Prosthetic valve having multi-part frame
A prosthetic heart valve for implantation at a native heart valve includes a multi-part frame. The multi-part frame includes a cylindrical main body and a ventricular anchor component surrounding the main body. The main body includes a plurality of struts arranged in a lattice pattern. The ventricular anchor component is attached to the main body only at an outflow end of the main body and extends toward an inflow end of the main body. The prosthetic valve further includes a valve structure having three leaflets made from pericardium. The multi-part frame is radially compressible for delivery within a sheath of a delivery catheter and is self-expandable for deployment within an annulus of the native valve. The main body and the ventricular anchor component are formed separately and are attached by a locking mechanism for reducing strain between the main body and the ventricular anchor component.
Latest EDWARDS LIFESCIENCES CORPORATION Patents:
This application is a continuation of U.S. patent Ser. No. 17/008,231, filed Aug. 31, 2020, which is a continuation of U.S. patent application Ser. No. 16/171,263, filed Oct. 25, 2018, now U.S. Pat. No. 10,758,342, which is a continuation of U.S. patent application Ser. No. 15/455,713, filed Mar. 10, 2017, now U.S. Pat. No. 10,111,748, which is a continuation of U.S. patent application Ser. No. 15/227,238, filed Aug. 3, 2016, now U.S. Pat. No. 9,717,591, which is a continuation of U.S. patent application Ser. No. 14/801,713, filed Jul. 16, 2015, now U.S. Pat. No. 9,433,500, which is a continuation of U.S. patent application Ser. No. 14/255,179, filed Apr. 17, 2014, now U.S. Pat. No. 9,084,676, which is a continuation of U.S. patent application Ser. No. 14/025,594, filed Sep. 12, 2013, now U.S. Pat. No. 8,926,691, which is a continuation of U.S. patent application Ser. No. 13/597,122, filed Aug. 28, 2012, now U.S. Pat. No. 8,585,755, which is a continuation of U.S. patent application Ser. No. 12/959,292, filed Dec. 2, 2010, now U.S. Pat. No. 8,449,599, which claims the benefit of U.S. Provisional Application Nos. 61/287,099, filed Dec. 16, 2009, and 61/266,774, filed Dec. 4, 2009. Each related application is incorporated by reference herein in their entireties.
FIELDThis disclosure pertains generally to prosthetic devices for repairing and/or replacing native heart valves, and in particular to prosthetic valves for replacing defective mitral valves, as well as methods and devices for delivering and implanting the same within a human heart.
BACKGROUNDProsthetic valves have been used for many years to treat cardiac valvular disorders. The native heart valves (i.e., the aortic, pulmonary, tricuspid and mitral valves) serve critical functions in assuring the forward flow of an adequate supply of blood through the cardiovascular system. These heart valves can be rendered less effective by congenital malformations, inflammatory processes, infectious conditions or disease. Such damage to the valves can result in serious cardiovascular compromise or death. For many years the definitive treatment for such disorders was the surgical repair or replacement of the valve during open heart surgery. However, such surgeries are highly invasive and are prone to many complications. Therefore, elderly and frail patients with defective heart valves often go untreated. More recently a transvascular technique has been developed for introducing and implanting a prosthetic heart valve using a flexible catheter in a manner that is much less invasive than open heart surgery.
In this technique, a prosthetic valve is mounted in a crimped state on the end portion of a flexible catheter and advanced through a blood vessel of the patient until the valve reaches the implantation site. The valve at the catheter tip is then expanded to its functional size at the site of the defective native valve such as by inflating a balloon on which the valve is mounted.
Another known technique for implanting a prosthetic aortic valve is a transapical approach where a small incision is made in the chest wall of a patient and the catheter is advanced through the apex (i.e., bottom tip) of the heart. Transapical techniques are disclosed in U.S. Patent Application Publication No. 2007/0112422, which is hereby incorporated by reference. Like the transvascular approach, the transapical approach can include a balloon catheter having a steering mechanism for delivering a balloon-expandable prosthetic heart valve through an introducer to the aortic annulus. The balloon catheter can include a deflecting segment just proximal to the distal balloon to facilitate positioning of the prosthetic heart valve in the proper orientation within the aortic annulus.
The above techniques and others have provided numerous options for high operative risk patients with aortic valve disease to avoid the consequences of open heart surgery and cardiopulmonary bypass. While devices and procedures for the aortic valve are well-developed, such catheter-based procedures are not necessarily applicable to the mitral valve due to the distinct differences between the aortic and mitral valve. The mitral valve has complex subvalvular apparatus, i.e., chordae tendinae, which are not present in the aortic valve.
Surgical mitral valve repair techniques (e.g., mitral annuloplasty) have increased in popularity due to their high success rates, and clinical improvements noted after repair. In addition to the existing mitral valve repair technologies, there are a number of new technologies aimed at making mitral valve repair a less invasive procedure. These technologies range from iterations of the Alfieri stitch procedure to coronary sinus-based modifications of mitral anatomy to subvalvular plications or ventricular remodeling devices, which would incidentally correct mitral regurgitation.
However, for mitral valve replacement, few less-invasive options are available. There are approximately 25,000 mitral valve replacements (MVR) each year in the United States. However, it is estimated that over 300,000 patients who meet guidelines for treatment are denied treatment based on their age and/or co-morbidities. Thus, a need exists for minimally invasive techniques for replacing the mitral valve.
SUMMARYProsthetic mitral valves, components thereof, and methods and devices for implanting the same are described herein.
A prosthetic apparatus is described that is configured for implanting at the native mitral valve region of the heart and includes a main body that is radially compressible to a radially compressed state and self-expandable from the compressed state to a radially expanded state. The prosthetic apparatus also comprises at least one ventricular anchor coupled to the main body and disposed outside of the main body such that when the main body is compressed to the compressed state, a leaflet-receiving space between the ventricular anchor and an outer surface of the main body increases to receive a native valve leaflet therebetween. When the main body self-expands to the expanded state in the absence of any substantial external inward forces on the main body or the ventricular anchor, the space decreases to capture the leaflet between the main body and the ventricular anchor.
In some embodiments, a prosthetic apparatus, for implanting at the native mitral valve region of the heart, includes a frame having a main body and at least one ventricular anchor coupled to and disposed outside of the main body. The prosthetic apparatus also includes a plurality of leaflets supported by the main body that form a one-way valve for the flow of blood through the main body. The main body is radially compressible to a radially compressed state for delivery into the body and self-expandable from the compressed state to a radially expanded state. The ventricular anchor comprises a base that is fixedly secured to the main body, a free end portion opposite the base, and an intermediate portion defining a leaflet-receiving space between the ventricular anchor and the main body for receiving a leaflet of the native valve. Expansion of the main body from its compressed state to its radially expanded state in the absence of any radial inward forces on the ventricular anchor causes the leaflet-receiving space to decrease.
In other embodiments, a prosthetic apparatus for implanting at the native mitral valve region includes a main body, at least one ventricular anchor and at least one atrial anchor. The main body is configured for placement within the native mitral valve and is compressible to a compressed state for delivery into the heart and self-expandable from the compressed state to an expanded state. At least one ventricular anchor is coupled to and disposed outside of the main body such that, in the expanded state, a leaflet-receiving space exists between the ventricular anchor and an outer surface of the main body to receive a free edge portion of a native valve leaflet. The ventricular anchor comprises an engagement portion configured to extend behind the received native leaflet and contact a ventricular surface of the native mitral annulus, the annulus connection portion of the received native leaflet, or both the ventricular surface of the native annulus and the annulus connection portion of the received native leaflet. At least one atrial sealing member is coupled to and disposed outside of the main body and is configured to contact an atrial portion of the native mitral annulus, the annulus connection portion of the received native leaflet, or both the atrial surface of the native annulus and the annulus connection portion of the received native leaflet at a location opposite from the engagement portion of the ventricular anchor for retention of the prosthetic apparatus and/or prevention of paravalvular leakage.
Exemplary delivery systems are also described for delivering a prosthetic apparatus into the heart. Some embodiments include an inner sheath having a distal end portion having at least one longitudinal slot extending proximally from a distal end of the inner sheath. The distal end portion of the inner sheath is configured to contain the prosthetic apparatus in a radially compressed state. An outer sheath is positioned concentrically around the inner sheath and at least one of the inner sheath and outer sheath is movable axially relative to the other between a first position in which the outer sheath extends over at least a portion of the longitudinal slot and a second position in which the at least a portion of the longitudinal slot is uncovered by the outer sheath so to allow a portion of the prosthetic apparatus contained within the inner sheath to expand radially outward through the slot.
Exemplary methods are also described for implanting a prosthetic apparatus at the native mitral valve region of the heart. One such method includes delivering the prosthetic apparatus into the heart in a radially compressed state; allowing a ventricular anchor to self-expand away from a main body of the frame while the main body is held in the compressed state, thereby increasing a gap between the ventricular anchor and an outer surface of the main body; positioning the main body in the annulus of the native mitral valve and the ventricular anchor adjacent the ventricular side of a native mitral valve leaflet such that the leaflet is disposed in the gap between the ventricular anchor and the outer surface of the main body; and allowing the main body to self-expand to an expanded state such that the gap decreases to capture the leaflet between the outer surface of the main body and the ventricular anchor.
Described herein are embodiments of prosthetic valves and components thereof that are primarily intended to be implanted at the mitral valve region of a human heart, as well as apparatus and methods for implanting the same. The prosthetic valves can be used to help restore and/or replace the functionality of a defective native valve.
