoir, the thermal energy capacity of the reservoir can be increased, thus taking advantage of the high thermal mass characteristics of aluminum block heat exchangers without incurring the heat transfer inefficiency and other drawbacks of that solution. According to some embodiments, a heat exchanger system comprises a coolant reservoir of between 50-700 gallons (e.g., a 100-gallon tank of a coolant such as glycol) to increase the thermal energy storage capacity of the reservoir. As used herein, a large-volume reservoir refers to reservoir with an equal to or greater than 50 gallon holding capacity (in some embodiments, preferably greater than 80 gallons, and in some embodiments, preferably 100 gallons or larger).
The inventors further recognized that the increased thermal storage capacity of the large volume reservoir allows for the use of a significantly smaller refrigeration unit. Specifically, because increasing the volume of the reservoir increases the thermal energy capacity, the volume of the reservoir can be sized to handle peak demand so that the refrigeration unit need only be sized to handle the base load refueling needs of the fueling station. According to some embodiments, a small-capacity refrigeration unit is used to cool a large volume coolant reservoir, both sized according to the needs of the fueling system. As used herein, a small-capacity refrigeration unit (chiller) refers to a refrigeration unit have a capacity of greater than 3 kW and less than or equal to approximately 21 kW. The capacity of a refrigeration unit is often stated in terms of tons where each ton provides an additional 3.517 kW capacity approximately. Thus, a small-capacity refrigeration unit refers to between, and including, between approximately 1-ton and 6-ton refrigeration units.
Furthermore, the inventors have appreciated that aspects of this design for hydrogen cooling (e.g., large volume reservoirs and small chillers relative to conventional approaches) provides a flexible design approach that can be optimized according to the performance needs of a particular fueling station. For example, a fueling station requiring higher performance may size-up the capacity of the refrigeration unit to reduce recovery times and/or increase the volume of the coolant reservoir to increase the peak capacity of the station (e.g., the number of back-to-back fills that can be performed). Fueling stations requiring less demanding recovery times and/or that need less peak capacity capabilities can be sized down accordingly to provide a lower cost solution that meets the performance requirements of the fueling station, as discussed in further detail below.
The inventors have further appreciated that aspects of the above-described combination of components facilitate compact designs that allow for compact hydrogen cooling system that can be installed proximate the dispenser (e.g., next to or adjacent to one or more dispensers) delivering chilled hydrogen into fuel tanks of HFCVs. Additionally, using a large-volume reservoir/small-capacity refrigeration/high UA heat exchanger combination provides a flexible arrangement that can configured in different ways and optimized for a particular fueling station, providing a highly flexible, scalable and cost-effective solution to hydrogen cooling.
According to some embodiments, the hydrogen cooling system according to these techniques is provided in which a large-volume coolant reservoir, small-capacity refrigeration unit and heat exchanger are integrated and deployed as a single compact unit (e.g., integrated within the same housing). According to some embodiments, this integrated hydrogen cooling unit is located proximate the dispenser(s) (e.g., adjacent to one or more dispensers, or located on the canopy over the dispensers) for which the unit provides cooling. According to some embodiments, a single hydrogen cooling system provides cooling for a plurality of dispensers. For example, a fueling station may comprise one or more islands, each island having multiple dispensers (e.g., multiple nozzles by which a respective multiple number of vehicles can be simultaneously refueled). The multiple dispensers on each island may share a single hydrogen cooling system, which cooling system may be an integrated unit or may be of a different design, as the aspects are not limited in this respect. According to some embodiments, a single small-capacity refrigeration unit may be coupled to a single large-volume reservoir or multiple large-volume reservoirs. Using either configuration, each large-volume reservoir may provide coolant for one or multiple exchangers that are in turn coupled to one or multiple dispensers. A number of exemplary configurations are illustrated and described in further detail below.
The inventors have further appreciated that the thermal energy capacity of a hydrogen cooling system may be increased by using phase change material (PCM) that stores latent heat energy during transition from one state to another (e.g., energy is stored by the phase change material during a change from a liquid to a solid as a result of cooling the phase change material) to increase the heat energy capacity of the reservoir. The latent heat energy stored by the PCM is released as the PCM changes state when absorbing heat from a hydrogen gas to cool the hydrogen for dispensing to the fuel tank of a vehicle. That is, heat removed from hydrogen gas (or heat removed from conventional coolant that has absorbed heat from hydrogen gas) results in state change of the PCM rather than heating of the PCM (or conventional coolant) and thus provides a thermal buffer for the hydrogen cooling system. As a result, the increased heat energy capacity resulting from PCM techniques can be used to increase the back-to-back fill capacity of the hydrogen cooling system and/or to decrease the size and expense of the refrigeration unit needed to meet the fueling requirements of a specific refueling station. The inventors have recognized that a class of PCMs known as eutectics characterized by having a low temperature phase change are well suited for hydrogen gas cooling applications, however, other PCMs may be used in some embodiments, as discussed in further detail below.
It will be understood that all materials change state at some temperature and are therefore strictly speaking phase change materials. However, as used herein, a phase change material refers to a coolant that has a phase change temperature in the range of intended temperatures of the hydrogen cooling system and that exists in a first state at ambient temperatures and is caused to transition to a second state when chilled by components of a hydrogen cooling system to store heat energy via the state transition. Similarly, a non-PCM coolant (e.g., glycol) is a material that has a phase change temperature outside the range of intended temperatures of the hydrogen cooling system and that exists in a first state at ambient temperatures and remains in that first state when chilled by components of the hydrogen cooling system.
According to some embodiments, the above-described hydrogen cooling systems can employ conventional plate-to-plate diffusion bonded heat exchangers. However, diffusion-bonded heat exchangers are by themselves expensive, costing anywhere from $40-100K, thus potentially limiting the scalability and/or flexibility of these solutions. To facilitate further reduction in the cost of a hydrogen cooling system, the inventors have developed a high UA annular heat exchanger designed for high pressure heat exchange that, according to some embodiments, can be used in place of expensive diffusion-bonded heat exchangers, thereby further lowering the cost of the hydrogen cooling system and improving the scalability and flexibility of the solution, facilitating further optimization capabilities in the design, configuration and deployment of the hydrogen cooling system. As used herein, an annular heat exchanger refers to a heat exchanger in which the tubing through which hydrogen gas is formed into an annular coil, examples of which are described in further detail below.
According to some embodiments, the tubing of the coil of an annular heat exchanger is made from a material (e.g., a nickel alloy) that is compatible with hydrogen and that can withstand the pressure conditions of a hydrogen fueling environment and is designed to have a thin wall thickness to increase heat transfer efficiency of the coil. According to some embodiments, the annular coil is finned (e.g., copper fins) to increase the surface area of the coil to increase heat transfer efficiency. According to some embodiments, the annular heat exchanger is of a shell-and-tube configuration comprising an outer shell (e.g., a cylindrical shell) through which coolant is pumped and the coil of tubing is positioned within the outer shell so that hydrogen gas flowing through the coil transfers heat to the coolant flowing through the outer shell. According to some embodiments, an annular heat exchanger comprises a plurality of coils to increase the heat transfer capacity of the heat exchanger.
