Display panel, electronic device and method for driving display panel
A display panel, an electronic device and a method are provided. The display panel includes: a base substrate; a plurality of sub-pixels arranged in a matrix; a plurality of data lines and a plurality of gate lines, the data line intersect the gate line; at least some of the plurality of sub-pixels are divided into a plurality of sub-pixel association groups, each sub-pixel association group includes a plurality of sub-pixels of a same color electrically connected to a same data line; the display panel further includes an associated pixel control circuit configured to independently perform data writing on the plurality of sub-pixels of the same color in the sub-pixel association group in the first image display mode; and synchronously perform data writing on the plurality of sub-pixels of the same color electrically connected to the same data line in the sub-pixel association group in the second image display mode.
Latest BOE TECHNOLOGY GROUP CO., LTD. Patents:
This application is a Section 371 National Stage Application of International Application No. PCT/CN2021/070426, filed on Jan. 6, 2021, entitled “DISPLAY PANEL, ELECTRONIC DEVICE AND METHOD FOR DRIVING DISPLAY PANEL” incorporated herein by reference in their entirety.
TECHNICAL FIELDThe present disclosure relates to a field of display technology, and in particular to a display panel, an electronic device and a method for driving a display panel.
BACKGROUNDDisplay panels are widely used in various devices with display functions such as televisions, tablet computers, and computer monitors. With the development of technology and people's pursuit of high definition, the refresh rate and the resolution of the display panel are continuously increasing, which multiplies system resources and greatly increases the power consumption. In addition, with the development of 3D imaging technology, demands for pixels of 3D display panels, especially multi-view 3D display panels, may also increase significantly, resulting in greater demand for system resources.
SUMMARYA display panel is provided according to embodiments of the present disclosure provide, including:
a base substrate; a plurality of sub-pixels arranged in a matrix; and a plurality of data lines extending along a first direction and a plurality of gate lines extending along a second direction, wherein the data line intersect the gate line; wherein at least some of the plurality of sub-pixels are divided into a plurality of sub-pixel association groups, each of the plurality of sub-pixel association groups includes a plurality of sub-pixels of a same color electrically connected to a same data line, and the display panel has a first image display mode and a second image display mode; and wherein the display panel further includes an associated pixel control circuit, configured to independently perform data writing on the plurality of sub-pixels of the same color in the sub-pixel association group in the first image display mode; and synchronously perform data writing on the plurality of sub-pixels of the same color electrically connected to the same data line in each of the plurality of sub-pixel association groups in the second image display mode.
In some embodiments, the plurality of sub-pixels are arranged in a sub-pixel matrix of M rows and N columns, each row of sub-pixels extends along the second direction, each column of sub-pixels extends along the first direction, each of the at least one data line is electrically connected to more than one sub-pixel of the same color in a same row of the sub-pixel matrix.
In some embodiments, each of the plurality of sub-pixel association groups includes sub-pixels in a plurality of rows of the sub-pixel matrix, in the first image display mode, more than one gate line respectively electrically connected to the plurality of sub-pixels of the same color in each of the plurality of sub-pixel association groups is scanned independently, in the second image display mode, more than one gate line respectively electrically connected to the plurality of sub-pixels of the same color in each of the plurality of sub-pixel association groups is scanned synchronously.
In some embodiments, the plurality of sub-pixels includes sub-pixels of a plurality of colors, colors of the sub-pixels in a same column of the sub-pixel matrix are the same, or sub-pixels of different colors are periodically arranged in the same column of the sub-pixel matrix.
In some embodiments, the same data line is electrically connected to more than one sub-pixel of the same color in the same row of the sub-pixel matrix through a switch element, or electrically connected to more than one sub-pixel of the same color in the same row of the sub-pixel matrix directly.
In some embodiments, the plurality of sub-pixels include a first color sub-pixel, a second color sub-pixel and a third color sub-pixel, the plurality of data lines include a first data line, a second data line and a third data line, each of the plurality of sub-pixel association groups includes a plurality of first color sub-pixels electrically connected to the first data line, a plurality of second color sub-pixels electrically connected to the second data line, and a plurality of third color sub-pixels electrically connected to the third data line.
In some embodiments, colors of the sub-pixels in the same column of the sub-pixel matrix are the same, and the sub-pixels of different colors are periodically arranged one by one in the same row of the sub-pixel matrix, each row of sub-pixels extends along the second direction, each column of sub-pixels extends along the first direction, each of the at least one data line is electrically connected to more than one sub-pixel of the same color in the same row of the sub-pixel matrix, the plurality of gate lines include a first gate line, a second gate line, a third gate line and a fourth gate line, and the display panel further includes a first group of switches and a second group of switches, and a number of color types of the sub-pixels is G, wherein a data line connected to a 2nG+ith column of sub-pixels is connected to a second node through a nG+ith switch in the first group of switches, and a data line connected to a (2n+1)G+ith column of sub-pixels is connected to the second node through a (n+1) G+ith switch in the second group of switches, wherein n is an integer greater than or equal to zero and less than or equal to (N/2G), and i is an integer greater than or equal to 1 and less than or equal to G; and wherein the associated pixel control circuit is configured so that: in the first image display mode, the first gate line scans and turns on the first row of sub-pixels in a first time period and a second time period, the second gate line scans and turns on the second row of sub-pixels in a third time period and a fourth time period, and the third gate line scans and turns on the third row of sub-pixels in a fifth time period and a sixth time period, and the fourth gate line scans and turns on the fourth row of sub-pixels in a seventh time period and an eighth time period, the first group of switches are turned on in the first time period, the third time period, the fifth time period and the seventh time period and turned off in the second time period, the fourth time period, the sixth time period, and the eighth time period, and the second group of switches are turned on in the second time period, the fourth time period, the sixth time period and the eighth time period and are turned off in the first time period, the third time period, the fifth time period and the seventh time period; and in the second image display mode, the first gate line and the second gate line scan and turn on the first row of sub-pixels and the second row of sub-pixels in the first time period and the second time period, and the third gate line and the fourth gate line scans and turns on the third row of sub-pixels and the fourth row of sub-pixels in the second time period and the third time period, the first group of switches and the second group of switches are kept on in the first time period, the second time period, the third time period and the fourth time period.