The Human Heart
Relevant portions of the human heart are shown in
The mitral valve 2 includes an annulus portion 8, which is an annular portion of the native valve tissue surrounding the mitral valve orifice, and a pair of cusps, or leaflets, 10, 12 extending downward from the annulus 8 into the left ventricle 6. The mitral valve annulus 8 can form a “D” shaped, oval, or otherwise out-of-round cross-sectional shape having major and minor axes. The anterior leaflet 10 can be larger than the posterior leaflet 12, as shown schematically in
When operating properly, the anterior leaflet 10 and the posterior leaflet 12 function together as a one-way valve to allow blood to flow only from the left atrium 4 to the left ventricle 6. The left atrium 4 receives oxygenated blood from the pulmonary veins 32. When the muscles of the left atrium 4 contract and the left ventricle dilates, the oxygenated blood that is collected in the left atrium 4 flows into the left ventricle 6. When the muscles of the left atrium 4 relax and the muscles of the left ventricle 6 contract, the increased blood pressure in the left ventricle urges the two leaflets together, thereby closing the one-way mitral valve so that blood cannot flow back to the left atrium and is instead expelled out of the left ventricle through the aortic valve 14.
To prevent the two leaflets 10, 12 from prolapsing under pressure and folding back through the mitral annulus 8 toward the left atrium 4, a plurality of fibrous cords called chordae tendineae 16 tether the leaflets 10, 12 to papillary muscles in the left ventricle 6. Referring to
Prosthetic Valve
When the native mitral valve fails to function properly, a prosthetic valve replacement can help restore the proper functionality. Compared to the aortic valve 14, however, which has a relatively round and firm annulus (especially in the case of aortic stenosis), the mitral valve annulus 8 can be relatively less firm and more unstable. Consequently, it may not be possible to secure a prosthetic valve that is designed primarily for the aortic valve within the native mitral valve annulus 8 by relying solely on friction from the radial force of an outer surface of a prosthetic valve pressed against the native mitral annulus 8. Accordingly, the prosthetic valves described herein can rely on ventricular anchors instead of, or in addition to, radial friction forces, to secure the prosthetic valve within the native mitral valve annulus 8 (see
In addition to providing an anchoring means for the prosthetic valve, the ventricular anchors can also remodel the left ventricle 6 to help treat an underlying cause of mitral regurgitation—left ventricle enlargement/dilation. The ventricular anchors can pull the native mitral valve leaflets 10, 12 closer together and toward the left atrium and, via the chordae 16, thereby pull the papillary muscles 22, 24 closer together, which can positively remodel the ventricle acutely and prevent the left ventricle from further enlarging. Thus, the ventricular anchors can also be referred to as tensioning members or reshaping members.
Additional details regarding components and assembly of prosthetic valves (including techniques for mounting leaflets to the frame) are described, for example, in U.S. Patent Application Publication No. 2009/0276040 A1 and U.S. patent application Ser. No. 12/393,010, which are incorporated by reference herein.
As shown in
The frame 102 can be made of a wire mesh and can be radially collapsible and expandable between a radially expanded state and a radially compressed state (as shown schematically in a series of successive stages in
In an expanded state, as shown in
In embodiments wherein the main body 122 comprises diametrical dimensions that are smaller than the diametrical dimensions of the native mitral orifice, the main body can sit loosely, or “float,” between the native leaflets 10, 12. As shown in
The ends of the frame 102 can have a sawtoothed or zig-zag pattern, as shown in
In some embodiments, the main body 122 can comprise at least one extension member, or pushing member, that extends downward from the ventricular end 130 of the main body 122. The frame 202 shown in
With reference again to the embodiment shown in
The atrial sealing member 124 desirably is sized such that when the prosthetic valve 100 is implanted in the native mitral valve, as shown in
As shown in
The same layer 142 and/or one or more separate cuffs 144 can also wrap around, or cover, the end edges of the frame 102, such as the ventricular end 130 of the main body 122 and/or the outer rim 140 of the atrial sealing member 124. Such a cuff 144 can cover and protect sharp edges at the ends of the frame 102. For example, in the embodiment shown in
The layer 142 can comprise a semi-porous fabric that blocks blood flow but can allow for tissue ingrowth. The layer 142 can comprise synthetic materials, such as polyester material or a biocompatible polymer. One example of a polyester material is polyethylene terephthalate (PET). Alternative materials can be used. For example, the layer can comprise biological matter, such as natural tissue, pericardial tissue (e.g., bovine, porcine, or equine pericardium) or other biological tissue.
With reference to
When the frame 102 is in an expanded state, as in
While the main body 122 and the atrial sealing member 124 are in the compressed state, the frame 102 can be inserted into the mitral valve orifice such that the spaced apart ventricular anchors 126 wrap around the leaflets 10, 12 and extend upward between the leaflets and the ventricular walls 20 (see
When the main body 122 is subsequently expanded or allowed to self-expand to the expanded state, as shown in
With reference to the embodiment shown in
The wire 150 can have a circular or non-circular cross-sectional profile perpendicular to a length of the wire, such as a polygonal cross-sectional profile. With reference to
Ventricular anchors can comprise various shapes or configurations. Some frame embodiments, such as the frame 102 shown in
The wires 150 can be covered by biocompatible materials, such as in the embodiment shown in
Some frame embodiments comprise more than two ventricular anchors. For example, a frame can have two or more ventricular anchors configured to attach to multiple locations along a single leaflet of a native valve. In some such embodiments (not shown), the frame can comprise two ventricular anchors that attach to the anterior mitral leaflet 10 and/or two ventricular anchors that attach to the posterior mitral leaflet 12. Ventricular anchors can also attach to other regions of the leaflets instead of, or in addition to, the A2 and P2 regions.
Some prosthetic valve embodiments comprise four ventricular anchors spaced evenly apart around a main body.
Other frame embodiments can comprise more than four ventricular anchors. For example, a frame can comprise six or more ventricular anchors that can engage multiple locations on the leaflets 10, 12 and/or the commissures 36.
The frame 1012 shown in
Some embodiments of ventricular anchors can optionally also comprise one or more barbs (not shown) that can protrude radially from a ventricular anchor toward the ventricular walls 20 or toward the leaflets 10, 12. Such barbs can help retain a frame, particularly against movement towards the left ventricle 6.
In some frame embodiments, one or more ventricular anchor components can be formed separately from the main body and later assembled together to form a frame. In one such frame embodiment 1402, as shown in
Multi-part construction of a frame, as shown in
To avoid strain caused by plastic deformation of the ventricular anchors, the ventricular anchors can be pre-formed in a desired implantation (deployed) shape without plastically bending the ventricular anchors. The ventricular anchors can then be elastically deformed, such as straightened and/or compressed, to fit into a delivery device for delivery through the body to the mitral valve region of the heart. The deformed ventricular anchors can resiliently regain their pre-formed shape once freed from the axial constraint of a delivery device to facilitate capturing the leaflets 10, 12 between the ventricular anchors and the main body of the frame.
Any of the various embodiments of frames described above can be combined with a fluid-occluding member, such as valve structure 104, to form a fully assembled prosthetic valve that can be implanted within the native mitral valve. In other embodiments, any of the frames described above can be provided without a fluid-occluding member and can be used as a scaffolding or docking structure for receiving a separate prosthetic valve in a two-stage delivery process. With reference to the exemplary embodiment shown in
The technique of capturing the leaflets 10, 12 between a ventricular anchor and the main body of a frame, such as shown in
As described above, various frame embodiments can utilize one or more anchoring techniques other than compressing the leaflets 10, 12 to retain the prosthetic valve 100 in a desired position within the mitral valve orifice. These anchoring techniques can include, for example, utilizing tension of the native chordae 16, extending the ventricular anchor length such that the apex of the ventricular anchor is pressed up against the mitral annulus 8 so as to form a stop, and compressing the mitral annulus 8 and/or atrial tissue between the apex of an ventricular anchor and the outer rim of an atrial sealing member of the frame.
Delivery Approaches
The various methods and apparatus described hereinafter for delivery and implantation at the native mitral valve region are described with respect to the prosthetic valve 100, though it should be understood that similar methods and apparatus can be used to deliver and/or implant a component of the prosthetic valve 100, such as the frame 102 without the valve structure 104, or other prosthetic apparatus.
The prosthetic valve 100 can be delivered to the mitral valve region from the left ventricle 6 or from the left atrium 4. Because of the anatomy of the native mitral valve 2, different techniques and/or equipment can be used depending on the direction the prosthetic valve 100 is delivered.
Delivery from the ventricular side of the mitral annulus 8 can be accomplished in various manners. For example, the prosthetic valve 100 can be delivered via a transapical approach in which access is made to the left ventricle 6 via the heart apex 38, as shown in
Delivery from the atrial side of the mitral annulus 8 can also be accomplished in various manners. For example, a transatrial approach can be made through an atrial wall 18, as shown in
Ventricular Approaches
One technique for delivering a compressed prosthetic apparatus, such as the prosthetic valve 100, to the mitral valve region includes accessing the native mitral valve region from the left ventricle 6, one example being the transapical approach. Alternatively, access to the left ventricle 6 can be made through the aortic valve 14. In the transapical approach, access to the left ventricle 6 can be made through an incision in the chest and an incision at the heart apex 38, as shown in
The delivery system 2000 can comprise an inner shaft 2006 that runs the length of the delivery system and comprises a lumen 2008 through which a guidewire (not shown) can pass. The inner shaft 2006 can be positioned within a lumen of a pusher shaft 2010 and can have a length that extends proximally beyond the proximal end of the pusher shaft and distally beyond the distal end of the pusher shaft. The delivery system 2000 can comprise an annular space 2012 between the outer surface of the inner shaft 2006 and the inner surface of the pusher shaft 2010. This annular space can be used for flushing with saline or for allowing blood to be expelled distally.