Following below are further detailed descriptions of various concepts related to, and embodiments of, hydrogen cooling systems for refueling of hydrogen fuel cell vehicles. It should be appreciated that the embodiments described herein may be implemented in any of numerous ways. Examples of specific implementations are provided below for illustrative purposes only. It should be appreciated that the embodiments and the features/capabilities provided may be used individually, all together, or in any combination of two or more features/capability, as aspects of the systems and techniques described herein are not limited in this respect.
Heat exchanger 116 may be any component with sufficiently high heat transfer efficiency to meet the performance requirements of a fueling station. According to some embodiments, an annular heat exchanger designed for high heat transfer efficiency and to operate under the high-pressure conditions of hydrogen gas refueling is used to implement heat exchanger 116, examples of which are described in further detail below. According to some embodiments, a conventional plate-to-plate heat exchanger, for example, a diffusion-bonded heat exchanger designed for the high pressures of hydrogen gas refueling may be used to implement heat exchanger 116. Use of an annular heat exchanger may be preferable for many fueling stations due to its lower cost, size and/or flexibility (e.g., the suitability of an annular heat exchanger to be used in conjunction with embodiments employing PCMs), but aspects are not limited in this respect.
During a refueling event, chilled coolant from reservoir 114 and hydrogen gas from hydrogen source 122 are pumped through heat exchanger 116 (e.g., via pumps 115) where the chilled coolant absorbs heat from the hydrogen gas as the coolant and hydrogen gas pass through the heat exchanger. Hydrogen source 122 refers to any source from which heat exchanger receives hydrogen. For example, hydrogen source 1122 may be a bank of hydrogen storage tanks at the fueling station. According to some embodiments, hydrogen source 122 may be the dispenser in configurations where the hydrogen cooling system is coupled downstream of the dispenser flow control valve, examples of which are described in further detail below. The chilled hydrogen gas may then be provided to dispenser(s) 120 for delivery during to the fuel tank of an HFCV during a fueling event. The coolant is recirculated back to the reservoir. Refrigeration unit 112 is operated to maintain the desired temperature of the reservoir and/or to recover the temperature of the reservoir coolant to the desired temperature as one or more refueling events increases the temperature of the reservoir coolant. For example, coolant many be circulated between refrigeration unit 112 and reservoir 114 to maintain or recover the desired temperature, a refrigeration coil may be positioned within the reservoir to maintain/recover the temperature, etc. Any of the techniques described below in connection with
As discussed above, conventional high UA hydrogen cooling systems are implemented using small-volume reservoirs (e.g., less than 50 gallons) and large-capacity refrigeration units (e.g., greater than 35 kW capacity chillers), resulting in large, expensive, high power solutions. The inventors have recognized advantages in deploying large-volume reservoirs and small-capacity refrigeration units to facilitate more compact, less expensive and/or lower power hydrogen cooling systems to provide highly flexible and scalable hydrogen cooling solutions suitable for a wide range of fueling stations and HFCV refueling (e.g., light, medium and heavy duty). A large-volume reservoir acts a thermal buffer and facilitates the use of smaller refrigeration units. The combination of a large-volume reservoir and small-capacity refrigeration unit allows for sizing of the cooling system to meet the performance needs of a particular fueling station. Hydrogen cooling systems comprising large-volume reservoirs (i.e., greater than 50 gallons, such as between 80-120 gallons for many systems, or even larger volume reservoirs such as between 500 and 700 gallons for some medium and heavy duty applications) and small-capacity refrigeration units (i.e., less than or equal to 21 kW, many configurations of which may employ 10 kW capacity refrigeration units or less) can be optimized for a range of fueling station needs, including industrial (e.g., fork lifts, off-road vehicles, etc.), light duty (e.g., passenger vehicles, etc.), medium-duty and heavy-duty (busses, cargo vans, semi-trucks, etc.) applications with fueling pressures of 0 to 87.5 MPa and fuel delivery temperatures ranging from −20-40° C., examples of which are discussed in further detail below.
Operating the refrigeration unit may include one or more tasks such as turning the refrigeration unit on, turning on pumps that circulate coolant through the refrigeration unit, circulating coolant through refrigeration coils, or other acts needed to engage the process of cooling the bulk coolant that may depend on the type of refrigeration unit and the type of coolant (e.g., direct refrigeration, circulation of a coolant, use of refrigeration coils, use of cryogenic gas, etc.). Operation of the chiller may continue until the bulk coolant temperature in the reservoir is sufficiently lowered (e.g., until the temperature reaches a desired target temperature). According to some embodiments, acts 210 and 215 are performed periodically in accordance with a cooling schedule based on one or more factors, based on information from the fueling station (e.g., received via vehicle communication techniques), etc.
In addition to maintenance, the chiller may also be used to recover the temperature of the bulk coolant in the reservoir after a fill event. In particular, detection of the initiation of a fueling event (e.g., when a dispenser nozzle is removed from its holder and/or engaged with a vehicle) in act 220 may result in operating the chiller (e.g., act 215 as discussed above) and operating the heat exchanger (act 230) to cool down the hydrogen gas before dispensing into the fuel tank of the vehicle. Operating the heat exchanger may include turning on pumps or other components needed to circulate coolant and pass hydrogen gas through the heat exchanger so that the coolant can absorb heat from the hydrogen gas. In act 240, chilled hydrogen gas is dispensed into the vehicle according a fueling protocol determined by communication between the dispenser and the vehicle using any of the techniques described herein. In exemplary process 200, both the refrigeration unit and the heat exchanger are operated. However, in some embodiments, the refrigeration may not be operated during or throughout a fueling event and may instead be operated after the refueling event or according to a predetermined schedule based on, for example, historic data regarding peak and low demand hours, the number of vehicles in the area that may need refueling, whether the refrigeration unit is being used to chill a different reservoir of coolant, energy costs at different times of the day and/or based on any other relevant information available to the refueling station.
After the refueling event is completed, operation of the heat exchanger may stop (e.g., pumps and/or other components may be turned off or powered down) but the refrigeration may remain operational to recover the target temperature of the bulk coolant in the reservoir (e.g., acts 210 and 215 may performed until the target temperature of the bulk coolant is recovered). As discussed above, according to some embodiments, the refrigeration may not be operated during the fueling event, but instead may be operated after the refueling event (or switched over from a different reservoir) and/or according to a cooling schedule that takes into consideration one or more factors discussed above to optimize operation of the fueling station.
It should be appreciated that the performance characteristics of process 200 (or any of the alternatives discussed above) will depend on the volume of the reservoir (e.g., the amount of heat energy the reservoir can store) and the capacity of the refrigeration unit. As discussed above, the capacity of a refrigeration unit refers to the cooling capacity (heat rejection) of the chiller and is typically measured in kilowatts, but is also frequently indicated by tonnage. Typical refrigeration units will have approximately 3.517 kW of cooling capacity (heat rejection) per ton (e.g., a 2-ton chiller would have a cooling capacity of approximately 7 kW, a 3-ton chiller would have a cooling capacity of 10.6 kW, a 5-ton chiller would have a cooling capacity of approximately 17.6 kW, etc.).