In some embodiments, colors of the sub-pixels in a same row of the sub-pixel matrix are the same, and each of the plurality of sub-pixel association groups includes a plurality of first color sub-pixels in the first row of the sub-pixel matrix electrically connected to the first data line, a plurality of second color sub-pixels in the second row of the sub-pixel matrix electrically connected to the second data line, a plurality of third color sub-pixels in the third row of the sub-pixel matrix electrically connected to the first data line, a plurality of first color sub-pixels in the fourth row of the sub-pixel matrix electrically connected to the second data line, a plurality of second color sub-pixels in the fifth row of the sub-pixel matrix electrically connected to the first data line, a plurality of third color sub-pixels in the sixth row of the sub-pixel matrix electrically connected to the second data line, and wherein the plurality of gate lines include a first gate line, a second gate line, a third gate line, a fourth gate line, a fifth gate line, a sixth gate line, a seventh gate line, an eighth gate line, a ninth gate line, a tenth gate line, an eleventh gate line and a twelfth gate line, the first gate line is electrically connected to an odd-numbered sub-pixel in the first row of the sub-pixel matrix, and the second gate line is electrically connected to an even-numbered sub-pixel in the first row of the sub-pixel matrix, the third gate line is electrically connected to an odd-numbered sub-pixel in the second row of the sub-pixel matrix, the fourth gate line is electrically connected to an even-numbered sub-pixel in the second row of the sub-pixel matrix, the fifth gate line is electrically connected to an odd-numbered sub-pixel in the third row of the sub-pixel matrix, the sixth gate line is electrically connected to an even-numbered sub-pixel in the third row of the sub-pixel matrix, the seventh gate line is electrically connected to an odd-numbered sub-pixel in the fourth row of the sub-pixel matrix, the eighth gate line is electrically connected to an even-numbered sub-pixel in the fourth row of the sub-pixel matrix, the ninth gate line is electrically connected to an odd-numbered sub-pixel in the fifth row of the sub-pixel matrix, the tenth gate line is electrically connected to an even-numbered sub-pixel in the fifth row of the sub-pixel matrix, the eleventh gate line is electrically connected to an odd-numbered sub-pixel in the sixth row of the sub-pixel matrix, the twelfth gate line is electrically connected to an even-numbered sub-pixel in the sixth row of the sub-pixel matrix, wherein the associated pixel control circuit is configured so that: in the first image display mode, the first gate line scans in a first time period, the second gate line and the third gate line scan in a second time period, the fourth gate line and the fifth gate line scan in a third time period, the sixth gate line and the seventh gate line scan in a fourth time period, and the eighth gate line and the ninth gate line scan in a fifth time period, the tenth gate line and the eleventh gate line scan in a sixth time period, and the twelfth gate line scans in a seventh time period; in the second image display mode, the first gate line, the second gate line, the seventh gate line, and the eighth gate line scan in the first time period and the second time period, and the third gate line, the fourth gate line, the ninth gate line and the tenth gate line scan in the third period and the fourth period, and the fifth gate line, the sixth gate line, the eleventh gate line and the twelfth gate line scan in the fifth time period and the sixth time period.
In some embodiments, the display panel is a multi-view three-dimensional display panel including a plurality of viewing angle display positions, each of the plurality of sub-pixel association groups includes a plurality of three-dimensional sub-pixel groups, and each of the plurality of three-dimensional sub-pixel groups includes sub-pixels of different colors for the plurality of viewing angle display positions.
In some embodiments, the multi-view three-dimensional display panel includes K viewing angle display positions, wherein K is an even number, each of the plurality of three-dimensional sub-pixel groups includes K/2 columns of sub-pixels, the sub-pixels of different colors include a first color sub-pixel, a second color sub-pixel, and a third color sub-pixel, a periodic unit is included in each column of sub-pixels, and each periodic unit is formed of two first color sub-pixels, two second color sub-pixels, and two third color sub-pixels in sequence.
In some embodiments, the display panel further includes a cylindrical lens array located on a light emitting side of the display panel, wherein an axis of the cylindrical lens in the cylindrical lens array extends along the first direction, orthographic projections of the plurality of sub-pixels on a base substrate are respectively inclined with respect to the first direction.
In some embodiments, the display panel further includes a cylindrical lens array located on a light emitting side of the display panel, wherein an axis of the cylindrical lens in the cylindrical lens array extends along the first direction, orthographic projections of the plurality of sub-pixels on a base substrate extend along the first direction, an even-numbered row of sub-pixels is staggered in the second direction by half a sub-pixel relative to an odd-numbered row of sub-pixels.
In some embodiments, the display panel further includes a cylindrical lens array located on a light emitting side of the display panel, an orthographic projection of the cylindrical lens in the cylindrical lens array on the base substrate has a broken line shape, the multi-view three-dimensional display panel includes K viewing angle display positions, K is a multiple of 4, each of the plurality of three-dimensional sub-pixel groups includes 4 rows of sub-pixels and K/4 columns of sub-pixels, a second row of sub-pixels and a third row of sub-pixels of each of the plurality of three-dimensional sub-pixel groups are staggered in the second direction by one sub-pixel relative to a first row of sub-pixels and a fourth row of sub-pixels of said each of the plurality of three-dimensional sub-pixel groups.
In some embodiments, the plurality of three-dimensional sub-pixel groups includes a first three-dimensional sub-pixel group and a second three-dimensional sub-pixel group adjacent in the second direction, each group of three-dimensional sub-pixel groups includes J columns of sub-pixels, and each of the J columns of sub-pixels is connected to a data line, the display panel further includes a first group of switches and a second group of switches, the number of switches in each of the first group of switches and the second group of switches is not less than J, wherein a data line connected to a Hth column of sub-pixels in the first three-dimensional sub-pixel group is connected to a first node through a Hth switch in the first group of switches, and a data line connected to a Hth column of sub-pixels in the second three-dimensional sub-pixel group is connected to the first node through a Hth switch in the second group of switches, H and J are integers, and H is less than or equal to J.
In some embodiments, a refresh rate of the first image display mode is lower than a refresh mode of the second image display mode, and a resolution of the first image display mode is higher than a resolution of the second image display mode.
A method for driving the display panel as described above is further provided according to the embodiments of the present disclosure, including: independently performing data writing on the plurality of sub-pixels of the same color in the sub-pixel association group in the first image display mode; and synchronously performing data writing on the plurality of sub-pixels of the same color electrically connected to the same data line in each of the plurality of sub-pixel association groups in the second image display mode.
In some embodiments, the plurality of gate lines includes a first gate line and a second gate line, the plurality of sub-pixels are arranged as a sub-pixel matrix of M rows and N columns, each row of sub-pixels extends along the second direction, each column of sub-pixels extends along the first direction, each of the at least one data line is electrically connected to more than one sub-pixel of a same color in a same row of the sub-pixel matrix, and wherein in the first image display mode, the first gate line scans and turns on an odd-numbered sub-pixel in a first row of sub-pixels in a first time period, the second gate line scans and turns on an even-numbered sub-pixel in the first row of sub-pixels in a second time period; and in the second image display mode, the first gate line and the second gate line scan and turn on each sub-pixel in the first row of sub-pixels in the first period.
In some embodiments, the plurality of sub-pixels are arranged as a sub-pixel matrix of M rows and N columns, each row of sub-pixels extends along the second direction, each column of sub-pixels extends along the first direction, each of the at least one data line is electrically connected to more than one sub-pixel of the same color in the same row of the sub-pixel matrix, and each data line is electrically connected to one sub-pixel in the same row of the sub-pixel matrix, and is electrically connected to other sub-pixels of the same color in the same row through a switch element, and wherein the switch element is turned off in the first image display mode, and the switch element is turned on in the second image display mode.