The delivery system 2000 further comprises an inner sheath 2014 positioned concentrically around at least a distal portion of the pusher shaft 2010. The inner sheath 2014 is axially slidable relative to the pusher shaft 2010 between a delivery position (see
As shown in
A break-away, or frangible, retaining band 2022 can be positioned around the distal end portion 2016 of the inner sheath 2014, as shown in
An outer sheath 2036 is positioned concentrically around a portion of the inner sheath 2014 and is slidable axially relative to the inner sheath. The outer sheath 2036 can be positioned to cover at least a portion of the distal end portion 2016 of the inner sheath 2014. In such a covered position, such as shown in
With reference to
As shown in
As shown in
To load the prosthetic valve 100 into the delivery system 2000, the nose cone 2030 must be moved distally away from the sheaths and the inner sheath 2014 must be advanced distally to the delivery position, as shown in
In the loaded configuration shown in
When the inner sheath 2014 is retracted relative to the prosthetic valve 100, the distal, or upper, portion of the prosthetic valve comprising the downwardly folded atrial sealing member 124 is uncovered first. With reference to
As the inner sheath 2014 is retracted relative to the prosthetic valve 100, the end portions of the ventricular anchors 126 passing through the rounded proximal end portion 2020 of the slots 2028 are forced through the narrower distal portions of the slots 2028 toward the retaining band 2022, as shown in
In some embodiments, the delivery system 2000 can be guided in and/or out of the body using a guide wire (not shown). The guide wire can be inserted into the heart and through the native mitral orifice, and then a proximal end of the guidewire can be threaded through the lumen 2008 of the inner shaft 2006. The delivery system 2000 can then be inserted through the body using the guidewire to direct the path of the delivery system.
Atrial Approaches
The prosthetic valve 100 can alternatively be delivered to the native mitral valve region from the left atrium 4. Referring to
Once in the left atrium 4, the distal end 2104 of the primary sheath 2102 can be moved across the mitral annulus 8 such that the ventricular anchors 126 are positioned beyond the mitral leaflets 10, 12 prior to deploying the ventricular anchors from the sheath.
The prosthetic valve 100 can then be partially expelled from of the distal end 2104 of the primary sheath 2102 using a rigid pusher shaft 2106 (see
When the primary sheath 2102 is inserted across the mitral annulus 8 and past the lower ends of the leaflets 10, 12, the prosthetic valve 100 can be partially expelled to free the ventricular anchors 126, as shown in
Optionally, the delivery catheter 2100 can also include a secondary sheath (not shown) within the outer sheath 2102 and can contain the pusher shaft 2106, the atrial sealing member 124 and the main body 122 of the frame, but not the anchors 126. In the position shown in
After the ventricular anchors 126 are positioned behind the leaflets 10, 12 and the remaining portion of the prosthetic valve 100 is expelled from the primary sheath 2102, the prosthetic valve 100 can expand to its functional size, as shown in
In alternative prosthetic valve embodiments, the main body and the atrial sealing member of the frame can be plastically expandable and can be expanded by a balloon of a balloon catheter (not shown) when the prosthetic valve is positioned at the desired location. The ventricular anchors in such an embodiment can exhibit a desired amount of elasticity to assist in positioning the leaflets 10, 12 between the ventricular anchors and the main body during deployment. Once the prosthetic valve is fully expanded, the balloon can be retracted through the expanded prosthetic valve and out of the body.
Mitral Regurgitation Reduction
Mitral regurgitation (MR) occurs when the native mitral valve fails to close properly and blood flows into the left atrium from the left ventricle during the systole phase of heart contraction. MR is the most common form of valvular heart disease. MR has different causes, such as leaflet prolapse, dysfunctional papillary muscles and/or stretching of the mitral valve annulus resulting from dilation of the left ventricle. MR at a central portion of the leaflets can be referred to as central jet MR and MR nearer to one commissure of the leaflets can be referred to as eccentric jet MR.
Rather than completely replacing the native mitral valve, another way to treat MR is by positioning a prosthetic spacer between the leaflets that decreases the regurgitant orifice area, allowing the mitral valve to function with little or no regurgitation, while minimizing impact to the native valve and left ventricle function and to the surrounding tissue. Additional information regarding treatment of MR can be found in U.S. Pat. No. 7,704,277 and U.S. Publication No. 2006/0241745 A1, both of which are incorporated by reference herein.
Furthermore, the spacer body 3004 can comprise a minimal transverse cross-sectional area and tapered edges. This shape can reduce diastolic forces from blood flowing through the mitral valve from the left atrium to the left ventricle. This shape can also reduce systolic forces on the spacer body 3004 when the native valve is closed around the spacer body and naturally place a larger portion of the systolic forces on the native leaflets and chordae. The shape of the spacer body 3004 can therefore reduce the forces transferred to the native valve tissue at anchor engagement locations, which can reduce the likelihood of perforation and erosion at the engagement locations and rupture of the native chordae that support the leaflets. The overall minimal size of the prosthetic spacer 3000 can further provide an opportunity to decrease the required cross-sectional size of a delivery system, allowing for delivery via narrower vasculature and/or less invasive incisions in the body and heart.
The frame 3002 can be made of a strong, flexible material, such as Nitinol. As shown in
The frame 3002 can further comprise one or more spacer expanders 3024 extending laterally from the frame body 3006 through the spacer body 3004. The expanders 3024 can resiliently expand away from the frame body and assist in the expansion of the spacer body 3004 during deployment. In some embodiments, the spacer expanders 3024 can be rectangular cut-out portions of a cylindrical frame body 3006, as shown in
The anterior ventricular anchor 3008 is configured to extend from the ventricular end of the frame body 3006, around the A2 edge of the anterior leaflet 10 and extend upward behind the leaflet to a location on the ventricular surface of the mitral annulus 8 and/or the annulus connection portion of the anterior leaflet, while the anterior atrial anchor 3012 is configured to extend radially from the atrial end of the frame body 3006 to a location on the atrial surface of the mitral annulus 8 opposite the anterior ventricular anchor 3008. Similarly, the posterior ventricular anchor 3010 is configured to extend from the ventricular end of the frame body 3006, around the P2 edge of the posterior leaflet 12 and extend upward behind the leaflet to a location on the ventricular surface of the mitral annulus 8 and/or the annulus connection portion of the posterior leaflet, while the posterior atrial anchor 3014 is configured to extend radially from the atrial end of the frame body 3006 to a location on the atrial surface of the mitral annulus 8 opposite the posterior ventricular anchor 3010.
The ventricular anchors 3008, 3010 and the atrial anchors 3012, 3014 can comprise broad engagement portions 3016, 3018, 3020 and 3022, respectively, that can be configured to compress the mitral annulus 8 and/or annulus connection portions of the leaflets 10, 12 to retain the prosthetic spacer 3000 from movement in both the atrial and ventricular directions. The broad engagement portions can provide a greater area of contact between the anchors and the native tissue to distribute the load and reduce the likelihood of damaging the native tissue, such as perforation or erosion at the engagement location. The ventricular anchors 3008, 3010 in the illustrated configuration loop around the native leaflets 10, 12 and do not compress the native leaflets against the outer surface of the spacer body 3004, allowing the native leaflets to naturally open and close around the spacer body 3004.
As shown in
Once loaded, the delivery system can be introduced into the left atrium 4, such as via the atrial septum 30, and the distal end of the outer sheath 3030 can be passed through the native mitral valve 2 and into the left ventricle 6, as shown in
Next, the outer sheath 3030 can be retracted relative to the torque shaft 3032 to expel the ventricular anchors 3008, 3010 from the distal opening of the outer sheath. At this point, the torque shaft 3032 can be rotated to rotate the prosthetic spacer 3000 within the outer sheath 3030 (or optionally, the torque shaft and the outer sheath can both be rotated) as needed to align the ventricular anchors with the A2/P2 aspects of the native valve 2. The releasable attachment between the torque shaft 3032 and the prosthetic spacer 3000 can be sufficient to transfer torque from the torque shaft to the prosthetic in order to rotate the prosthetic as needed. The ventricular anchors 3008, 3010 can be pre-formed such that, as they are gradually expelled from the outer sheath 3030, they begin to curl apart from each other and around the A2/P2 regions of the leaflets. This curling movement can be desirable to avoid entanglement with the ventricular walls. When the outer sheath 3030 is retracted to the ventricular end of the frame body 3006, as shown in
Next, the outer sheath 3030 can be further retracted to relative to the torque shaft 3032 such that the distal end of the outer sheath is even with the atrial end of the frame body 3006, as shown in
Once the spacer body is expanded within the valve, as shown in
From the position shown in
Once the ventricular anchors 3008, 3010 and the spacer body 3004 are acceptably deployed, the outer sheath 3030 can be further retracted relative to the prosthetic spacer 3000 and the torque shaft 3032 to expel the atrial anchors 3012, 3014 from the outer sheath, as shown in
Once the atrial anchors 3012, 3014 are deployed, the torque shaft 3032 can be released from the atrial end of the frame body 3006. The delivery system can then be retracted back out of the body, leaving the prosthetic spacer 3000 implanted, as shown in
In some embodiments, the spacer body 3004 can comprise a valve structure 3040, such the embodiments shown in
In some embodiments, the frame body 3006 can comprise a cylinder, which can optionally comprise solid-walled tube, such as in
In other embodiments, the frame body 3006 can comprise a spring-like helically coiled wire column 3050, as shown in
In other embodiments, the frame body 3006 can comprise a plurality of longitudinal members (not shown). In one such example, the frame body 3006 can comprise four longitudinal members: two longitudinal members that extend to form the anterior anchors 3012, 3014 and two longitudinal members that extend to from the posterior anchors 3008, 3010.