As discussed above, using a large-volume reservoir as a thermal buffer allows the use of a small-capacity refrigeration unit that can be sized for average as opposed to peak load, facilitating a highly scalable cooling system that can be configured to meet the demands of fueling stations with different performance requirements. This scalability allows cooling systems that can service light, medium and heavy-duty fueling requirements at a lower cost. The large-volume reservoir and small-capacity refrigeration unit also facilitates a wide variety of configuration options such a single coolant reservoir for multiple heat exchanger/nozzle pairs, shared heat exchangers for multiple nozzles, multiple coolant reservoirs for a single refrigeration unit, etc., examples of which are described in further detail below.
As discussed above, costs may be also be reduced by replacing conventional diffusion bonded (plate-to-plate) heat exchangers with an annular heat exchanger that has been adapted to operate in the high pressure and high UA hydrogen fueling environment. By providing a lower cost high UA heat exchanger, scalability and flexibility of a hydrogen cooling system can be further improved. For example, conventional bonded heat exchangers are costly, making employing a single heat exchanger a significant expense that often renders scaling up cost prohibitive. By contrast, an annular heat exchanger can be provided at significantly reduced cost and facilitate configurations in which an annular heat exchanger may be provided for each nozzle dispenser at a fueling station, or shared between dispensers at each refueling island, examples of which are described in further detail below.
According to some embodiments, coil 450 is made of a material that is compatible with hydrogen and that is capable of withstanding the pressure conditions of hydrogen refueling at thin wall thickness, such as a nickel alloy or the like. For example, a nickel alloy material is resistant to corrosion and is therefore suitable for the hydrogen refueling environment. As discussed above, to increase heat transfer efficiency, coil 450 may be manufactured with a thin wall thickness (e.g., t equal to approximately 0.044 inches) to reduce the amount of material between the hydrogen and the coolant. Using a thin wall thickness facilitates a more compact design for the heat exchanger by reducing the length of tubing needed to achieve the amount of cooling. For example, conventional tube thicknesses on the order of 0.1 inches required doubling or tripling the length of the tubing needed to achieve suitable cooling for many hydrogen refueling applications. Thin wall thickness for the tubing also reduces the time to cool hydrogen to target temperatures. Hydrogen refueling applications often have short windows (e.g., approximately 30 seconds) to hit the temperature target for the hydrogen and providing a thin wall thickness for the tubing reduces the time to cool the hydrogen to target.
In addition, coil 450 may be finned to increase the surface area of the coil to substantially increase the heat transfer efficiency.
Finning of tubing 450 may be achieved by attaching the fins to the tubing using a brazing process. The inventors recognized that high temperature brazing can result in annealing of the metal during the brazing process, thereby reducing the strength of the material resulting in the risk of rupturing during use under the high-pressure conditions of hydrogen fueling. According to some embodiments, a silver alloy braze is used that allows fins to be attached to the tubing at relatively low temperatures that prevents annealing of the metal materials during the brazing process, thereby maintaining the integrity of the coil. A silver alloy braze is also compatible with coil and fin materials, for example, nickel alloy tubing and copper fins. According to some embodiments, finning and bending of the tubing into a coil is performed during the same process. Table I illustrates materials and parameters for an exemplary coil (e.g., coil 450) for an annular high UA heat exchanger suitable for hydrogen fueling applications, in accordance with some embodiments. It should be appreciated that the materials and values given in Table I are merely exemplary and that different materials and different values may be used to provide the coil for an annular high UA heat exchanger, as the aspects are not limit to any particular choice of material, dimensions and/or values for the coil.
According to some embodiments, an annular heat exchanger is provided without the outer shell (
As discussed above, annular high UA heat exchangers facilitate reducing the cost of a hydrogen cooling system of a fueling station. Additionally, the reduced cost annular heat exchanger improves the flexibility and/or scalability of a hydrogen cooling system that can be configured to meet the needs and requirements of a given fueling station.
The hydrogen cooling system further comprises an annular high UA heat exchanger for each of dispensers 1820a and 1820b. Specifically, in the exemplary embodiment illustrated in
As discussed above, heat exchanger 816a, 816b are preferably annular heat exchangers including any one or combination of features described herein. According to some embodiments, heat exchangers 816a and 816b may comprise a finned coil of tubing made of a material compatible with hydrogen (e.g., nickel alloy tubing with copper fins) designed for high heat transfer efficiency. For example, the coil of tubing may be formed with thin walls (e.g., less than 0.07 inches, and more preferably less than 0.05 inches) to facilitate a high heat transfer of capacity (e.g., a heat transfer capacity of greater than 25 kW and more preferably greater than 50 kW, such as a heat transfer capacity of approximately 75 kW or more). According to some embodiments, annular heat exchangers 816a and 816b each comprise multiple coils to increase the heat transfer capacity of the heat exchanger. It should be appreciated that heat exchangers 816a and 816b may be dimensioned in any manner suitable for the given fueling station, as the aspects are not limited to any specific annular heat exchanger design. Additionally, heat exchangers 816a and 816b may have the same or different design from one another to achieve desired dispensing characteristics of the dispenser to which it is coupled.
Hydrogen gas source 805 may be one or more hydrogen gas storage tanks shared by all of the dispensers at the fueling station, shared by a subset of the dispensers at the fueling station or may comprise multiple individual hydrogen gas storage tanks at each of the dispensers (which may in turn receive hydrogen gas from a primary hydrogen storage tank or source, or may be standalone dispenser units), as the aspects are not limited to any particular configuration for the hydrogen gas source. In the exemplary embodiment illustrated in
The hydrogen cooling system may either be coupled upstream or downstream from flow control valves 1880a and 1880b of the respective dispensers. The two different hydrogen flow paths for upstream and downstream configuration are illustrated in solid and dotted lines, respectively. Specifically, as shown by the solid lines, according to some embodiments in which the hydrogen cooling system is coupled upstream of the flow control valve, hydrogen gas from hydrogen gas source 805 is provided to the inlet of heat exchangers 816a, 816b and chilled hydrogen gas from the heat exchangers is provided to flow control valves 1880a and 1880b, respectively. Chilled hydrogen gas flowing through the flow control valves is provided to nozzle 1825a and 1825b for dispensing to a vehicle during a fueling event. As shown by the dotted lines, according to some embodiments the hydrogen cooling system is coupled downstream of the flow control valve, hydrogen gas from hydrogen gas source 805 is provided to flow control valves 1880a, 1880b and hydrogen gas flowing through the flow control valves is provided to the inlet of heat exchangers 816a, 816b respectively. Chilled hydrogen gas from the heat exchangers is provided to dispenser nozzles 1825a, 1825b for dispensing to a vehicle during a hydrogen fueling event. This solid and dotted line convention is also used in the embodiments illustrated herein to illustrate that either upstream or downstream coupling of a hydrogen cooling system can be used in any configuration that utilizes a hydrogen cooling system. As used herein, when a heat exchanger is described as providing hydrogen gas to the dispenser, it refers to both upstream configurations in which hydrogen gas from the heat exchanger is provided to the dispenser upstream of the flow control valve and downstream configuration in which hydrogen gas from the heat exchanger is provided to the dispenser downstream of the flow control valve.