In some embodiments, the plurality of sub-pixels are arranged as a sub-pixel matrix of M rows and N columns, the plurality of sub-pixels includes sub-pixels of a plurality of colors, colors of the sub-pixels in a same column of the sub-pixel matrix are the same, and the sub-pixels of different colors are periodically arranged one by one in the same row of the sub-pixel matrix, each row of sub-pixels extends along the second direction, each column of sub-pixels extends along the first direction, each of the at least one data line is electrically connected to more than one sub-pixel of the same color in the same row of the sub-pixel matrix, the plurality of gate lines include a first gate line, a second gate line, a third gate line and a fourth gate line, and the display panel further includes a first group of switches and a second group of switches, and a number of color types of the sub-pixels is G, wherein a data line connected to a 2nG+ith column of sub-pixels is connected to a second node through a nG+ith switch in the first group of switches, and a data line connected to a (2n+1)G+ith column of sub-pixels is connected to the second node through a (n+1) G+ith switch in the second group of switches, wherein n is an integer greater than or equal to zero and less than or equal to (N/2G), and i is an integer greater than or equal to 1 and less than or equal to G; and in the first image display mode, the first gate line scans and turns on the first row of sub-pixels in a first time period and a second time period, the second gate line scans and turns on the second row of sub-pixels in a third time period and a fourth time period, and the third gate line scans and turns on the third row of sub-pixels in a fifth time period and a sixth time period, and the fourth gate line scans and turns on the fourth row of sub-pixels in a seventh time period and an eighth time period, the first group of switches are turned on in the first time period, the third time period, the fifth time period and the seventh time period and turned off in the second time period, the fourth time period, the sixth time period, and the eighth time period, and the second group of switches are turned on in the second time period, the fourth time period, the sixth time period and the eighth time period and are turned off in the first time period, the third time period, the fifth time period and the seventh time period; and in the second image display mode, the first gate line and the second gate line scan and turn on the first row of sub-pixels and the second row of sub-pixels in the first time period and the second time period, and the third gate line and the fourth gate line scans and turns on the third row of sub-pixels and the fourth row of sub-pixels in the second time period and the third time period, the first group of switches and the second group of switches are kept on in the first time period, the second time period, the third time period and the fourth time period.
In some embodiments, the plurality of sub-pixels are arranged as a sub-pixel matrix of M rows and N columns, each row of sub-pixels extend along the second direction, each column of sub-pixels extends along the first direction, the plurality of sub-pixels includes a first color sub-pixel, a second color sub-pixel, and a third color sub-pixel, and the plurality of data lines comprises a first data line, a second data line, and a third data line, and wherein colors of the sub-pixels in a same row of the sub-pixel matrix are the same, and each of the plurality of sub-pixel association groups comprises a plurality of first color sub-pixels in the first row of the sub-pixel matrix electrically connected to the first data line, a plurality of second color sub-pixels in the second row of the sub-pixel matrix electrically connected to the second data line, a plurality of third color sub-pixels in the third row of the sub-pixel matrix electrically connected to the first data line, a plurality of first color sub-pixels in the fourth row of the sub-pixel matrix electrically connected to the second data line, a plurality of second color sub-pixels in the fifth row of the sub-pixel matrix electrically connected to the first data line, a plurality of third color sub-pixels in the sixth row of the sub-pixel matrix electrically connected to the second data line, and wherein the plurality of gate lines include a first gate line, a second gate line, a third gate line, a fourth gate line, a fifth gate line, a sixth gate line, a seventh gate line, an eighth gate line, a ninth gate line, a tenth gate line, an eleventh gate line and a twelfth gate line, the first gate line is electrically connected to an odd-numbered sub-pixel in the first row of the sub-pixel matrix, and the second gate line is electrically connected to an even-numbered sub-pixel in the first row of the sub-pixel matrix, the third gate line is electrically connected to an odd-numbered sub-pixel in the second row of the sub-pixel matrix, the fourth gate line is electrically connected to an even-numbered sub-pixel in the second row of the sub-pixel matrix, the fifth gate line is electrically connected to an odd-numbered sub-pixel in the third row of the sub-pixel matrix, the sixth gate line is electrically connected to an even-numbered sub-pixel in the third row of the sub-pixel matrix, the seventh gate line is electrically connected to an odd-numbered sub-pixel in the fourth row of the sub-pixel matrix, the eighth gate line is electrically connected to an even-numbered sub-pixel in the fourth row of the sub-pixel matrix, the ninth gate line is electrically connected to an odd-numbered sub-pixel in the fifth row of the sub-pixel matrix, the tenth gate line is electrically connected to an even-numbered sub-pixel in the fifth row of the sub-pixel matrix, the eleventh gate line is electrically connected to an odd-numbered sub-pixel in the sixth row of the sub-pixel matrix, the twelfth gate line is electrically connected to an even-numbered sub-pixel in the sixth row of the sub-pixel matrix, in the first image display mode, the first gate line scans in a first time period, the second gate line and the third gate line scan in a second time period, the fourth gate line and the fifth gate line scan in a third time period, the sixth gate line and the seventh gate line scan in a fourth time period, and the eighth gate line and the ninth gate line scan in a fifth time period, the tenth gate line and the eleventh gate line scan in a sixth time period, and the twelfth gate line scans in a seventh time period; in the second image display mode, the first gate line, the second gate line, the seventh gate line, and the eighth gate line scan in the first time period and the second time period, and the third gate line, the fourth gate line, the ninth gate line and the tenth gate line scan in the third period and the fourth period, and the fifth gate line, the sixth gate line, the eleventh gate line and the twelfth gate line scan in the fifth time period and the sixth time period.
In some embodiments, the display panel is a multi-view three-dimensional display panel including a plurality of viewing angle display positions, each of the plurality of sub-pixel association groups includes a plurality of three-dimensional sub-pixel groups, and each of the plurality of three-dimensional sub-pixel groups includes sub-pixels of different colors for the plurality of viewing angle display positions, and the method includes: turning on different sub-pixels of the same color in a same viewing angle display position in a same sub-pixel association group one by one at different time periods in the first image display mode, and synchronously turning on the different sub-pixels of the same color in the same viewing angle display position in the same pixel association group in the second image display mode.
An electronic device is further provided according to the embodiments of the present disclosure, including the display panel according to any one of the above embodiments.
Through the following description of the present disclosure with reference to the drawings, other features, purposes and advantages of the present disclosure will become apparent.
The present disclosure will be further described in detail below with reference to the accompanying drawings and embodiments. It may be understood that the specific embodiments described here are only used to explain the related invention, but not to limit the present disclosure. In addition, it should be noted that, for ease of description, only the parts related to the invention are shown in the drawings.
It should be noted that the embodiments in the present disclosure and the features in the embodiments may be combined with each other if there is no conflict.
In addition, in the following detailed description, for ease of explanation, many specific details are set forth to provide a comprehensive understanding of the embodiments of the present disclosure. However, one or more embodiments may also be implemented without these specific details.
It should be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, without departing from the scope of the exemplary embodiments, a first element may be named as a second element, and similarly, a second element may be named as a first element. The term “and/or” as used herein includes any and all combinations of one or more of the related listed items.