In other embodiments, the frame body 3006 can comprise a zig-zag cut pattern 3050 along the longitudinal direction of the body, as shown in
In some embodiments, the prosthetic spacer 3000 can have additional anchors. In some embodiment (not shown), the prosthetic spacer 3000 can have three pairs of anchors: one pair of anchors centered around the posterior leaflet 12, such as the posterior anchors 3010 and 3014 described above, and one pair of anchors at each commissure 36 between the native leaflets 10, 12. These commissure anchors pairs can similarly comprise a ventricular anchor and an atrial anchor and can similarly compress the native annulus 8. In other embodiments, the anterior anchors 3008 and 3012 can also be included as a fourth pair of anchors. Other embodiments can comprise other combinations of these four pairs of anchors and/or additional anchors.
In addition to filling the regurgitant orifice area and blocking blood from flowing toward the left atrium, the prosthetic spacer 3000 can also add tension to the chordae tendinae to prevent further enlargement of the left ventricle and prevent further dilation of the mitral valve annulus.
Anchoring Beneath the Mitral Valve Commissures
Some embodiments of prosthetic devices comprising ventricular anchors, including both prosthetic valves and prosthetic spacers, can be configured such that the ventricular anchors anchor beneath the commissures 36 of the native mitral valve 2 instead of, or in addition to, anchoring behind the A2/P2 regions of the native mitral leaflets 10, 12.
As shown in
In some such methods, the ventricular anchors are first deployed behind the A2/P2 regions of the leaflets and then the entire prosthetic apparatus is rotated or twisted to move the engagement portions of the anchors horizontally toward the cavities 39, as shown in
As shown in
As shown in
After the foot portion 4010 clears the chordae 16 and is positioned behind the leaflet, the apparatus 4000 can be rotated to move the engagement portion 4004 horizontally into the cavity 39, as shown in
While
In similar embodiments, the anchors 4002 can comprise a paddle shape (see
Because the anchors 4002 each attach to the body of the apparatus 4000 at two locations, the anchors can spread apart from the main body of the apparatus when the main body is compressed, forming a gap to receive a leaflet, as described in detail above with reference to
Each pair of anchors 5002 can comprise a resiliently flexible material, such as Nitinol, such that they can be pre-flexed and constrained in a cocked position for delivery behind the leaflets, as shown in
Because each pair of anchors 5002 are initially constrained together, as shown in
In the embodiments shown in
In view of the many possible embodiments to which the principles disclosed herein may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. Rather, the scope is defined by the following claims. We therefore claim all that comes within the scope and spirit of these claims.
Claims
1. A prosthetic heart valve for implantation at a native valve of a heart, the prosthetic heart valve comprising:
- a multi-part frame comprising: a cylindrical main body comprising a plurality of struts arranged in a lattice pattern and defining a lumen, wherein the main body has an inflow end and an outflow end; and a ventricular anchor component that surrounds the main body, wherein the ventricular anchor component is attached to the main body only at the outflow end of the main body and extends toward the inflow end of the main body; and
- a valve structure comprising three leaflets made from pericardium, wherein the valve structure is mounted within the lumen between the outflow end and the inflow end of the main body;
- wherein the multi-part frame is radially compressible for delivery within a sheath of a delivery catheter and is self-expandable for deployment within an annulus of the native valve;
- wherein the main body and the ventricular anchor component are formed separately and are attached by a locking mechanism for reducing strain between the main body and the ventricular anchor component; and
- a fabric layer disposed on an inner surface of the main body and sutured to the struts, wherein inlet ends of the leaflets are sutured to the fabric layer.
2. The prosthetic heart valve of claim 1, wherein the struts of the main body form V-shaped frame portions at the outflow end of the main body, and the ventricular anchor component is attached to the V-shaped frame portions.
3. The prosthetic heart valve of claim 2, wherein the ventricular anchor component comprises V-shaped frame portions that overlap respective V-shaped frame portions of the main body.
4. The prosthetic heart valve of claim 1, further comprising another fabric layer disposed radially between the main body and the ventricular anchor component.
5. The prosthetic heart valve of claim 1, wherein the ventricular anchor component extends radially outward from the main body to define a gap between the ventricular anchor component and the main body when the multi-part frame is expanded to a radially expanded state.
6. The prosthetic heart valve of claim 1, wherein the main body and the ventricular anchor component are made of Nitinol.
7. A prosthetic heart valve for implantation at a native valve of a heart, the prosthetic heart valve comprising:
- a multi-part frame comprising: a cylindrical main body comprising a plurality of struts arranged in a lattice pattern and defining a lumen, wherein the main body has an inflow end and an outflow end; and a ventricular anchor component that surrounds the main body, wherein the ventricular anchor component is attached to the main body only at the outflow end of the main body and extends toward the inflow end of the main body; and
- a valve structure comprising three leaflets made from pericardium, wherein the valve structure is mounted within the lumen between the outflow end and the inflow end of the main body;
- wherein the multi-part frame is radially compressible for delivery within a sheath of a delivery catheter and is self-expandable for deployment within an annulus of the native valve;
- wherein the main body and the ventricular anchor component are formed separately and are attached by a locking mechanism for reducing strain between the main body and the ventricular anchor component; and
- wherein the multi-part frame further comprises an atrial sealing member shaped to engage native tissue on an atrial side of the native valve.
8. A prosthetic heart valve for implantation at a native valve of a heart, the prosthetic heart valve comprising:
- a multi-part frame comprising: a main body comprising a plurality of angled struts arranged to form a plurality of circumferentially extending rows of angled struts forming a lattice pattern and defining a lumen, wherein the rows of angled struts include an inflow row of angled struts defining an inflow end of the main body and an outflow row of angled struts defining an outflow end of the main body; and an anchor component that extends completely around the main body, wherein the anchor component is separately formed from the main body and is attached to the main body only at angled struts of the outflow row of angled struts; and
- a valve structure comprising three leaflets made from pericardium, wherein the valve structure is mounted within the lumen entirely between the outflow end and the inflow end of the main body;
- wherein the multi-part frame is radially compressible for delivery within a sheath and is self-expandable for deployment within an annulus of the native valve.
9. The prosthetic heart valve of claim 8, wherein the anchor component is sewn to the main body.
10. The prosthetic heart valve of claim 8, wherein the anchor component is attached to the prosthetic valve frame with a locking mechanism.
11. The prosthetic heart valve of claim 8, wherein the anchor component is welded to the main body.
12. The prosthetic heart valve of claim 8, further comprising a fabric layer disposed on an inner surface of the main body and sutured to the angled struts, wherein inlet ends of the leaflets are sutured to the fabric layer along U-shaped seams.
13. The prosthetic heart valve of claim 8, wherein the multi-part frame reduces strain and fatigue at attachment locations between the main body and the anchor component.
14. The prosthetic heart valve of claim 8, wherein the multi-part frame further comprises an atrial sealing member shaped for placement on an atrial side of the native valve.
15. A prosthetic heart valve for implantation at a native valve of a heart, the prosthetic heart valve comprising:
- a multi-part metal frame comprising: a main body having a plurality of first angled struts arranged to form a plurality of circumferentially extending rows of first angled struts forming a lattice pattern and defining a lumen, wherein the rows of first angled struts include an inflow row of first angled struts defining an inflow end of the main body and an outflow row of first angled struts defining an outflow end of the main body; and an anchor component comprising a plurality of second angled struts connected end-to-end to form a complete ring that extends around the main body; and
- a valve structure comprising three leaflets made from pericardium, wherein the valve structure is mounted within the lumen entirely between the outflow end and the inflow end of the main body; and
- a fabric layer disposed on an inner surface of the main body and sutured to the first angled struts, wherein inlet ends of the leaflets are sutured to the fabric layer along U-shaped seams;
- wherein the main body and the anchor component are made of Nitinol;
- wherein the multi-part frame is radially compressible for delivery within a sheath of a delivery catheter and is self-expandable for deployment within an annulus of the native valve of the heart;
- wherein the main body and the anchor component are formed separately for reducing strain at locations wherein the main body is attached to the anchor component.
16. The prosthetic heart valve of claim 15, wherein the first angled struts of the outflow row of first angled struts form V-shaped frame portions of the main body, and the anchor component is attached to the main body only at the V-shaped frame portions.
17. The prosthetic heart valve of claim 16, wherein the second angled struts form V-shaped frame portions that overlap with respective V-shaped frame portions of the main body.
18. The prosthetic heart valve of claim 15, wherein the multi-part frame further comprises an atrial sealing member shaped for placement on an atrial side of the native valve.
19. The prosthetic heart valve of claim 15, wherein the anchor component comprises one or more barbs that protrude radially from the anchor component toward leaflets of the native valve for retaining the prosthetic heart valve within the native heart valve.
20. The prosthetic heart valve of claim 15, wherein the main body and the anchor component are attached by a locking mechanism.