As discussed above, it should be appreciated that the exemplary hydrogen fueling systems shown in
As discussed above, the inventors have further appreciated that the thermal energy capacity of a hydrogen cooling system may be increased by using phase change materials (PCM) as a coolant, either alone or in conjunction with one or more other coolants. As also discussed above, phase change materials store energy when cooled so that the material transitions from one state to another (e.g., from a liquid to a solid, or from a gas to a liquid) that can be released upon when the material is heated so as to transition back to the previous state (e.g., from a solid to a liquid, or from a liquid to a gas). As a result, heat transferred from hydrogen gas during the chilling process for a fueling event goes into state change rather than heating up the material. Thus, a PCM coolant can be used like a thermal battery that can be “charged-up” by causing it to transition from its ambient temperature state to its low temperature state, and that stored thermal energy can be released as the PCM absorbs heat from hydrogen gas (or another coolant that has absorbed heat from hydrogen gas) that goes into changing the state of the PCM back to its ambient temperature state. Therefore, a reservoir of PCM material can absorb more heat from hydrogen gas (or another coolant that has absorbed heat from hydrogen gas) without increasing its temperature, allowing for longer periods of continuous hydrogen chilling without needing to recover the temperature of the PCM and/or other coolant in the reservoir.
In addition, PCM material provides better thermal control over the hydrogen gas because it will maintain the temperature of its low temperature state transition until the material has transitioned back to its ambient temperature state. As discussed above, back-to-back fills (i.e., without a recovery period) using conventional coolants result in increasingly higher temperature hydrogen gas fills until the maximum temperature at which hydrogen gas can be dispensed is reached and no further fueling can take place until the refrigeration unit recovers the target temperature of the coolant in the reservoir. Because the temperature of the PCM will be maintained at its low temperature state transition temperature, back-to-back fills can be performed at that temperature until the PCM has been thoroughly transitioned to its ambient temperature state.
The inventors have recognized that PCMs can therefore be used to optimize the hydrogen cooling system for specific hydrogen fueling needs in a number of ways, including increasing the number of back-to-back fills that can be performed, reducing the size of the coolant reservoir, reducing the size of the refrigeration unit (which can be operated during the night or other off-peak hours when demand is low and/or energy is cheaper to bring the PCM to its low temperature state), or some combination of the above, as discussed in further detail below.
According to some embodiments, the PCM's low temperature state is as a solid so that refrigeration unit 2112 freezes the PCM material to bring the reservoir down to the target temperature. In such embodiments, heat exchanger 2116 may be an annular heat exchanger comprising one or more coils according to techniques described herein, but with no outer shell (e.g., as shown in the exemplary configurations illustrated in
With respect to the refrigeration unit 2112, because the PCM reservoir does not need to be brought back to the target temperature as frequently, a smaller capacity refrigeration unit can be utilized and operated relatively infrequently when the PCM reservoir needs to be brought back to its low temperature state. For example, the refrigeration unit may be operated overnight or during off hours (e.g., when energy is cheaper), when substantially all of the PCM has transitioned to its ambient temperature state (e.g., before or after the temperature of the ambient PCM has reached a temperature in which no further low temperature fills can be performed) and/or when the fueling station determines recovering the temperature and/or low temperature state of the PCM is needed via the vehicle communication techniques described above. The above described benefits (increasing the back-to-back fill capacity, reducing the volume of the reservoir, reducing the capacity of the refrigeration unit, increasing the number of reservoirs coupled to the refrigeration unit and/or increasing the number of dispenser nozzles sharing the reservoir) can be used in any combination, thus providing a highly flexible and modular hydrogen cooling system that can meet the needs of a wide variety of fueling stations, including providing different configurations of components for different dispenser islands within the same fueling station, providing multiple independent hydrogen cooling systems within the same fueling station, or a single hydrogen cooling system configured for light, medium or heavy duty refueling needs.
The inventors have further recognized that PCMs can be used in combination with conventional coolants in a variety of ways to take advantage of the increased thermal capacity of PCMs. According to some embodiments, a dual-stage hydrogen cooling system is provided comprising a bulk PCM reservoir for storing a PCM to chill hydrogen gas from a hydrogen source to a first temperature and a polishing reservoir for storing a conventional (non-PCM) coolant (e.g., glycol) to chill hydrogen gas from the bulk PCM reservoir to a second temperature for dispensing to a HFCV during a fueling event. According to some embodiments, a coolant reservoir combines a conventional coolant and a PCM material to take advantage of the increased thermal capacity of the PCM when brought to its low temperature state. According to some embodiments, a PCM is integrated into the heat exchanger (e.g., within a baffle of annular heat exchanger) configured to also circulate a conventional coolant to chill hydrogen gas via both the integrated PCM and the circulated conventional coolant. Examples of hydrogen cooling systems utilizing one or more these techniques is discussed in further detail.
Annular heat exchanger 2216a may be formed using one or more coils using any of the techniques described above so that the one or more coils are thermally coupled to the PCM (e.g., in contact with the PCM), for example, using the annular configurations illustrated in
In the exemplary embodiment illustrated
According to some embodiments, a single bulk PCM reservoir provides intermediate cooling for multiple polishing reservoirs. For example, a single bulk PCM reservoir may provide intermediate cooling for a plurality of polishing reservoirs where each of the plurality of polishing reservoirs are shared by multiple dispensers of a dispenser island, or where each of the plurality of polishing reservoirs is used by a single respective dispenser. The flexibility of dual-stage hydrogen cooling systems allows for many different configurations and optimizations for both the sizing of the one or more refrigeration units and for the volume of both the PCM reservoir and the one or more polishing reservoirs to meet the needs of a particular fueling station. It should be appreciated that the use of a multi-stage cooling system can be implemented in other configurations and the aspects are not limited to any particular configuration, combination of elements and/or types of PCM and conventional coolants.
Refrigeration unit 2412 may be coupled to reservoir 2414 to chill the non-PCM coolant in insulated tank 2417 (e.g., via refrigeration coil 2413 or other refrigeration techniques) and the PCM within heat exchanger 2416. When hydrogen gas and coolant are pumped through heat exchanger 2416, heat from the hydrogen gas is absorbed by the coolant and the PCM held internal to the heat exchanger. As such, the heat transfer load of a fueling event will be shared by the PCM and non-PCM coolants, resulting in a reduction in the temperature increase of the non-PCM coolant in the reservoir. Therefore, the exemplary PCM technique used by hydrogen cooling system can be used to increase the back-to-back fill capacity of the fueling system, decrease the recovery time of the coolant reservoir, allow for a reduction in the size of the refrigeration unit and/or volume of the reservoir, or facilitate an optimization that achieves some combination of these benefits. It should be appreciated that exemplary hydrogen cooling system 2400 may be used in any of the variety fueling system configurations described herein (e.g., the hydrogen fueling systems illustrated in
In particular, hydrogen gas flowing through inner tube 2650 transfers heat to PCM contained in middle tube 2660 that has been chilled to its low temperature state via chilled coolant flowing through outer tube 2670. For example, coolant may be chilled to a temperature sufficient to cause a state transition of the PCM to its low temperature state using any of the refrigeration techniques discussed herein and thereafter pumped through outer tube 2670 to chill the PCM to cause a state transition. According to some embodiments, coolant from a coolant reservoir that has been chilled to a desired temperature by a refrigeration unit may be pumped through outer tube 2670 to cause the PCM to change state and then circulated back to the reservoir for temperature recovery. As discussed above, once the PCM has been chilled to its low temperature state, heat absorbed from hydrogen flowing through inner tube 2650 will go into transitioning the PCM to its ambient temperature state rather than heating the PCM. As a result, chilled coolant may only need to be pumped through outer tube 2670 when the PCM has substantially transitioned to its ambient temperature state or when the fueling system determines that the low temperature state of the PCM should be fully recovered.