It should be understood that when an element or layer is referred to as being “formed on” another element or layer, the element or layer may be directly or indirectly formed on the other element or layer. That is, for example, there may be an intermediate element or an intermediate layer. In contrast, when an element or layer is referred to as being “directly formed on” another element or layer, there is no intervening element or intervening layer. Other words used to describe the relationship between elements or layers should be interpreted in a similar manner (for example, “between” and “directly between”, “adjacent” and “directly adjacent”, etc.).
The terms used herein are only for purpose of describing specific embodiments, and are not intended to limit the embodiments. As used herein, unless the context clearly dictates otherwise, a singular form is also intended to include a plural form. It should be understood that when the terms “comprise” and/or “include” are used herein, it means that described features, wholes, steps, operations, elements and/or components are present, but do not exclude a presence or addition of one or more other features, wholes, steps, operations, elements, components, and/or combinations thereof.
Herein, unless otherwise specified, the expressions “located on the same layer” and “arranged on the same layer” generally mean that a first component and a second component may be formed by using a same material and by a same patterning process. The expressions “located on different layers” and “arranged on different layers” generally mean that a first component and a second component are formed by different patterning processes.
When a display panel is displaying, required display parameters are different for different image frames. For example, when a dynamic image is displayed, a high refresh rate is often required, and when a static image is displayed, a high resolution is often particularly required, but the requirement for the refresh rate is lower than that of the dynamic image. Due to the current continuous pursuit of display effects, more and more system resources are required for display panels. Display parameters may be adjusted for different display images. For example, for dynamic images, a high refresh rate and low resolution mode may be provided, while for static images, a low refresh rate and high resolution mode may be provided. In this way, the system resources may be balanced, so that different display images may all have relatively good display effects when the system resources are limited.
In order to perform the above-mentioned display in the first image display mode and the second image display mode, a structure of the display panel and a method for driving the display panel should be specially designed. A display panel is provided according to the embodiments of the present disclosure. As shown in
The detailed description will be given below with reference to the specific example of
In the display panel shown in
Although the red sub-pixels are taken as an example for description, it should be understood that the above-mentioned embodiment may be extended to sub-pixels of other colors.
In some embodiments, each sub-pixel association group AG includes sub-pixels located in the plurality of rows of the sub-pixel matrix, and in the first image display mode, more than one gate line respectively electrically connected to the plurality of sub-pixels of the same color in each sub-pixel association group AG are scanned independently. In the second image display mode, more than one gate line respectively electrically connected to the plurality of sub-pixels of the same color in each sub-pixel association group are scanned synchronously.
In some embodiments, as shown in
Compared with the solution in which sub-pixels arranged in the same column have the same color, as shown in
In the above embodiment, the same data line may be directly electrically connected to more than one sub-pixels of the same color in the same row of the sub-pixel matrix. However, in some embodiments, the same data line may also be electrically connected to more than one sub-pixel of the same color in the same row of the sub-pixel matrix through a switch element.
In some embodiments, as shown in
In the example shown in
The embodiments of the present disclosure also provide a multi-view three-dimensional display panel. The multi-view 3D display panel may provide a plurality of viewing angles, and may provide a corresponding image for each viewing angle. These images at different viewing angles may be used to show images of a same object seen at different viewing angles, for example, images corresponding to a front, side, oblique front, oblique rear, and other positions of an object. In this way, a stereoscopic effect may be obtained when an observer observes at a plurality of viewing angles.
In some embodiments, the multi-view three-dimensional display panel may also be provided with the aforementioned sub-pixel association group AG′. Each sub-pixel association group AG′ includes a plurality of three-dimensional sub-pixel groups PXS, and each three-dimensional sub-pixel group PXS includes sub-pixels of different colors for the plurality of viewing angle display positions. For example,
Similar to the foregoing embodiment, the multi-view three-dimensional display panel may also have a first image display mode and a second image display mode. The first image display mode is used to display images with relatively high resolution and relatively low refresh rate, and the second image display mode is used to display images with relatively low resolution and relatively high refresh rate. In the first image display mode, data writing is independently performed on the plurality of sub-pixels of a same color in the sub-pixel association group AG′; and in the second image display mode, data writing is synchronously performed on the plurality of sub-pixels of the same color electrically connected to a same data line in the sub-pixel association group AG′.
In some embodiments, the multi-view three-dimensional display panel may include a plurality of three-dimensional sub-pixel groups PXS. The plurality of three-dimensional sub-pixel groups PXS includes a first three-dimensional sub-pixel group PXS11, a second three-dimensional sub-pixel group PXS12, the first three-dimensional sub-pixel group PXS11 and the second three-dimensional sub-pixel group PXS12 are adjacent in a second direction (for example, x direction in
In the first image display mode, a same row of sub-pixels are driven and displayed one by one. A specific timing diagram is shown in
In the example shown in
In the example shown in
In the example of
In other embodiments, the orthographic projection of the plurality of sub-pixels on the base substrate extends along the first direction, and even-numbered rows of sub-pixels are staggered in the second direction by a certain displacement (for example, half a sub-pixel) relative to odd-numbered rows of sub-pixels. As shown in
The embodiments of the present disclosure also provide a method for driving a display panel. As shown in
In a first image display mode, data writing is independently performed on a plurality of sub-pixels of a same color in a sub-pixel association group (step S1); and in a second image display mode, data writing is synchronously performed on a plurality of sub-pixels of a same color electrically connected to a same data line in each sub-pixel association group (step S2).
As mentioned above, for example, a refresh rate of the first image display mode is lower than a refresh rate of the second image display mode, and a resolution is higher than a resolution of the second image display mode. In this way, static images and dynamic images may be optimized for display while keeping system resources unchanged. That is, the first image display mode with higher resolution and lower refresh rate is used for static images (more system resources are allocated to the resolution), while the second image display mode with higher refresh rate and lower resolution are used for dynamic images (more system resources are allocated to the refresh rate).