3874388 | April 1975 | King et al. |
4340091 | July 20, 1982 | Skelton et al. |
4477930 | October 23, 1984 | Totten et al. |
4506669 | March 26, 1985 | Blake, III |
4590937 | May 27, 1986 | Deniega |
4693248 | September 15, 1987 | Failla |
4777951 | October 18, 1988 | Cribier et al. |
4803983 | February 14, 1989 | Siegel |
5125895 | June 30, 1992 | Buchbinder et al. |
5171252 | December 15, 1992 | Friedland |
5195962 | March 23, 1993 | Martin et al. |
5292326 | March 8, 1994 | Green et al. |
5327905 | July 12, 1994 | Avitall |
5363861 | November 15, 1994 | Edwards et al. |
5370685 | December 6, 1994 | Stevens |
5389077 | February 14, 1995 | Melinyshyn et al. |
5411552 | May 2, 1995 | Andersen et al. |
5450860 | September 19, 1995 | O'Connor |
5456674 | October 10, 1995 | Bos et al. |
5474057 | December 12, 1995 | Makower et al. |
5478353 | December 26, 1995 | Yoon |
5487746 | January 30, 1996 | Yu et al. |
5565004 | October 15, 1996 | Christoudias |
5575818 | November 19, 1996 | Pinchuk |
5607462 | March 4, 1997 | Imran |
5609598 | March 11, 1997 | Laufer et al. |
5611794 | March 18, 1997 | Sauer et al. |
5626607 | May 6, 1997 | Malecki et al. |
5695504 | December 9, 1997 | Gifford, III et al. |
5716417 | February 10, 1998 | Girard et al. |
5725519 | March 10, 1998 | Penner et al. |
5727569 | March 17, 1998 | Benetti et al. |
5741297 | April 21, 1998 | Simon |
5782746 | July 21, 1998 | Wright |
5797960 | August 25, 1998 | Stevens et al. |
5810873 | September 22, 1998 | Morales |
5836311 | November 17, 1998 | Borst et al. |
5843076 | December 1, 1998 | Webster, Jr. et al. |
5855590 | January 5, 1999 | Malecki et al. |
5868782 | February 9, 1999 | Frantzen |
5879381 | March 9, 1999 | Moriuchi et al. |
5885271 | March 23, 1999 | Hamilton et al. |
5888247 | March 30, 1999 | Benetti |
5891017 | April 6, 1999 | Swindle et al. |
5891112 | April 6, 1999 | Samson |
5894843 | April 20, 1999 | Benetti et al. |
5902334 | May 11, 1999 | Dwyer et al. |
5921979 | July 13, 1999 | Kovac et al. |
5944738 | August 31, 1999 | Amplatz et al. |
5957835 | September 28, 1999 | Anderson et al. |
5972020 | October 26, 1999 | Carpentier et al. |
5980534 | November 9, 1999 | Gimpelson |
5992000 | November 30, 1999 | Humphrey et al. |
6004329 | December 21, 1999 | Myers et al. |
6010531 | January 4, 2000 | Donlon et al. |
6015431 | January 18, 2000 | Thornton et al. |
6017358 | January 25, 2000 | Yoon et al. |
6053940 | April 25, 2000 | Wijay |
6086600 | July 11, 2000 | Kortenbach |
6113612 | September 5, 2000 | Swanson et al. |
6120496 | September 19, 2000 | Whayne et al. |
6132370 | October 17, 2000 | Furnish et al. |
6132458 | October 17, 2000 | Staehle et al. |
6162239 | December 19, 2000 | Manhes |
6165183 | December 26, 2000 | Kuehn et al. |
6168616 | January 2, 2001 | Brown, III |
6182664 | February 6, 2001 | Cosgrove |
6193732 | February 27, 2001 | Frantzen et al. |
6193734 | February 27, 2001 | Bolduc et al. |
6200315 | March 13, 2001 | Gaiser et al. |
6228032 | May 8, 2001 | Eaton et al. |
6241743 | June 5, 2001 | Levin et al. |
6269819 | August 7, 2001 | Oz et al. |
6269829 | August 7, 2001 | Chen et al. |
6306141 | October 23, 2001 | Jervis |
6312447 | November 6, 2001 | Grimes |
6336938 | January 8, 2002 | Kavteladze et al. |
6461366 | October 8, 2002 | Seguin |
6468285 | October 22, 2002 | Hsu et al. |
6475237 | November 5, 2002 | Drasler et al. |
6508806 | January 21, 2003 | Hoste |
6508825 | January 21, 2003 | Selmon et al. |
6530933 | March 11, 2003 | Yeung et al. |
6537290 | March 25, 2003 | Adams et al. |
6544215 | April 8, 2003 | Bencini et al. |
6623518 | September 23, 2003 | Thompson et al. |
6626930 | September 30, 2003 | Allen et al. |
6629534 | October 7, 2003 | St. Goar et al. |
6652578 | November 25, 2003 | Bailey et al. |
6719767 | April 13, 2004 | Kimblad |
6764510 | July 20, 2004 | Vidlund et al. |
6770083 | August 3, 2004 | Seguin |
6790230 | September 14, 2004 | Beyersdorf et al. |
6814746 | November 9, 2004 | Thompson et al. |
6837867 | January 4, 2005 | Kortelling |
6855137 | February 15, 2005 | Bon |
6913614 | July 5, 2005 | Marino et al. |
6926732 | August 9, 2005 | Derus et al. |
6939337 | September 6, 2005 | Parker et al. |
6945956 | September 20, 2005 | Waldhauser et al. |
7018401 | March 28, 2006 | Hyodoh et al. |
7018408 | March 28, 2006 | Bailey et al. |
7048754 | May 23, 2006 | Martin et al. |
7101395 | September 5, 2006 | Tremulis et al. |
7125421 | October 24, 2006 | Tremulis et al. |
7153322 | December 26, 2006 | Alt |
7201772 | April 10, 2007 | Schwammenthal et al. |
7288097 | October 30, 2007 | Seguin |
7329278 | February 12, 2008 | Seguin et al. |
7371210 | May 13, 2008 | Brock et al. |
7381219 | June 3, 2008 | Salahieh et al. |
7445631 | November 4, 2008 | Salahieh et al. |
7464712 | December 16, 2008 | Oz et al. |
7509959 | March 31, 2009 | Oz et al. |
7510575 | March 31, 2009 | Spenser et al. |
7569062 | August 4, 2009 | Kuehn et al. |
7569071 | August 4, 2009 | Haverkost et al. |
7618449 | November 17, 2009 | Tremulis et al. |
7682369 | March 23, 2010 | Seguin |
7704277 | April 27, 2010 | Zakay et al. |
7731706 | June 8, 2010 | Potter |
7744609 | June 29, 2010 | Allen et al. |
7748389 | July 6, 2010 | Salahieh et al. |
7753932 | July 13, 2010 | Gingrich et al. |
7753949 | July 13, 2010 | Lamphere et al. |
7758596 | July 20, 2010 | Oz et al. |
7780723 | August 24, 2010 | Taylor |
7785360 | August 31, 2010 | Freitag |
7803185 | September 28, 2010 | Gabbay |
7806919 | October 5, 2010 | Bloom et al. |
7815673 | October 19, 2010 | Bloom et al. |
7824443 | November 2, 2010 | Salahieh et al. |
7914569 | March 29, 2011 | Nguyen et al. |
7959672 | June 14, 2011 | Salahieh et al. |
7972378 | July 5, 2011 | Tabor et al. |
7981123 | July 19, 2011 | Seguin |
7988724 | August 2, 2011 | Salahieh et al. |
7993392 | August 9, 2011 | Righini et al. |
8048153 | November 1, 2011 | Salahieh et al. |
8052750 | November 8, 2011 | Tuval et al. |
8070802 | December 6, 2011 | Lamphere et al. |
8070805 | December 6, 2011 | Vidlund et al. |
8075615 | December 13, 2011 | Eberhardt et al. |
8096985 | January 17, 2012 | Legaspi et al. |
8104149 | January 31, 2012 | McGarity |
8133239 | March 13, 2012 | Oz et al. |
8136218 | March 20, 2012 | Millwee et al. |
8147542 | April 3, 2012 | Maisano et al. |
8172856 | May 8, 2012 | Eigler et al. |
8182528 | May 22, 2012 | Salahieh et al. |
8182530 | May 22, 2012 | Huber |
8197528 | June 12, 2012 | Colgan et al. |
8206437 | June 26, 2012 | Bonhoeffer et al. |
8216301 | July 10, 2012 | Bonhoeffer et al. |
8219229 | July 10, 2012 | Cao et al. |
8220121 | July 17, 2012 | Hendriksen et al. |
8221493 | July 17, 2012 | Boyle et al. |
8226710 | July 24, 2012 | Nguyen et al. |
8246678 | August 21, 2012 | Salahieh et al. |
8252051 | August 28, 2012 | Chau et al. |
8252052 | August 28, 2012 | Salahieh et al. |
8303653 | November 6, 2012 | Bonhoeffer et al. |
8313525 | November 20, 2012 | Tuval et al. |
8348995 | January 8, 2013 | Tuval et al. |
8348996 | January 8, 2013 | Tuval et al. |
8353953 | January 15, 2013 | Giannetti et al. |
8414643 | April 9, 2013 | Tuval et al. |
8414645 | April 9, 2013 | Dwork et al. |
8425404 | April 23, 2013 | Wilson et al. |
8444689 | May 21, 2013 | Zhang |
8449599 | May 28, 2013 | Chau et al. |
8449606 | May 28, 2013 | Eliasen et al. |
8449625 | May 28, 2013 | Campbell et al. |
8454685 | June 4, 2013 | Hariton et al. |
8460365 | June 11, 2013 | Haverkost et al. |
8460368 | June 11, 2013 | Taylor et al. |
8470028 | June 25, 2013 | Thornton et al. |
8475521 | July 2, 2013 | Suri et al. |
8475523 | July 2, 2013 | Duffy |
8479380 | July 9, 2013 | Malewicz et al. |
8480730 | July 9, 2013 | Maurer et al. |