According to some embodiments, chiller system 2612 also comprises a heat exchanger that pre-cools hydrogen gas from hydrogen gas source 2605 before being provided to coaxial tubing 2675. In embodiments employing a heat exchanger, the heat transfer load of chilling hydrogen gas may be shared between the heat exchanger and coaxial tubing 2675 so that a lower UA heat exchanger can be employed at reduced cost relative to embodiments of high UA exchangers discussed herein. As discussed in connection with the other PCM techniques discussed above, use of PCM in a coaxial tubing facilitates increasing back-to-back fills, reducing the size and cost of components of the hydrogen cooling system, or some combination of each. According to some embodiments, coaxial tubing 2675 may be used to transport hydrogen gas from hydrogen gas source 2605 (e.g., one or more storage tanks) to the one or more dispensers and chiller system 2612 may be coupled at the connection of the coaxial tubing to the hydrogen gas source so that hydrogen cooling may be performed via a direct transport link between the hydrogen gas source 2650 and the one or more dispensers. Coaxial tubing 2675 may be used to connect components of a hydrogen fueling station in other ways, as the use of coaxial tubing is not limited to any particular arrangement.
As discussed above, a fueling event includes a dispenser at a hydrogen fueling station delivering hydrogen from a hydrogen source at the fueling station to a fuel tank onboard a HFCV. When the nozzle of the dispenser is engaged with the vehicle fuel tank, the dispenser is activated to control the flow of hydrogen into the fuel tank of the vehicle. As discussed above, tank parameters such as tank pressure, tank volume, tank temperature, etc. are typically communicated to the dispenser so that the dispenser can safely refill the tank. Fueling protocols are established for safely refueling a HFCV and dispensers are configured to control the flow of gas into the tank according to a corresponding fueling protocol.
The inventors have developed dispenser techniques to facilitate dispenser control of hydrogen gas to a fuel tank of a HFCV. According to some embodiments, a dispenser comprises a bank of fixed-sized orifice valves that can be turned off and on in any desired combination to control the mass flow rate of hydrogen gas to the vehicle to achieve the pressure profile (e.g., a constant pressure ramp) of a fueling protocol. According to some embodiments, a variable-size orifice solenoid valve paired to a direct drive servo motor is employed to control the mass flow rate of hydrogen to match the pressure profile of a corresponding fueling protocol. As discussed above, either the fixed-sized orifice solution or the variable-size orifice solution can be employed in any of the dispenser illustrated above in connection with the exemplary fueling stations.
In the embodiment illustrated in
According to some embodiments, dispenser controller 2890 is configured to control the pressure of hydrogen gas dispensed to the HFCV, for example, according to a pressure profile of a hydrogen fueling protocol. Thus, dispenser controller receives the target pressure 2892 (or target flow rate) indicative of the desired tank pressure of the fuel tank of HFCV (or target flow rate to the tank) at a given instant during the fueling event, which target pressure and/or target flow rate may vary over the course of the fueling event in accordance with the fueling protocol. To achieve the desired pressure, controller 2890 may be configured to receive the supply pressure 2891 of the hydrogen gas from the gas supply, a measured pressure downstream of the valve bank and/or the tank pressure of the fuel tank of the HFCV. As discussed above, tank parameters may be received via a communications link established between the nozzle and the fuel tank, via a communications link established between the vehicle and a fueling station network and/or or may be received via other means (e.g., tank pressure may be measured directly by nozzle 2825). Thus, controller 2890 may receive the tank pressure 2893 at a given instant in time. Using the supply pressure 2891 and either the measured pressure 2894, the tank pressure 2893, or both, and the known pressure differential across each of the fixed orifices, controller 2890 determines which combination of fixed orifices valves 2885a-e should be opened to provide a hydrogen gas flow rate that most closely matches the hydrogen gas flow rate that will deliver the target pressure 2892 (or target flow rate) to the tank (e.g., a constant pressure ramp during the course of the fueling event). Controller 2890 may also receive measurements from one or more sensors 2870 to ensure that the dispenser is delivering the desired flow rate of hydrogen gas. For example, sensor(s) 2870 may include a pressure sensor, a mass flow rate sensor or both as a check to make sure that the hydrogen gas is being delivered as intended.
It should be appreciated that bank 2880 may include any number of fixed-size orifice valves of any size. For example, bank 2880 may include a plurality of orifices at different fixed sizes, a plurality of orifices at a same size or any combination of different and same size orifices to achieve the desired granularity in control over the flow rate of hydrogen between the hydrogen supply and the dispenser nozzle. Fixed-size orifice valves are relatively inexpensive and have few moving parts and therefore can provide a cost effective and reliable dispenser solution for dispensing hydrogen gas to a HFCV vehicle. Additionally, valve bank 2880 may include one or more fixed-size orifices without an associated valve that allows hydrogen flow whenever supply hydrogen is provided to the valve bank 2880 (e.g., whenever the main fuel valve of the dispenser is opened), some examples of which are described in further detail below in connection with
In act 2930, the dispenser controller receives or obtains input from one or more sensors or otherwise receiving information for the fueling event. For example, the dispenser may be configured to receive supply pressure of the hydrogen gas at the input of the dispenser, measured pressure and/or flow rate downstream of the valve bank and/or tank pressure of the fuel tank of the vehicle, and a target pressure of the fuel tank (or a flow rate to the tank) that the dispenser controller seeks to achieve. As discussed in the foregoing, the target pressure and/or hydrogen flow rate may be obtained from a fueling protocol that provides a pressure profile the dispenser should follow during the refueling event. The dispenser controller may also obtain other input such as hydrogen flow rate at or near the nozzle (e.g., downstream from the dispenser valve system), temperature or other input in connection with the fueling event.