In some embodiments, a plurality of sub-pixels are arranged in a sub-pixel matrix of M rows and N columns, each row of sub-pixels extends along a second direction, each column of sub-pixels extends along a first direction, and each of at least one data line is electrically connected to more than one sub-pixel of a same color in a same row of the sub-pixel matrix. In the first image display mode, the first gate line G1 scans and turns on odd-numbered sub-pixels in a row of sub-pixels in a first time period P1, and the second gate line G2 scans and turns on even-numbered first sub-pixels in a second time period P2; and in the second image display mode, the first gate line G1 and the second gate line G2 scan and turn on each sub-pixel PX in the first row of sub-pixels in the first time period P1, for example, as shown in
In some embodiments, for example, as shown in
In some embodiments, as shown in
In some embodiments, a plurality of sub-pixels are arranged in a sub-pixel matrix of M rows and N columns, and the plurality of sub-pixels include first color sub-pixels, second color sub-pixels, and third color sub-pixels, and a plurality of data lines include a first data line, a second data line, and a third data line. Colors of the sub-pixels in a same row of the sub-pixel matrix are the same, and each sub-pixel association group includes a plurality of first color sub-pixels in the first row of the sub-pixel matrix electrically connected to the first data line, a plurality of second color sub-pixels in the second row of the sub-pixel matrix electrically connected to the second data line, a plurality of third color sub-pixels in the third row of the sub-pixel matrix electrically connected to the first data line, a plurality of first color sub-pixels in the fourth row of the sub-pixel matrix electrically connected to the second data line, a plurality of second color sub-pixels in the fifth row of the sub-pixel matrix electrically connected to the first data line, a plurality of third color sub-pixels in the sixth row of the sub-pixel matrix electrically connected to the second data line. A plurality of gate lines include a first gate line, a second gate line, a third gate line, a fourth gate line, a fifth gate line, a sixth gate line, a seventh gate line, and an eighth gate line, the first gate line is electrically connected to odd-numbered sub-pixels in the first row of the sub-pixel matrix, the second gate line is electrically connected to even-numbered sub-pixels in the first row of the sub-pixel matrix, the third gate line is electrically connected to odd-numbered sub-pixels in the second row of the sub-pixel matrix, the fourth gate line is electrically connected to even-numbered sub-pixels in the second row of the sub-pixel matrix, the fifth gate line is electrically connected to odd-numbered sub-pixels in the third row of the sub-pixel matrix, the sixth gate line is electrically connected to even-numbered sub-pixels in the third row of the sub-pixel matrix, the seventh gate line is electrically connected to odd-numbered sub-pixels in the fourth row of the sub-pixel matrix, and the eighth gate line is electrically connected to even-numbered sub-pixels in the fourth row of the sub-pixel matrix.
In the first image display mode, the first gate line scans and turns on the odd-numbered sub-pixels in the first row of the sub-pixel matrix in a first time period, the second gate line and the third gate line scan and turn on the even-numbered sub-pixels in the first row and odd-numbered sub-pixels in the second row of the sub-pixel matrix in a second time period. The fourth gate line and the fifth gate line scan and turn on the even-numbered sub-pixels in the second row of the sub-pixel matrix and the odd-numbered sub-pixels in the third row of the sub-pixel matrix in a third time period, the sixth gate line and the seventh gate line scan and turn on the even-numbered sub-pixels in the third row of the sub-pixel matrix and the odd-numbered sub-pixel in the fourth row of the sub-pixel matrix in a fourth time period, the eighth gate line scans and turns on the even-numbered sub-pixels in the fourth row of the sub-pixel matrix. The sequence of subsequent other gate lines is deduced by analogy, and will not be repeated here.
In the second image display mode, the first gate line, the second gate line, the seventh gate line and the eighth gate line scan and turn on each sub-pixel in the first row of the sub-pixel matrix and each sub-pixel in the fourth row of the sub-pixel matrix in the first period P1 and the second period P2, the third gate line and the fourth gate line scan and turn on each sub-pixel in the second row of the sub-pixel matrix in the third and fourth time periods, the fifth gate line and the sixth gate line scan and turn on each sub-pixel in the third row of the sub-pixel matrix in the fifth and sixth time periods. The sequence of subsequent other gate lines is deduced by analogy, and will not be repeated here.
In a first image display mode, different sub-pixels of the same color in a same viewing angle display position in the same sub-pixel association group are turned on one by one at different time periods (step S10), and in a second image display mode, different sub-pixels of the same color in a same viewing angle display position in the pixel association group are turned on synchronously (step S20). The specific example of the method for driving the multi-view three-dimensional display panel has been described in detail above in comparison with the arrangement of the sub-pixels on the display panel, and will not be repeated here.
In the embodiments of the present disclosure, the display panel may include an associated pixel control circuit (for example, it may be integrated in a driving IC), and the associated pixel control circuit may be configured to perform various controls on the sub-pixels in the first image display mode and the second image display mode. For example, in some embodiments, the associated pixel control circuit may be configured to independently perform data writing on the plurality of sub-pixels of the same color in the sub-pixel association group in the first image display mode; and configured to synchronously perform data writing on the plurality of sub-pixels of the same color electrically connected to the same data line in each sub-pixel association group. Specifically, in some embodiments, the associated pixel control circuit may also be configured to: in the first image display mode, the first gate line scans and turns on the first row of sub-pixels in the first time period and the second time period, the second gate line scans and turns on the second row of sub-pixels in the third and fourth time periods, and the third gate line scans and turns on the third row of sub-pixels in the fifth and sixth time periods, and the fourth gate line scans and turns on the fourth row of sub-pixels in the seventh and eighth time periods. The first group of switches are turned on in the first, third, fifth and seventh time periods and turned off in the second, fourth, sixth, and eighth time periods, and the second group of switches are turned on in the second, fourth, sixth eighth time periods and are turned off in the first, third, fifth and seventh time periods. In the second image display mode, the first gate line and the second gate line scan and turn on the first row of sub-pixels and the second row of sub-pixels in the first time period and the second time period, and the third gate line and the fourth gate line scans and turns on the third row of sub-pixels and the fourth row of sub-pixels in the second time period and the third time period. The first group of switches and the second group of switches are kept on in the first, second, third and fourth time periods. In other embodiments, the associated pixel control circuit may also be configured to: in the first image display mode, the first gate line scans in the first time period, the second gate line and the third gate line scan in the second time period, the fourth gate line and the fifth gate line scan in the third time period, the sixth gate line and the seventh gate line scan in the fourth time period, and the eighth gate line and the ninth gate line scan in the fifth time period, the tenth gate line and the eleventh gate line scan in the sixth time period, and the twelfth gate line scans in the seventh time period. In the second image display mode, the first gate line, the second gate line, the seventh gate line, and the eighth gate line scan in the first time period and the second time period, and the third gate line, the fourth gate line, the ninth gate line and the tenth gate line scan in the third period and the fourth period, and the fifth gate line, the sixth gate line, the eleventh gate line and the twelfth gate line scan in the fifth time period and the sixth time period.
The above detailed description has explained many embodiments of the above-mentioned display panel by using schematic diagrams, flowcharts, and/or examples. In the case where such schematic diagrams, flowcharts, and/or examples include one or more functions and/or operations, those skilled in the art should understand that each function and/or operation in such schematic diagrams, flowcharts, or examples may be implemented individually and/or together through various structures, hardware, software, firmware or substantially any combination thereof. In an embodiment, several parts of the subject matter described in the embodiments of the present invention may be implemented by an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), or other integrated formats. However, those skilled in the art should recognize that some aspects of the embodiments disclosed herein may be equivalently implemented in an integrated circuit in whole or in part, implemented as one or more computer programs running on one or more computers (for example, implemented as one or more programs running on one or more computer systems), implemented as one or more programs running on one or more processors (for example, implemented as one or more programs running on one or more programs running on one or more microprocessors), implemented as firmware, or substantially implemented as any combination thereof. And according to the present disclosure, those skilled in the art will be equipped with abilities of designing circuits and/or writing software and/or firmware code. In addition, those skilled in the art will recognize that the mechanism of the subject matter of the present disclosure may be distributed as various forms of program products, and regardless of the specific type of signal bearing medium that is actually used to perform the distribution, The exemplary embodiments of the subject matter of the present disclosure are all applicable. Examples of the signal bearing media include, but are not limited to: recordable media, such as floppy disks, hard drives, optical disks (CD, DVD), digital tapes, computer storages, etc.; and transmission media, such as digital and/or analog communication media (such as, fiber optic cables, waveguides, wired communication links, wireless communication links, etc.).