8486137 | July 16, 2013 | Suri et al. |
8491650 | July 23, 2013 | Wiemeyer et al. |
8511244 | August 20, 2013 | Holecek et al. |
8512401 | August 20, 2013 | Murray, III et al. |
8518106 | August 27, 2013 | Duffy et al. |
8535368 | September 17, 2013 | Headley, Jr. et al. |
8540767 | September 24, 2013 | Zhang |
8562663 | October 22, 2013 | Mearns et al. |
8579963 | November 12, 2013 | Tabor |
8579964 | November 12, 2013 | Lane et al. |
8579965 | November 12, 2013 | Bonhoeffer et al. |
8584849 | November 19, 2013 | McCaffrey |
8585749 | November 19, 2013 | Shelso |
8585755 | November 19, 2013 | Chau et al. |
8585756 | November 19, 2013 | Bonhoeffer et al. |
8591570 | November 26, 2013 | Revuelta et al. |
8617236 | December 31, 2013 | Paul et al. |
8640521 | February 4, 2014 | Righini et al. |
8647381 | February 11, 2014 | Essinger et al. |
8652145 | February 18, 2014 | Maimon et al. |
8652202 | February 18, 2014 | Alon et al. |
8668733 | March 11, 2014 | Haug et al. |
8673000 | March 18, 2014 | Tabor et al. |
8679174 | March 25, 2014 | Ottma et al. |
8679404 | March 25, 2014 | Liburd et al. |
8721665 | May 13, 2014 | Oz et al. |
8721708 | May 13, 2014 | Seguin et al. |
8721714 | May 13, 2014 | Kelley |
8740918 | June 3, 2014 | Seguin |
8740974 | June 3, 2014 | Lambrecht et al. |
8740976 | June 3, 2014 | Tran et al. |
8747458 | June 10, 2014 | Tuval et al. |
8747459 | June 10, 2014 | Nguyen et al. |
8747460 | June 10, 2014 | Tuval et al. |
8753384 | June 17, 2014 | Leanna |
8758432 | June 24, 2014 | Solem |
8764818 | July 1, 2014 | Gregg |
8771344 | July 8, 2014 | Tran et al. |
8771345 | July 8, 2014 | Tuval et al. |
8771346 | July 8, 2014 | Tuval et al. |
8771347 | July 8, 2014 | DeBoer et al. |
8778017 | July 15, 2014 | Eliasen et al. |
8778020 | July 15, 2014 | Gregg et al. |
8784478 | July 22, 2014 | Tuval et al. |
8784481 | July 22, 2014 | Alkhatib et al. |
8790387 | July 29, 2014 | Nguyen et al. |
8808356 | August 19, 2014 | Braido et al. |
8828078 | September 9, 2014 | Salahieh et al. |
8828079 | September 9, 2014 | Thielen et al. |
8834564 | September 16, 2014 | Tuval et al. |
8840663 | September 23, 2014 | Salahieh et al. |
8845718 | September 30, 2014 | Tuval et al. |
8876893 | November 4, 2014 | Dwork et al. |
8876894 | November 4, 2014 | Tuval et al. |
8876895 | November 4, 2014 | Tuval et al. |
8926693 | January 6, 2015 | Duffy et al. |
8945177 | February 3, 2015 | Dell et al. |
8945209 | February 3, 2015 | Bonyuet et al. |
8951299 | February 10, 2015 | Paul et al. |
8961583 | February 24, 2015 | Hojeibane et al. |
8961593 | February 24, 2015 | Bonhoeffer et al. |
8961595 | February 24, 2015 | Alkhatib |
8968395 | March 3, 2015 | Hauser et al. |
8974524 | March 10, 2015 | Yeung et al. |
8979922 | March 17, 2015 | Jayasinghe et al. |
8986372 | March 24, 2015 | Murry, III et al. |
8986375 | March 24, 2015 | Garde et al. |
8992608 | March 31, 2015 | Haug et al. |
8998979 | April 7, 2015 | Seguin et al. |
8998980 | April 7, 2015 | Shipley et al. |
9005270 | April 14, 2015 | Perkins et al. |
9005273 | April 14, 2015 | Salahieh et al. |
9011521 | April 21, 2015 | Haug et al. |
9011523 | April 21, 2015 | Seguin |
9011524 | April 21, 2015 | Eberhardt |
9028545 | May 12, 2015 | Taylor |
9029418 | May 12, 2015 | Dove et al. |
9034032 | May 19, 2015 | McLean et al. |
9078749 | July 14, 2015 | Lutter et al. |
9084676 | July 21, 2015 | Chau et al. |
9125738 | September 8, 2015 | Figulla et al. |
9138312 | September 22, 2015 | Tuval et al. |
9161834 | October 20, 2015 | Taylor et al. |
9186249 | November 17, 2015 | Rolando et al. |
9198757 | December 1, 2015 | Schroeder et al. |
9220507 | December 29, 2015 | Patel et al. |
9220594 | December 29, 2015 | Braido et al. |
9241790 | January 26, 2016 | Lane et al. |
9248014 | February 2, 2016 | Lane et al. |
9259317 | February 16, 2016 | Wilson et al. |
9282972 | March 15, 2016 | Patel et al. |
9289291 | March 22, 2016 | Gorman, III et al. |
9289296 | March 22, 2016 | Braido et al. |
9301834 | April 5, 2016 | Tuval et al. |
9308360 | April 12, 2016 | Bishop et al. |
9331328 | May 3, 2016 | Eberhardt et al. |
9339382 | May 17, 2016 | Tabor et al. |
9351831 | May 31, 2016 | Braido et al. |
9351832 | May 31, 2016 | Braido et al. |
9364321 | June 14, 2016 | Alkhatib et al. |
9387071 | July 12, 2016 | Tuval et al. |
9427327 | August 30, 2016 | Parrish |
9439763 | September 13, 2016 | Geist et al. |
9510837 | December 6, 2016 | Seguin |
9510946 | December 6, 2016 | Chau et al. |
9572660 | February 21, 2017 | Braido et al. |
9642704 | May 9, 2017 | Tuval et al. |
9700445 | July 11, 2017 | Martin et al. |
9775963 | October 3, 2017 | Miller |
D809139 | January 30, 2018 | Marsot et al. |
9889002 | February 13, 2018 | Bonhoeffer et al. |
9949824 | April 24, 2018 | Bonhoeffer et al. |
10076327 | September 18, 2018 | Ellis et al. |
10076415 | September 18, 2018 | Metchik et al. |
10099050 | October 16, 2018 | Chen et al. |
10105221 | October 23, 2018 | Siegel |
10105222 | October 23, 2018 | Metchik et al. |
10111751 | October 30, 2018 | Metchik et al. |
10123873 | November 13, 2018 | Metchik et al. |
10130475 | November 20, 2018 | Metchik et al. |
10136993 | November 27, 2018 | Metchik et al. |
10159570 | December 25, 2018 | Metchik et al. |
10226309 | March 12, 2019 | Ho et al. |
10231837 | March 19, 2019 | Metchik et al. |
10238493 | March 26, 2019 | Metchik et al. |
10238494 | March 26, 2019 | McNiven et al. |
10238495 | March 26, 2019 | Marsot et al. |
10299924 | May 28, 2019 | Kizuka |
10376673 | August 13, 2019 | Van Hoven et al. |
10575841 | March 3, 2020 | Paulos |
20010005787 | June 28, 2001 | Oz et al. |
20020013571 | January 31, 2002 | Goldfarb et al. |
20020107531 | August 8, 2002 | Schreck et al. |
20020173811 | November 21, 2002 | Tu et al. |
20020183787 | December 5, 2002 | Wahr et al. |
20030036791 | February 20, 2003 | Philipp et al. |
20030144573 | July 31, 2003 | Heilman et al. |
20030187467 | October 2, 2003 | Schreck |
20030208231 | November 6, 2003 | Williamson et al. |
20030220683 | November 27, 2003 | Minasian et al. |
20040003819 | January 8, 2004 | St. Goar et al. |
20040030382 | February 12, 2004 | St. Goar et al. |
20040034365 | February 19, 2004 | Lentz et al. |
20040044350 | March 4, 2004 | Martin et al. |
20040044365 | March 4, 2004 | Bachman |
20040049207 | March 11, 2004 | Goldfarb et al. |
20040122448 | June 24, 2004 | Levine |
20040127981 | July 1, 2004 | Rahdert et al. |
20040127982 | July 1, 2004 | Machold et al. |
20040147943 | July 29, 2004 | Kobayashi |
20040181135 | September 16, 2004 | Drysen |
20040181206 | September 16, 2004 | Chiu et al. |
20040181238 | September 16, 2004 | Zarbatany et al. |
20040210307 | October 21, 2004 | Khairkhahan |
20040220593 | November 4, 2004 | Greenhalgh |
20040225353 | November 11, 2004 | McGuckin et al. |
20040236411 | November 25, 2004 | Sarac et al. |
20050010287 | January 13, 2005 | Macoviak et al. |
20050049618 | March 3, 2005 | Masuda et al. |
20050070926 | March 31, 2005 | Ortiz |
20050125020 | June 9, 2005 | Meade |
20050137690 | June 23, 2005 | Salahieh et al. |
20050137695 | June 23, 2005 | Salahieh et al. |
20050143767 | June 30, 2005 | Kimura et al. |
20050165429 | July 28, 2005 | Douglas et al. |
20050216039 | September 29, 2005 | Lederman |
20050251183 | November 10, 2005 | Buckman et al. |
20050288786 | December 29, 2005 | Chanduszko |
20060020275 | January 26, 2006 | Goldfarb et al. |
20060052867 | March 9, 2006 | Revuelta et al. |
20060058872 | March 16, 2006 | Salahieh et al. |
20060089671 | April 27, 2006 | Goldfarb et al. |
20060100649 | May 11, 2006 | Hart |
20060122647 | June 8, 2006 | Callaghan et al. |
20060142694 | June 29, 2006 | Bednarek et al. |