In act 2940, the dispenser controller controls the plurality of fixed-sized orifice valves based on the input received by the dispenser controller including, but not limited to, opening one or more of the plurality of fixed-size orifice valves, closing one or more of the plurality of fixed-size orifice valves, or maintaining the existing combination of open and closed fixed-sized orifice valves to deliver hydrogen flow through the valve bank that matches the target pressure and/or target flow rate or follows the target pressure profile as closely as possible. According to some embodiments, the dispenser controller uses the supply pressure of hydrogen gas at or near the input to the valve bank (upstream of the valve bank), the measured pressure and/or flow rate downstream of the valve bank and/or the current tank pressure of the fuel tank of the vehicle, and the current target pressure and/or hydrogen flow rate to determine the combination of open and closed fixed-size orifice valves that will deliver hydrogen at a flow rate that will result in bringing the measured pressure or tank pressure towards the target pressure or the target flow, respectively. For example, the dispenser controller may use the difference between the measured pressure and/or current tank pressure and the current target pressure to selectively open or close one or more of the fixed-size orifice valves or maintain the current combination of open and closed valves to minimize the difference between the current tank pressure and the current target pressure. However, the dispenser controller can determine the combination of open and closed fixed-size orifice valves in other suitable ways to follow a target pressure and/or flow rate profile for the fueling event. The dispenser controller may be configured to continuously monitor the input received (e.g., received in act 2930) to control the valve bank to adjust the hydrogen flow rate to follow the target pressure and/or flow rate profile for the fueling event until the fill is complete (act 2945).
A fill may be completed when the nozzle is disengaged from the fuel tank, the dispenser determines that the fuel tank is full (e.g., the tank pressure has reached its maximum tank pressure), or the dispenser otherwise determines that the delivery of hydrogen gas should be terminated. To end the fueling event (act 2950), the dispenser controller may close the master valve (e.g., stop flow valve) to the valve bank, close the plurality of fixed-sized orifice valves, or otherwise stop the dispensing of hydrogen gas to the fuel tank of the vehicle. By using the supply pressure, measured pressure and/or current tank pressure and target pressure and/or target flow rate to control the fueling event, the dispenser can perform a fueling event according to a desired fueling protocol to the resolution of the valve bank based on the number of valves and/or combination of different orifice sizes, which can be designed to achieve a desired granularity in different flow rates.
In the embodiment illustrated in
As one example fueling event using this configuration, all of the valves may be closed to begin with and the either nozzle valve 3085c or 3085d will be opened depending on which nozzle has been engaged with a vehicle of the corresponding type. According to some embodiments, the nozzles themselves are different so that they cannot be mistakenly engaged with the wrong type of vehicle. When stop flow valve 3005 is opened to begin the fueling event, hydrogen gas will flow only through orifice 3084 at the maximum flow rate of the orifice (e.g., 250 g/min). Dispenser controller 3090 may then select which of fixed-size orifice valves 3085a, 3085b and/or full flow valve 3083 to open to deliver hydrogen gas at different flow rates ranging from the maximum flow rate of orifice 3084 to the maximum flow rate of the nozzle valve 3085c, 3085d engaged with a vehicle during the fueling event. For the exemplary orifice sizes discussed above, dispenser controller 3090 can deliver a flow rate of 250 g/min, 500 g/min, 1000 g/min, 1500 g/min and full flow rate that is limited to 1800 g/min for nozzle 3025a and that is limited to 3600 g/min for nozzle 3025b. However, it should be appreciated that any number of fixed-size orifice valves of any size can be used to delivered flow rates to any type of desired vehicle, as the aspects the dual-nozzle dispenser configuration are not limited in this respect.
According to some embodiments, a variable-size orifice valve paired to a direct drive servo motor is employed to control the mass flow rate of hydrogen to match the pressure profile of a corresponding fueling protocol. Many conventional hydrogen flow control valves employ pressure regulator valves that are opened and closed pneumatically based on the pressure differential across the valve. Pressure regulator valves are frequently used in hydrogen fueling applications because there are no electrical components and are by design safe for hydrogen fueling environments. The inventors recognized that the use of pressure regulator valves have drawbacks, some associated with slow response times to pressure changes at the hydrogen gas supply. Typical hydrogen sources at a fueling station comprise a bank of cascaded tanks at different pressures that are successively opened during a fueling event. As a result, the supply pressure will decrease as hydrogen flows from the first tank and then will spike each time a successive tank is engaged to deliver hydrogen. Conventional dispenser controllers using pressure regulator valves typically cannot handle such large changes in supply pressure and as a result are forced to stop the flow of hydrogen gas, reset the pressure regulators and then start the flow again. As a result, hydrogen fueling stations typically must be paired with a specific dispenser tuned to the specific storage bank at that fueling station, resulting in costly, time consuming and inflexible deployment of a hydrogen dispenser that must be matched to a specific fueling station. Some hydrogen gas dispenser utilize stepper motors to open and close the valve opening, but stepper motor solutions also suffer from slow response times and lack of control.
According to some embodiments, a variable-size orifice valve is paired with a direct drive servo motor providing high resolution and highly responsive control over the variable-size orifice valve, thereby addressing a number of drawbacks of conventional dispensers that utilize variable-size orifice valves that are paired with stepper motors and/or rely on pressure regulators to control hydrogen flow into the fuel tank of an HFCV during a fueling event. As used herein, a direct drive servo motor refers to a servo motor that has a one-to-one rotational relationship with the valve to which it is paired. That is, each 360° rotation of the direct drive servo motor results in a 360° rotation of the valve stem. By contrast, stepper motors or other geared motors have a many-to-one rotational relationship with the valve to which it is paired. That is, a 360° rotation of the valve stem requires multiple rotations of the stepper motor due to gear reduction. For example, a typical stepper motor may have a twenty-to-one rotational relationship with the valve so that the stepper motor rotates twenty times (i.e., 7200° of rotation) to effect one rotation of the valve stem (i.e., 360°). As a result, pairing the valve with a direct driver servo motor results in significantly fast response times. Additionally, direct drive servo motors according to some embodiments can operate at significantly higher rotations per minute (RPMs) than stepper motors, further increasing the speed increase and responsive improvement over conventional stepper motor solutions. That is, direct drive servo motors according to some embodiments not only effect more change in the valve opening on each rotation, but also rotate faster.
According to some embodiments, a direct drive servo motor includes an encoder that measures the rotation of the direct drive servo motor. Because the servo motor is direct drive, the encoder allows the position of the valve to be measured (i.e., how many degrees the valve has been opened). The measured valve position allows the dispenser controller to operate in a closed feedback loop, facilitating precise control and fast response times at a high degree of resolution. According to some embodiments, the encoder measures rotation with one degree of resolution or less (0.5 degrees or less, more preferably 0.3 degrees or less, and more preferably at 0.1 degrees of resolution), allowing the valve position to be precisely determined. According to some embodiments, the encodes measures rotation down to 0.1 degree of resolution, allowing for highly precise control.
Hydrogen dispensers employing a flow control valve having a direct drive servo motor paired with variable-size orifice valve and control techniques described herein provide high resolution and fast response times that allow the dispenser to be deployed at virtually any fueling station independent of the characteristics of the hydrogen gas source (e.g., independent of the characteristics of the supply bank), eliminating the need to match and custom tune the dispenser for a specific hydrogen supply bank or hydrogen source configuration and allowing for the design of standalone hydrogen dispensers that are agnostic to the fueling station configuration and hydrogen supply characteristics, facilitating simple cost effective deployment across a wide range of different fueling stations. Because the flow control valve using the direct drive servo motor techniques described herein can respond quickly and precisely, the dispenser controller does not need to stop flow when a different supply tank is switched to and the dispenser need not know that specifics of the number, trigger levels or pressure changes that will result from a particular storage bank because the dispenser controller can respond quickly to pressure spikes and continue to deliver hydrogen gas at the desired pressure.