The embodiments of the present disclosure also disclose an electronic device including the display panel as described in any of the above embodiments. The electronic device may be any product or component with display function such as electronic paper, mobile phone, tablet computer, liquid crystal display, liquid crystal TV, OLED (organic electroluminescence) display, OLED TV, notebook computer display, digital photo frame, navigator, etc.
Although the present disclosure has been described with reference to the accompanying drawings, the embodiments disclosed in the accompanying drawings are intended to exemplify the embodiments of the present disclosure, and should not be understood as a limitation of the present disclosure. The size ratios in the drawings are only schematic and should not be construed as limiting the present disclosure.
The above-mentioned embodiments only exemplarily illustrate the principle and the structure of the present disclosure, but are not used to limit the present disclosure. Those skilled in the art should understand that any changes and modifications made to the present disclosure without departing from the general concept of the present disclosure are all within the scope of the present disclosure. The protection scope of the present disclosure shall be subject to the scope defined by the claims.
Claims
1. A display panel, comprising:
- a base substrate;
- a plurality of sub-pixels arranged in a matrix; and
- a plurality of data lines extending along a first direction and a plurality of gate lines extending along a second direction, wherein the data line intersect the gate line;
- wherein at least some of the plurality of sub-pixels are divided into a plurality of sub-pixel association groups, each of the plurality of sub-pixel association groups comprises a plurality of sub-pixels of a same color electrically connected to a same data line, and the display panel has a first image display mode and a second image display mode;
- wherein the display panel further comprises an associated pixel control circuit, configured to independently perform data writing on the plurality of sub-pixels of the same color in the sub-pixel association group in the first image display mode; and synchronously perform data writing on the plurality of sub-pixels of the same color electrically connected to the same data line in each of the plurality of sub-pixel association groups in the second image display mode; and
- wherein the plurality of sub-pixels are arranged in a sub-pixel matrix of M rows and N columns, each row of sub-pixels extends along the second direction, each column of sub-pixels extends along the first direction, each of the at least one data line is electrically connected to more than one sub-pixel of the same color in a same row of the sub-pixel matrix, and a refresh rate of the first image display mode is lower than a refresh mode of the second image display mode, and a resolution of the first image display mode is higher than a resolution of the second image display mode.
2. The display panel according to claim 1, wherein each of the plurality of sub-pixel association groups comprises sub-pixels in a plurality of rows of the sub-pixel matrix,
- in the first image display mode, more than one gate line respectively electrically connected to the plurality of sub-pixels of the same color in each of the plurality of sub-pixel association groups is scanned independently,
- in the second image display mode, more than one gate line respectively electrically connected to the plurality of sub-pixels of the same color in each of the plurality of sub-pixel association groups is scanned synchronously.
3. The display panel according to claim 2, wherein the plurality of sub-pixels comprises sub-pixels of a plurality of colors, colors of the sub-pixels in a same column of the sub-pixel matrix are the same, or sub-pixels of different colors are periodically arranged in the same column of the sub-pixel matrix.
4. The display panel according to claim 2, wherein the same data line is electrically connected to more than one sub-pixel of the same color in the same row of the sub-pixel matrix through a switch element, or electrically connected to more than one sub-pixel of the same color in the same row of the sub-pixel matrix directly.
5. The display panel according to claim 2, wherein the plurality of sub-pixels comprise a first color sub-pixel, a second color sub-pixel and a third color sub-pixel, the plurality of data lines comprise a first data line, a second data line and a third data line, each of the plurality of sub-pixel association groups comprises a plurality of first color sub-pixels electrically connected to the first data line, a plurality of second color sub-pixels electrically connected to the second data line, and a plurality of third color sub-pixels electrically connected to the third data line.
6. The display panel according to claim 2, wherein colors of the sub-pixels in the same column of the sub-pixel matrix are the same, and the sub-pixels of different colors are periodically arranged one by one in the same row of the sub-pixel matrix, each row of sub-pixels extends along the second direction, each column of sub-pixels extends along the first direction, each of the at least one data line is electrically connected to more than one sub-pixel of the same color in the same row of the sub-pixel matrix, the plurality of gate lines comprise a first gate line, a second gate line, a third gate line and a fourth gate line, and the display panel further comprises a first group of switches and a second group of switches, and a number of color types of the sub-pixels is G,
- wherein a data line connected to a 2nG+ith column of sub-pixels is connected to a second node through a nG+ith switch in the first group of switches, and a data line connected to a (2n+1)G+ith column of sub-pixels is connected to the second node through a (n+1) G+ith switch in the second group of switches, wherein n is an integer greater than or equal to zero and less than or equal to (N/2G), and i is an integer greater than or equal to 1 and less than or equal to G; and
- wherein the associated pixel control circuit is configured so that:
- in the first image display mode, the first gate line scans and turns on the first row of sub-pixels in a first time period and a second time period, the second gate line scans and turns on the second row of sub-pixels in a third time period and a fourth time period, and the third gate line scans and turns on the third row of sub-pixels in a fifth time period and a sixth time period, and the fourth gate line scans and turns on the fourth row of sub-pixels in a seventh time period and an eighth time period, the first group of switches are turned on in the first time period, the third time period, the fifth time period and the seventh time period and turned off in the second time period, the fourth time period, the sixth time period, and the eighth time period, and the second group of switches are turned on in the second time period, the fourth time period, the sixth time period and the eighth time period and are turned off in the first time period, the third time period, the fifth time period and the seventh time period; and
- in the second image display mode, the first gate line and the second gate line scan and turn on the first row of sub-pixels and the second row of sub-pixels in the first time period and the second time period, and the third gate line and the fourth gate line scans and turns on the third row of sub-pixels and the fourth row of sub-pixels in the second time period and the third time period, the first group of switches and the second group of switches are kept on in the first time period, the second time period, the third time period and the fourth time period.