20060178700 | August 10, 2006 | Quinn |
20060195183 | August 31, 2006 | Navia et al. |
20060224169 | October 5, 2006 | Weisenburgh et al. |
20060241745 | October 26, 2006 | Solem |
20060253191 | November 9, 2006 | Salahieh et al. |
20060259135 | November 16, 2006 | Navia et al. |
20060265056 | November 23, 2006 | Nguyen et al. |
20070010800 | January 11, 2007 | Weitzner et al. |
20070010876 | January 11, 2007 | Salahieh et al. |
20070010877 | January 11, 2007 | Salahieh et al. |
20070016286 | January 18, 2007 | Herrmann et al. |
20070021779 | January 25, 2007 | Garvin et al. |
20070032807 | February 8, 2007 | Ortiz et al. |
20070093857 | April 26, 2007 | Rogers et al. |
20070093890 | April 26, 2007 | Eliasen et al. |
20070112422 | May 17, 2007 | Dehdashtian |
20070142906 | June 21, 2007 | Figulla et al. |
20070156197 | July 5, 2007 | Root et al. |
20070191154 | August 16, 2007 | Genereux et al. |
20070197858 | August 23, 2007 | Goldfarb et al. |
20070198038 | August 23, 2007 | Cohen et al. |
20070213813 | September 13, 2007 | Von Segesser et al. |
20070255394 | November 1, 2007 | Ryan |
20070265700 | November 15, 2007 | Eliasen et al. |
20070282414 | December 6, 2007 | Soltis et al. |
20070293943 | December 20, 2007 | Quinn |
20070299387 | December 27, 2007 | Williams et al. |
20070299424 | December 27, 2007 | Cumming et al. |
20080021546 | January 24, 2008 | Patz et al. |
20080039743 | February 14, 2008 | Fox et al. |
20080039953 | February 14, 2008 | Davis et al. |
20080065149 | March 13, 2008 | Thielen et al. |
20080077144 | March 27, 2008 | Crofford |
20080091169 | April 17, 2008 | Heideman et al. |
20080125853 | May 29, 2008 | Bailey et al. |
20080140089 | June 12, 2008 | Kogiso et al. |
20080147093 | June 19, 2008 | Roskopf et al. |
20080147112 | June 19, 2008 | Sheets et al. |
20080147179 | June 19, 2008 | Cai et al. |
20080149685 | June 26, 2008 | Smith et al. |
20080161911 | July 3, 2008 | Revuelta et al. |
20080167713 | July 10, 2008 | Bolling |
20080177300 | July 24, 2008 | Mas et al. |
20080177381 | July 24, 2008 | Navia et al. |
20080208328 | August 28, 2008 | Antocci et al. |
20080208332 | August 28, 2008 | Lamphere et al. |
20080221672 | September 11, 2008 | Lamphere et al. |
20080255427 | October 16, 2008 | Satake et al. |
20080281411 | November 13, 2008 | Berreklouw |
20080287862 | November 20, 2008 | Weitzner et al. |
20080294247 | November 27, 2008 | Yang et al. |
20080312506 | December 18, 2008 | Spivey et al. |
20080319455 | December 25, 2008 | Harris et al. |
20090005863 | January 1, 2009 | Goetz et al. |
20090024110 | January 22, 2009 | Heideman et al. |
20090062908 | March 5, 2009 | Bonhoeffer |
20090112309 | April 30, 2009 | Jaramillo et al. |
20090118826 | May 7, 2009 | Khaghani |
20090131849 | May 21, 2009 | Maurer et al. |
20090131880 | May 21, 2009 | Speziali et al. |
20090156995 | June 18, 2009 | Martin et al. |
20090163934 | June 25, 2009 | Raschdorf, Jr. et al. |
20090166913 | July 2, 2009 | Guo et al. |
20090177266 | July 9, 2009 | Powell et al. |
20090182407 | July 16, 2009 | Leanna et al. |
20090216312 | August 27, 2009 | Straubinger et al. |
20090234280 | September 17, 2009 | Tah et al. |
20090259306 | October 15, 2009 | Rowe |
20090275902 | November 5, 2009 | Heeps et al. |
20090276040 | November 5, 2009 | Rowe et al. |
20090287304 | November 19, 2009 | Dahlgren et al. |
20100022823 | January 28, 2010 | Goldfarb et al. |
20100057192 | March 4, 2010 | Celermajer |
20100069834 | March 18, 2010 | Schultz |
20100094317 | April 15, 2010 | Goldfarb et al. |
20100106141 | April 29, 2010 | Osypka et al. |
20100121434 | May 13, 2010 | Paul et al. |
20100217382 | August 26, 2010 | Chau et al. |
20100249497 | September 30, 2010 | Peine et al. |
20100298929 | November 25, 2010 | Thornton et al. |
20100305685 | December 2, 2010 | Millwee et al. |
20100324595 | December 23, 2010 | Linder et al. |
20110082538 | April 7, 2011 | Dahlgren et al. |
20110137410 | June 9, 2011 | Hacohen |
20110245855 | October 6, 2011 | Matsuoka et al. |
20110257723 | October 20, 2011 | McNamara |
20110295281 | December 1, 2011 | Mizumoto et al. |
20120022633 | January 26, 2012 | Olson et al. |
20120041550 | February 16, 2012 | Salahieh et al. |
20120089125 | April 12, 2012 | Scheibe et al. |
20120101571 | April 26, 2012 | Thambar et al. |
20120109160 | May 3, 2012 | Martinez et al. |
20120116419 | May 10, 2012 | Sigmon, Jr. |
20120123529 | May 17, 2012 | Levi et al. |
20120209318 | August 16, 2012 | Qadeer |
20120277853 | November 1, 2012 | Rothstein |
20120303116 | November 29, 2012 | Gorman, III et al. |
20130035759 | February 7, 2013 | Gross et al. |
20130041314 | February 14, 2013 | Dillon |
20130066341 | March 14, 2013 | Ketai et al. |
20130066342 | March 14, 2013 | Dell et al. |
20130072945 | March 21, 2013 | Terada |
20130073034 | March 21, 2013 | Wilson et al. |
20130110254 | May 2, 2013 | Osborne |
20130190798 | July 25, 2013 | Kapadia |
20130190861 | July 25, 2013 | Chau et al. |
20130268069 | October 10, 2013 | Zakai et al. |
20130282059 | October 24, 2013 | Ketai et al. |
20130304197 | November 14, 2013 | Buchbinder et al. |
20130325110 | December 5, 2013 | Khalil et al. |
20140031928 | January 30, 2014 | Murphy et al. |
20140046433 | February 13, 2014 | Kovalsky |
20140046434 | February 13, 2014 | Rolando et al. |
20140052237 | February 20, 2014 | Lane et al. |
20140058411 | February 27, 2014 | Soutorine et al. |
20140067048 | March 6, 2014 | Chau et al. |
20140067052 | March 6, 2014 | Chau et al. |
20140094903 | April 3, 2014 | Miller et al. |
20140135685 | May 15, 2014 | Kabe et al. |
20140194975 | July 10, 2014 | Quill et al. |
20140200662 | July 17, 2014 | Eftel et al. |
20140207231 | July 24, 2014 | Hacohen et al. |
20140236198 | August 21, 2014 | Goldfarb et al. |
20140243968 | August 28, 2014 | Padala |
20140251042 | September 11, 2014 | Asselin et al. |
20140277404 | September 18, 2014 | Wilson et al. |
20140277411 | September 18, 2014 | Bortlein et al. |
20140277427 | September 18, 2014 | Ratz et al. |
20140316428 | October 23, 2014 | Golan |
20140324164 | October 30, 2014 | Gross et al. |
20140330368 | November 6, 2014 | Gloss et al. |
20140336751 | November 13, 2014 | Kramer |
20140371843 | December 18, 2014 | Wilson et al. |
20150039084 | February 5, 2015 | Levi et al. |
20150057704 | February 26, 2015 | Takahashi |
20150094802 | April 2, 2015 | Buchbinder et al. |
20150100116 | April 9, 2015 | Mohl et al. |
20150105808 | April 16, 2015 | Gordon et al. |
20150148896 | May 28, 2015 | Karapetian et al. |
20150157268 | June 11, 2015 | Winshtein et al. |
20150196390 | July 16, 2015 | Ma et al. |
20150223793 | August 13, 2015 | Goldfarb et al. |
20150230919 | August 20, 2015 | Chau et al. |
20150238313 | August 27, 2015 | Spence et al. |
20150257757 | September 17, 2015 | Powers et al. |
20150257877 | September 17, 2015 | Hernandez |
20150257883 | September 17, 2015 | Basude et al. |
20150313592 | November 5, 2015 | Coillard-Lavirotte et al. |
20150351904 | December 10, 2015 | Cooper et al. |
20150366666 | December 24, 2015 | Khairkhahan et al. |
20160008131 | January 14, 2016 | Christianson et al. |
20160022970 | January 28, 2016 | Forcucci et al. |
20160051796 | February 25, 2016 | Kanemasa et al. |
20160106539 | April 21, 2016 | Buchbinder et al. |
20160113762 | April 28, 2016 | Clague et al. |
20160113764 | April 28, 2016 | Sheahan et al. |
20160113766 | April 28, 2016 | Ganesan et al. |
20160155987 | June 2, 2016 | Yoo et al. |
20160174979 | June 23, 2016 | Wei |
20160174981 | June 23, 2016 | Fago et al. |
20160242906 | August 25, 2016 | Morriss et al. |
20160287387 | October 6, 2016 | Wei |
20160317290 | November 3, 2016 | Chau et al. |