Dispenser controller 3190 may be configured to control the pressure of hydrogen gas dispensed to the HFCV, for example, according to a pressure profile of a hydrogen fueling protocol. For example, dispenser controller 3190 may receive the target pressure and/or target flow rate 3192 indicative of the desired tank pressure of the fuel tank of HFCV and/or the desired flow rate to be delivered at a given instant during the fueling event, which target pressure and/or target flow rate may vary over the course of the fueling event in accordance with the fueling protocol. To achieve the desired pressure, controller 3190 may be configured to receive the supply pressure 3191 of the hydrogen gas from the gas supply, a measured pressure and/or measured flow rate downstream from the flow control valve (e.g., measured by a sensor(s) in sensor(s) 3170 and/or the tank pressure 3193 of the fuel tank of the HFCV. As discussed above, tank parameters may be received via a communications link established between the nozzle and the fuel tank, via a communications link established between the vehicle and a fueling station network and/or or may be received via other means (e.g., tank pressure may be measured directly by nozzle 3125). Thus, dispenser controller 3190 may receive the tank pressure 3193 at a given instant in time.
In the embodiment illustrated in
According to some embodiments, components of a hydrogen cooling system are arranged upstream from the dispenser so that chilled hydrogen is supplied to the dispenser. In some embodiments, one or more components of a hydrogen cooling system (e.g., a heat exchanger) are provided downstream from the dispenser flow control system (e.g., downstream of the variable-size valve) prior to being delivered to the nozzle so that the dispenser is supplied hydrogen gas at approximately the temperature at which the hydrogen gas is stored. To begin fueling, the dispenser controller may cause the direct drive servo motor to open the valve a small amount (e.g., bring the valve to an almost closed position) and then slowly open the valve until an initial target pressure and/or target flow rate is achieved. By initially opening the valve slowly, large spikes that could potentially overheat the tank or damage components of the dispenser are prevented. Once the initial target pressure is reached, the dispenser controller control loop follows a desired pressure and/or target flow rate profile based on input received by the dispenser controller in act 3230.
For example, the dispenser may be configured to receive supply pressure of the hydrogen gas at the input of the dispenser, measured pressure and/or flow rate downstream of the flow control valve and/or tank pressure of the fuel tank of the vehicle, a target pressure of the fuel tank (or target flow rate to be delivered) that the dispenser controller seeks to achieve, flow rate and feedback from the direct drive servo motor (e.g., valve position from an encoder). As discussed in the foregoing, the target pressure and/or target flow rate may be obtained from a fueling protocol that provides a pressure and/or flow rate profile the dispenser should follow during the fueling event. The dispenser controller may also obtain other input such as the hydrogen gas pressure and/or hydrogen flow rate at or near the nozzle (e.g., downstream from the dispenser valve system), or other input in connection with the fueling event.
In act 3240, the dispenser controller sends signals to the direct drive servo motor (e.g., voltage or current signals indicative of the direction and amount that the direct drive servo motor should change the valve position) based on the input received in act 2930. According to some embodiments, the dispenser controller uses the supply pressure of hydrogen gas at or near the valve input, the measured pressure downstream of the flow control valve and/or current tank pressure of the fuel tank of the vehicle, the current target pressure and/or target flow rate, current flow rate and valve position in a closed feedback loop to adjust the valve position (e.g., via signals from the dispenser controller to the direct drive servo motor) to deliver hydrogen gas at the target pressure. As the target pressure and/or target flow changes (e.g., according to a fueling protocol) and/or as the supply pressure changes, the feedback loop tracks the target pressure and/or flow rate by adjusting the valve position accordingly until it is determined that the fill is complete in act 3245, for example, when the nozzle is disengaged from the fuel tank, the dispenser determines that the fuel tank is full (e.g., the tank pressure has reached its maximum tank pressure), or the dispenser otherwise determines (or is instructed) that the delivery of hydrogen gas should be terminated. To end the fueling event (act 3250), the dispenser controller may signal the direct drive servo motor to bring the valve to a fully closed position (and close any master valve that may be present) and/or otherwise stop the dispensing of hydrogen gas to the fuel tank of the vehicle.
For hydrogen fueling applications, a valve that allows for a wide range of flow rates is beneficial and, in some cases, may be required. According to some embodiments, a variable-size orifice valve (e.g., valve 3330 in flow control valve 3300) has a range from 0-90 g/min to facilitate control of hydrogen flow for hydrogen fueling. For example, some exemplary variable-size orifice valves may be capable of proving 0 g/min at the fully closed position and 90 g/min at the fully opened position. According to some embodiments, a variable-size orifice valve has a smaller or larger flow rate range (e.g., 0-40 g/min, 0-60 g/min, 0-80 g/min, 0-100 g/min, 0-120 g/min, etc), as the aspects are not limited to any particular range provided the range is suitable for hydrogen fueling. Additionally, the electrical components of the servo motor may be rated for use in hazardous environments to ensure that the electrical components operate safely in a hydrogen fueling environment.
Having thus described several aspects and embodiments of the technology set forth in the disclosure, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be within the spirit and scope of the technology described herein. For example, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the embodiments described herein. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described. In addition, any combination of two or more features, systems, articles, materials, kits, and/or methods described herein, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present disclosure.
The above-described embodiments can be implemented in any of numerous ways. One or more aspects and embodiments of the present disclosure involving the performance of processes or methods may utilize program instructions executable by a device (e.g., a computer, a processor, controller, or other device) to perform, or control performance of, the processes or methods. In this respect, various inventive concepts may be embodied as a computer readable storage medium (or multiple computer readable storage media) (e.g., a computer memory, one or more floppy discs, compact discs, optical discs, magnetic tapes, flash memories, circuit configurations in Field Programmable Gate Arrays or other semiconductor devices, or other tangible computer storage medium) encoded with one or more programs that, when executed on one or more computers, controllers or other processors, perform methods that implement one or more of the various embodiments described above. The computer readable medium or media can be transportable, such that the program or programs stored thereon can be loaded onto one or more different computers or other processors to implement various ones of the aspects described above. In some embodiments, computer readable media may be non-transitory media.
The terms “program” or “software” are used herein in a generic sense to refer to any type of computer code or set of computer-executable instructions that can be employed to program a computer or other processor to implement various aspects as described above. Additionally, it should be appreciated that according to one aspect, one or more computer programs that when executed perform methods of the present disclosure need not reside on a single computer or processor, but may be distributed in a modular fashion among a number of different computers or processors to implement various aspects of the present disclosure.
Computer-executable instructions may be in many forms, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Typically the functionality of the program modules may be combined or distributed as desired in various embodiments.
Also, data structures may be stored in computer-readable media in any suitable form. For simplicity of illustration, data structures may be shown to have fields that are related through location in the data structure. Such relationships may likewise be achieved by assigning storage for the fields with locations in a computer-readable medium that convey relationship between the fields. However, any suitable mechanism may be used to establish a relationship between information in fields of a data structure, including through the use of pointers, tags or other mechanisms that establish relationship between data elements.