7. The display panel according to claim 2, wherein colors of the sub-pixels in a same row of the sub-pixel matrix are the same, and each of the plurality of sub-pixel association groups comprises a plurality of first color sub-pixels in the first row of the sub-pixel matrix electrically connected to the first data line, a plurality of second color sub-pixels in the second row of the sub-pixel matrix electrically connected to the second data line, a plurality of third color sub-pixels in the third row of the sub-pixel matrix electrically connected to the first data line, a plurality of first color sub-pixels in the fourth row of the sub-pixel matrix electrically connected to the second data line, a plurality of second color sub-pixels in the fifth row of the sub-pixel matrix electrically connected to the first data line, a plurality of third color sub-pixels in the sixth row of the sub-pixel matrix electrically connected to the second data line, and
- wherein the plurality of gate lines comprise a first gate line, a second gate line, a third gate line, a fourth gate line, a fifth gate line, a sixth gate line, a seventh gate line, an eighth gate line, a ninth gate line, a tenth gate line, an eleventh gate line and a twelfth gate line, the first gate line is electrically connected to an odd-numbered sub-pixel in the first row of the sub-pixel matrix, and the second gate line is electrically connected to an even-numbered sub-pixel in the first row of the sub-pixel matrix, the third gate line is electrically connected to an odd-numbered sub-pixel in the second row of the sub-pixel matrix, the fourth gate line is electrically connected to an even-numbered sub-pixel in the second row of the sub-pixel matrix, the fifth gate line is electrically connected to an odd-numbered sub-pixel in the third row of the sub-pixel matrix, the sixth gate line is electrically connected to an even-numbered sub-pixel in the third row of the sub-pixel matrix, the seventh gate line is electrically connected to an odd-numbered sub-pixel in the fourth row of the sub-pixel matrix, the eighth gate line is electrically connected to an even-numbered sub-pixel in the fourth row of the sub-pixel matrix, the ninth gate line is electrically connected to an odd-numbered sub-pixel in the fifth row of the sub-pixel matrix, the tenth gate line is electrically connected to an even-numbered sub-pixel in the fifth row of the sub-pixel matrix, the eleventh gate line is electrically connected to an odd-numbered sub-pixel in the sixth row of the sub-pixel matrix, the twelfth gate line is electrically connected to an even-numbered sub-pixel in the sixth row of the sub-pixel matrix,
- wherein the associated pixel control circuit is configured so that:
- in the first image display mode, the first gate line scans in a first time period, the second gate line and the third gate line scan in a second time period, the fourth gate line and the fifth gate line scan in a third time period, the sixth gate line and the seventh gate line scan in a fourth time period, and the eighth gate line and the ninth gate line scan in a fifth time period, the tenth gate line and the eleventh gate line scan in a sixth time period, and the twelfth gate line scans in a seventh time period;
- in the second image display mode, the first gate line, the second gate line, the seventh gate line, and the eighth gate line scan in the first time period and the second time period, and the third gate line, the fourth gate line, the ninth gate line and the tenth gate line scan in the third period and the fourth period, and the fifth gate line, the sixth gate line, the eleventh gate line and the twelfth gate line scan in the fifth time period and the sixth time period.
8. The display panel according to claim 1, wherein the display panel is a multi-view three-dimensional display panel comprising a plurality of viewing angle display positions, each of the plurality of sub-pixel association groups comprises a plurality of three-dimensional sub-pixel groups, and each of the plurality of three-dimensional sub-pixel groups comprises sub-pixels of different colors for the plurality of viewing angle display positions.
9. The display panel according to claim 8, wherein the multi-view three-dimensional display panel comprises K viewing angle display positions, wherein K is an even number, each of the plurality of three-dimensional sub-pixel groups comprises K/2 columns of sub-pixels, the sub-pixels of different colors comprise a first color sub-pixel, a second color sub-pixel, and a third color sub-pixel, a periodic unit is included in each column of sub-pixels, and each periodic unit is formed of two first color sub-pixels, two second color sub-pixels, and two third color sub-pixels in sequence.
10. The display panel according to claim 9, further comprising a cylindrical lens array located on a light emitting side of the display panel, wherein an axis of the cylindrical lens in the cylindrical lens array extends along the first direction, wherein orthographic projections of the plurality of sub-pixels on a base substrate are respectively inclined with respect to the first direction, or
- orthographic projections of the plurality of sub-pixels on a base substrate extend along the first direction, an even-numbered row of sub-pixels is staggered in the second direction by half a sub-pixel relative to an odd-numbered row of sub-pixels.
11. The display panel according to claim 8, further comprising a cylindrical lens array located on a light emitting side of the display panel, an orthographic projection of the cylindrical lens in the cylindrical lens array on the base substrate has a broken line shape, the multi-view three-dimensional display panel comprises K viewing angle display positions, K is a multiple of 4, each of the plurality of three-dimensional sub-pixel groups comprises 4 rows of sub-pixels and K/4 columns of sub-pixels, a second row of sub-pixels and a third row of sub-pixels of each of the plurality of three-dimensional sub-pixel groups are staggered in the second direction by one sub-pixel relative to a first row of sub-pixels and a fourth row of sub-pixels of said each of the plurality of three-dimensional sub-pixel groups.
12. The display panel according to claim 8, wherein the plurality of three-dimensional sub-pixel groups comprises a first three-dimensional sub-pixel group and a second three-dimensional sub-pixel group adjacent in the second direction, each group of three-dimensional sub-pixel groups comprises J columns of sub-pixels, and each of the J columns of sub-pixels is connected to a data line, the display panel further comprises a first group of switches and a second group of switches, the number of switches in each of the first group of switches and the second group of switches is not less than J,
- wherein a data line connected to a Hth column of sub-pixels in the first three-dimensional sub-pixel group is connected to a first node through a Hth switch in the first group of switches, and a data line connected to a Hth column of sub-pixels in the second three-dimensional sub-pixel group is connected to the first node through a Hth switch in the second group of switches, H and J are integers, and H is less than or equal to J.
13. A method for driving the display panel according to claim 1, comprising:
- independently performing data writing on the plurality of sub-pixels of the same color in the sub-pixel association group in the first image display mode; and synchronously performing data writing on the plurality of sub-pixels of the same color electrically connected to the same data line in each of the plurality of sub-pixel association groups in the second image display mode.
14. The method according to claim 13, wherein the plurality of gate lines comprises a first gate line and a second gate line, the plurality of sub-pixels are arranged as a sub-pixel matrix of M rows and N columns, each row of sub-pixels extends along the second direction, each column of sub-pixels extends along the first direction, each of the at least one data line is electrically connected to more than one sub-pixel of a same color in a same row of the sub-pixel matrix, and
- wherein in the first image display mode, the first gate line scans and turns on an odd-numbered sub-pixel in a first row of sub-pixels in a first time period, the second gate line scans and turns on an even-numbered sub-pixel in the first row of sub-pixels in a second time period; and in the second image display mode, the first gate line and the second gate line scan and turn on each sub-pixel in the first row of sub-pixels in the first period.
15. The method according to claim 13, wherein the plurality of sub-pixels are arranged as a sub-pixel matrix of M rows and N columns, each row of sub-pixels extends along the second direction, each column of sub-pixels extends along the first direction, each of the at least one data line is electrically connected to more than one sub-pixel of the same color in the same row of the sub-pixel matrix, and each data line is electrically connected to one sub-pixel in the same row of the sub-pixel matrix, and is electrically connected to other sub-pixels of the same color in the same row through a switch element, and
- wherein the switch element is turned off in the first image display mode, and the switch element is turned on in the second image display mode.
16. The display panel according to claim 13, wherein the plurality of sub-pixels are arranged as a sub-pixel matrix of M rows and N columns, the plurality of sub-pixels comprises sub-pixels of a plurality of colors, colors of the sub-pixels in a same column of the sub-pixel matrix are the same, and the sub-pixels of different colors are periodically arranged one by one in the same row of the sub-pixel matrix, each row of sub-pixels extends along the second direction, each column of sub-pixels extends along the first direction, each of the at least one data line is electrically connected to more than one sub-pixel of the same color in the same row of the sub-pixel matrix, the plurality of gate lines comprise a first gate line, a second gate line, a third gate line and a fourth gate line, and the display panel further comprises a first group of switches and a second group of switches, and a number of color types of the sub-pixels is G,
- wherein a data line connected to a 2nG+ith column of sub-pixels is connected to a second node through a nG+ith switch in the first group of switches, and a data line connected to a (2n+1)G+ith column of sub-pixels is connected to the second node through a (n+1) G+ith switch in the second group of switches, wherein n is an integer greater than or equal to zero and less than or equal to (N/2G), and i is an integer greater than or equal to 1 and less than or equal to G; and
- in the first image display mode, the first gate line scans and turns on the first row of sub-pixels in a first time period and a second time period, the second gate line scans and turns on the second row of sub-pixels in a third time period and a fourth time period, and the third gate line scans and turns on the third row of sub-pixels in a fifth time period and a sixth time period, and the fourth gate line scans and turns on the fourth row of sub-pixels in a seventh time period and an eighth time period, the first group of switches are turned on in the first time period, the third time period, the fifth time period and the seventh time period and turned off in the second time period, the fourth time period, the sixth time period, and the eighth time period, and the second group of switches are turned on in the second time period, the fourth time period, the sixth time period and the eighth time period and are turned off in the first time period, the third time period, the fifth time period and the seventh time period; and
- in the second image display mode, the first gate line and the second gate line scan and turn on the first row of sub-pixels and the second row of sub-pixels in the first time period and the second time period, and the third gate line and the fourth gate line scans and turns on the third row of sub-pixels and the fourth row of sub-pixels in the second time period and the third time period, the first group of switches and the second group of switches are kept on in the first time period, the second time period, the third time period and the fourth time period.
17. The method according to claim 13, wherein the plurality of sub-pixels are arranged as a sub-pixel matrix of M rows and N columns, each row of sub-pixels extend along the second direction, each column of sub-pixels extends along the first direction, the plurality of sub-pixels comprises a first color sub-pixel, a second color sub-pixel, and a third color sub-pixel, and the plurality of data lines comprises a first data line, a second data line, and a third data line, and
- wherein colors of the sub-pixels in a same row of the sub-pixel matrix are the same, and each of the plurality of sub-pixel association groups comprises a plurality of first color sub-pixels in the first row of the sub-pixel matrix electrically connected to the first data line, a plurality of second color sub-pixels in the second row of the sub-pixel matrix electrically connected to the second data line, a plurality of third color sub-pixels in the third row of the sub-pixel matrix electrically connected to the first data line, a plurality of first color sub-pixels in the fourth row of the sub-pixel matrix electrically connected to the second data line, a plurality of second color sub-pixels in the fifth row of the sub-pixel matrix electrically connected to the first data line, a plurality of third color sub-pixels in the sixth row of the sub-pixel matrix electrically connected to the second data line, and
- wherein the plurality of gate lines comprise a first gate line, a second gate line, a third gate line, a fourth gate line, a fifth gate line, a sixth gate line, a seventh gate line, an eighth gate line, a ninth gate line, a tenth gate line, an eleventh gate line and a twelfth gate line, the first gate line is electrically connected to an odd-numbered sub-pixel in the first row of the sub-pixel matrix, and the second gate line is electrically connected to an even-numbered sub-pixels in the first row of the sub-pixel matrix, the third gate line is electrically connected to an odd-numbered sub-pixel in the second row of the sub-pixel matrix, the fourth gate line is electrically connected to an even-numbered sub-pixel in the second row of the sub-pixel matrix, the fifth gate line is electrically connected to an odd-numbered sub-pixel in the third row of the sub-pixel matrix, the sixth gate line is electrically connected to an even-numbered sub-pixel in the third row of the sub-pixel matrix, the seventh gate line is electrically connected to an odd-numbered sub-pixel in the fourth row of the sub-pixel matrix, the eighth gate line is electrically connected to an even-numbered sub-pixel in the fourth row of the sub-pixel matrix, the ninth gate line is electrically connected to an odd-numbered sub-pixel in the fifth row of the sub-pixel matrix, the tenth gate line is electrically connected to an even-numbered sub-pixel in the fifth row of the sub-pixel matrix, the eleventh gate line is electrically connected to an odd-numbered sub-pixel in the sixth row of the sub-pixel matrix, the twelfth gate line is electrically connected to an even-numbered sub-pixel in the sixth row of the sub-pixel matrix, in the first image display mode, the first gate line scans in a first time period, the second gate line and the third gate line scan in a second time period, the fourth gate line and the fifth gate line scan in a third time period, the sixth gate line and the seventh gate line scan in a fourth time period, and the eighth gate line and the ninth gate line scan in a fifth time period, the tenth gate line and the eleventh gate line scan in a sixth time period, and the twelfth gate line scans in a seventh time period; in the second image display mode, the first gate line, the second gate line, the seventh gate line, and the eighth gate line scan in the first time period and the second time period, and the third gate line, the fourth gate line, the ninth gate line and the tenth gate line scan in the third period and the fourth period, and the fifth gate line, the sixth gate line, the eleventh gate line and the twelfth gate line scan in the fifth time period and the sixth time period.
18. The method according to claim 13, wherein the display panel is a multi-view three-dimensional display panel comprising a plurality of viewing angle display positions, each of the plurality of sub-pixel association groups comprises a plurality of three-dimensional sub-pixel groups, and each of the plurality of three-dimensional sub-pixel groups comprises sub-pixels of different colors for the plurality of viewing angle display positions, and the method comprises:
- turning on different sub-pixels of the same color in a same viewing angle display position in a same sub-pixel association group one by one at different time periods in the first image display mode, and synchronously turning on the different sub-pixels of the same color in the same viewing angle display position in the same pixel association group in the second image display mode.
19. An electronic device, comprising the display panel according to claim 1.
10909924 | February 2, 2021 | Yang et al. |
20060001617 | January 5, 2006 | Shin et al. |
20070126671 | June 7, 2007 | Naoaki |
20080068524 | March 20, 2008 | Kim |
20170213522 | July 27, 2017 | Xie |
20200118476 | April 16, 2020 | Kim |
20200243003 | July 30, 2020 | Yang |
1728222 | February 2006 | CN |
1975846 | June 2007 | CN |
104752468 | July 2015 | CN |
107342047 | November 2017 | CN |
110517636 | November 2019 | CN |
111292665 | June 2020 | CN |
- International Search Report dated Aug. 30, 2021, issued in counterpart International application No. PCT/CN2021/070426. (6 pages).
- Written Opinion dated Aug. 30, 2021, issued in counterpart International application No. PCT/CN2021/070426. (6 pages).
Type: Grant
Filed: Jan 6, 2021
Date of Patent: Dec 5, 2023
Patent Publication Number: 20230142218
Assignee: BOE TECHNOLOGY GROUP CO., LTD. (Beijing)
Inventors: Kuanjun Peng (Beijing), Tieshi Wang (Beijing), Hui Zhang (Beijing)
Primary Examiner: Kenneth B Lee, Jr.
Application Number: 17/606,854