When implemented in software, the software code can be executed on any suitable processor or collection of processors, whether provided in a single computer or distributed among multiple computers.
Further, it should be appreciated that a computer may be embodied in any of a number of forms, such as a rack-mounted computer, a desktop computer, a laptop computer, or a tablet computer, as non-limiting examples. Additionally, a computer may be embedded in a device not generally regarded as a computer but with suitable processing capabilities, including a Personal Digital Assistant (PDA), a smartphone or any other suitable portable or fixed electronic device.
Also, a computer may have one or more input and output devices. These devices can be used, among other things, to present a user interface. Examples of output devices that can be used to provide a user interface include printers or display screens for visual presentation of output and speakers or other sound generating devices for audible presentation of output. Examples of input devices that can be used for a user interface include keyboards, and pointing devices, such as mice, touch pads, and digitizing tablets. As another example, a computer may receive input information through speech recognition or in other audible formats.
Such computers may be interconnected by one or more networks in any suitable form, including a local area network or a wide area network, such as an enterprise network, and intelligent network (IN) or the Internet. Such networks may be based on any suitable technology and may operate according to any suitable protocol and may include wireless networks, wired networks or fiber optic networks.
Also, as described, some aspects may be embodied as one or more methods. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
The terms “approximately,” “about,” and “substantially” may be used to mean within ±20% of a target value in some embodiments, within ±10% of a target value in some embodiments, within ±5% of a target value in some embodiments, and yet within ±2% of a target value in some embodiments. The terms “approximately,” “about,” and “substantially” may include the target value.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively.
Claims
1. A fueling station comprising:
- a roadside unit positioned at the fueling station and configured to communicate with a plurality of on-board units associated with respective vehicles via a respective wireless connection between the roadside unit and each of the plurality of on-board units; and
- at least one controller coupled to the roadside unit, the at least one controller configured to process fueling information received by the roadside unit via each respective wireless connection and configured to cause at least one action to be performed based on an expected refueling demand at the fueling station determined at least in part from the received fueling information,
- wherein the at least one action comprises causing at least one component of the fueling station to be powered down or powered up based on the expected refueling demand.
2. The fueling station of claim 1, wherein at least one first on-board unit of the plurality of on-board units is within range of the roadside unit and the respective wireless connection comprises a direct connection established between the roadside unit and the at least one first on-board unit.
3. The fueling station of claim 1, further comprising a hydrogen cooling system, wherein the at least one controller is configured to cause at least one component of the hydrogen cooling system to be powered down or powered up based on the expected refueling demand.
4. The fueling station of claim 3, wherein the at least one component comprises one or more refrigeration units, one or more dispensers and/or one or more pumps that are caused to be enabled or disabled based on the expected refueling demand.
5. The fueling station of claim 3, wherein the hydrogen cooling system comprises a first refrigeration unit, and wherein the at least one controller is configured to cause operation of the first refrigeration unit to be enabled or disabled based on the expected refueling demand.
6. The fueling station of claim 5, wherein the hydrogen cooling system comprises a plurality of refrigeration units including the first refrigeration unit, and wherein the at least one controller is configured to cause operation of more than one of the plurality of refrigeration units to be enabled or disabled based on the expected refueling demand.
7. A fueling station, comprising:
- a roadside unit positioned at the fueling station and configured to communicate with on-board units associated with respective vehicles via respective wireless connections between the roadside unit and respective on-board units, wherein the roadside unit is configured to establish direct connections with on-board units of vehicles within range of the roadside unit and is configured to establish indirect connections with on-board units of vehicles that are out-of-range of the roadside unit; and
- at least one controller coupled to the roadside unit, the at least one controller configured to process fueling information received by the roadside unit via established wireless connections and configured to cause at least one action to be performed based on an expected refueling demand at the fueling station determined at least in part from the received fueling information,
- wherein the at least one controller is configured to determine trend data representing one or more trends in refueling demand based at least in part on the received fueling information.
8. The fueling station of claim 7, wherein the at least one controller is configured to determine trend data representing peak demand times for the fueling station, average demand for the fueling station, weekday demand, weekend demand and/or predominant type of vehicle refueled during different time periods.
9. The fueling station of claim 7, wherein the at least one controller is configured cause at least one component of the fueling station to be powered down or powered up based at least in part on the expected refueling demand and the trend data.
10. The fueling station of claim 7, wherein the at least one controller is configured to provide a recommendation, based at least in part on the expected refueling demand and the trend data, to at least one of the vehicles via the respective wireless connection, the recommendation including indication of a recommended fueling station to service a refueling of the at least one of the vehicles.
4386309 | May 31, 1983 | Peschka |
6615137 | September 2, 2003 | Lutter |
8239103 | August 7, 2012 | Ichihara |
8924037 | December 30, 2014 | Seymour et al. |
9464761 | October 11, 2016 | Nagura |
9586806 | March 7, 2017 | Mathison |
9810374 | November 7, 2017 | Nagura et al. |
10683967 | June 16, 2020 | Petersen |
10920933 | February 16, 2021 | Werlen |
10949830 | March 16, 2021 | Gaudin |
11034338 | June 15, 2021 | Lei |
20050061390 | March 24, 2005 | Mathis et al. |
20090187416 | July 23, 2009 | Baer |
20100307636 | December 9, 2010 | Uemura |
20110077809 | March 31, 2011 | Leary |
20110259469 | October 27, 2011 | Harty et al. |
20120125482 | May 24, 2012 | Mori |
20130037165 | February 14, 2013 | Okawachi et al. |
20140102587 | April 17, 2014 | Nagura |
20140196814 | July 17, 2014 | Nagura |
20150267865 | September 24, 2015 | Adler |
20170073211 | March 16, 2017 | Wilson et al. |
20170308965 | October 26, 2017 | Morris |
20180375536 | December 27, 2018 | Emori et al. |
20190064834 | February 28, 2019 | Adams |
20190092234 | March 28, 2019 | Gibson |
20200276909 | September 3, 2020 | Boisen et al. |
20220136655 | May 5, 2022 | Pollica et al. |
20220186879 | June 16, 2022 | Pollica et al. |
20220186880 | June 16, 2022 | Pollica et al. |
20220186881 | June 16, 2022 | Pollica et al. |
20220186882 | June 16, 2022 | Pollica et al. |
20220186883 | June 16, 2022 | Pollica et al. |
2003-269693 | September 2003 | JP |
- Invitation to Pay Additional Fees dated Sep. 22, 2021 for International Application No. PCT/US21/41401.
- International Search Report and Written Opinion dated Dec. 8, 2021 for International Application No. PCT/US21/41401.
Type: Grant
Filed: Jan 28, 2022
Date of Patent: Jul 4, 2023
Patent Publication Number: 20220153568
Assignee: Ivys Inc. (Waltham, MA)
Inventors: Darryl Edward Pollica (Melrose, MA), Christopher John O'Brien (Somerville, MA), Bryan Gordon (Goffstown, NH)
Primary Examiner: Jason K Niesz
Application Number: 17/588,059
International Classification: B67D 7/14 (20100101); F17C 9/00 (20060101); B67D 7/80 (20100101);