20160331523 | November 17, 2016 | Chau et al. |
20160354082 | December 8, 2016 | Oz et al. |
20170020521 | January 26, 2017 | Krone et al. |
20170035561 | February 9, 2017 | Rowe et al. |
20170035566 | February 9, 2017 | Krone et al. |
20170042456 | February 16, 2017 | Budiman |
20170042678 | February 16, 2017 | Ganesan et al. |
20170049455 | February 23, 2017 | Seguin |
20170100236 | April 13, 2017 | Robertson et al. |
20170224955 | August 10, 2017 | Douglas et al. |
20170239048 | August 24, 2017 | Goldfarb et al. |
20170252154 | September 7, 2017 | Tubishevitz et al. |
20170281330 | October 5, 2017 | Liljegren et al. |
20170348102 | December 7, 2017 | Cousins et al. |
20180008311 | January 11, 2018 | Shiroff et al. |
20180021044 | January 25, 2018 | Miller et al. |
20180021129 | January 25, 2018 | Peterson et al. |
20180021134 | January 25, 2018 | McNiven et al. |
20180078271 | March 22, 2018 | Thrasher, III |
20180126124 | May 10, 2018 | Winston et al. |
20180146964 | May 31, 2018 | Garcia et al. |
20180146966 | May 31, 2018 | Hernandez et al. |
20180153552 | June 7, 2018 | King et al. |
20180161159 | June 14, 2018 | Lee et al. |
20180168803 | June 21, 2018 | Pesce et al. |
20180221147 | August 9, 2018 | Ganesan et al. |
20180235657 | August 23, 2018 | Abunassar |
20180243086 | August 30, 2018 | Barbarino et al. |
20180258665 | September 13, 2018 | Reddy et al. |
20180263767 | September 20, 2018 | Chau et al. |
20180296326 | October 18, 2018 | Dixon et al. |
20180296327 | October 18, 2018 | Dixon et al. |
20180296328 | October 18, 2018 | Dixon et al. |
20180296329 | October 18, 2018 | Dixon et al. |
20180296330 | October 18, 2018 | Dixon et al. |
20180296331 | October 18, 2018 | Dixon et al. |
20180296332 | October 18, 2018 | Dixon et al. |
20180296333 | October 18, 2018 | Dixon et al. |
20180296334 | October 18, 2018 | Dixon et al. |
20180325661 | November 15, 2018 | Delgado et al. |
20180325671 | November 15, 2018 | Abunassar et al. |
20180333259 | November 22, 2018 | Dibie |
20180344457 | December 6, 2018 | Gross et al. |
20180353181 | December 13, 2018 | Wei |
20190000613 | January 3, 2019 | Delgado et al. |
20190000623 | January 3, 2019 | Pan et al. |
20190008642 | January 10, 2019 | Delgado et al. |
20190008643 | January 10, 2019 | Delgado et al. |
20190015199 | January 17, 2019 | Delgado et al. |
20190015200 | January 17, 2019 | Delgado et al. |
20190015207 | January 17, 2019 | Delgado et al. |
20190015208 | January 17, 2019 | Delgado et al. |
20190021851 | January 24, 2019 | Delgado et al. |
20190021852 | January 24, 2019 | Delgado et al. |
20190029498 | January 31, 2019 | Mankowski et al. |
20190029810 | January 31, 2019 | Delgado et al. |
20190029813 | January 31, 2019 | Delgado et al. |
20190030285 | January 31, 2019 | Prabhu et al. |
20190053810 | February 21, 2019 | Griffin |
20190060058 | February 28, 2019 | Delgado et al. |
20190060059 | February 28, 2019 | Delgado et al. |
20190060072 | February 28, 2019 | Zeng |
20190060073 | February 28, 2019 | Delgado et al. |
20190060074 | February 28, 2019 | Delgado et al. |
20190060075 | February 28, 2019 | Delgado et al. |
20190069991 | March 7, 2019 | Metchik et al. |
20190069992 | March 7, 2019 | Delgado et al. |
20190069993 | March 7, 2019 | Delgado et al. |
20190105156 | April 11, 2019 | He et al. |
20190111239 | April 18, 2019 | Bolduc et al. |
20190142589 | May 16, 2019 | Basude |
20190159782 | May 30, 2019 | Kamaraj et al. |
20190167197 | June 6, 2019 | Abunassar et al. |
20190192296 | June 27, 2019 | Schwartz et al. |
20190209323 | July 11, 2019 | Metchik et al. |
20190261995 | August 29, 2019 | Goldfarb et al. |
20190261996 | August 29, 2019 | Goldfarb et al. |
20190261997 | August 29, 2019 | Goldfarb et al. |
20190314155 | October 17, 2019 | Franklin et al. |
20200113683 | April 16, 2020 | Dale et al. |
20200237512 | July 30, 2020 | McCann et al. |
20200337842 | October 29, 2020 | Metchik et al. |
20200368016 | November 26, 2020 | Pesce et al. |
20210186698 | June 24, 2021 | Abunassar et al. |
2623814 | May 2007 | CA |
1142351 | February 1997 | CN |
106175845 | December 2016 | CN |
106491245 | March 2017 | CN |
107789017 | March 2018 | CN |
109953779 | July 2019 | CN |
110338857 | October 2019 | CN |
110495972 | November 2019 | CN |
110537946 | December 2019 | CN |
110664515 | January 2020 | CN |
209996540 | January 2020 | CN |
211243911 | August 2020 | CN |
211723546 | October 2020 | CN |
111870398 | November 2020 | CN |
111904660 | November 2020 | CN |
112120831 | December 2020 | CN |
112168427 | January 2021 | CN |
112190367 | January 2021 | CN |
212346813 | January 2021 | CN |
212415988 | January 2021 | CN |
212490263 | February 2021 | CN |
113476182 | October 2021 | CN |
113855328 | December 2021 | CN |
215019733 | December 2021 | CN |
102006052564 | December 2007 | DE |
0098100 | January 1984 | EP |
1255510 | November 2002 | EP |
1281375 | February 2003 | EP |
1472996 | November 2004 | EP |
1259194 | February 2005 | EP |
1734903 | December 2006 | EP |
1945141 | July 2008 | EP |
2124826 | December 2009 | EP |
2237746 | October 2010 | EP |
2285317 | February 2011 | EP |
2308425 | April 2011 | EP |
2319458 | May 2011 | EP |
2496182 | September 2012 | EP |
2985006 | February 2016 | EP |
2146050 | February 1973 | FR |
9711600 | March 1997 | FR |
2006085225 | August 2006 | WO |
2006113906 | October 2006 | WO |
2006127765 | November 2006 | WO |
2007038047 | April 2007 | WO |
2008029296 | March 2008 | WO |
2008035337 | March 2008 | WO |
2009045338 | April 2009 | WO |
2010117680 | October 2010 | WO |
2011057087 | May 2011 | WO |
2011111047 | September 2011 | WO |
2011137531 | November 2011 | WO |
2012011108 | January 2012 | WO |
2012177942 | December 2012 | WO |
2017015632 | January 2017 | WO |
2018013856 | January 2018 | WO |
2018050200 | March 2018 | WO |
2018050203 | March 2018 | WO |
2018195015 | October 2018 | WO |
2018195201 | October 2018 | WO |
2018195215 | October 2018 | WO |
2019139904 | July 2019 | WO |
2020106705 | May 2020 | WO |
2020106827 | May 2020 | WO |
2020112622 | June 2020 | WO |
2020167677 | August 2020 | WO |
2020168081 | August 2020 | WO |
2020172224 | August 2020 | WO |
2020176410 | September 2020 | WO |
2021196580 | October 2021 | WO |
2021227412 | November 2021 | WO |
2022052506 | March 2022 | WO |
2022068188 | April 2022 | WO |
- Sigwart, Ulrich, “An Overview of Intravascular Stents: Old and New,” Textbook of Interventional Cardiology, Second Edition, chapter 48, pp. 803-815, © 1994, W.B. Saunders Company, Philadelphia, PA.
- Urban, Philip MD, “Coronary Artery Stenting”, pp. 5-47, © 1991, ISBN: 2-88049-054-5, Editions Medecine et Hygiene, Geneva, Switzerland.
- Watt et al., “Intravenous adenosine in the treatment of supraventricular rachycardia: a dose-ranging study and Interaction with dipyridamole”, British Journal of Clinical Pharmacology, vol. 21, No. 2, pp. 227-230, Feb. 1986, British Pharmacological Society, London, United Kingdom.
- Wheatley, David J., “Valve Prosthesis”, Rob & Smith's Operative Surgery—Cardiac Surgery, vol. 91, No. 2, pp. 415-424, Feb. 1, 1987, Butterworth Scientific, London, UK.
- Grasso et al., “The PASCAL transcatheter mitral valve repair system for the treatment of mitral regurgitation: another piece to the puzzle of edge-to-edge technique”, Journal of Thoracic Disease, vol. 9, No. 12, pp. 4856-4859, Dec. 2017, doi: 10.21037/jtd.2017.10.156, AME Publishing Company, Hong Kong, China.
- Al Zaibag et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis”, British Heart Journal, vol. 57, No. 1, Jan. 1987.
- Al-Khaja et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications”, European Journal of Cardio-thoracic Surgery 3: pp. 305-311, 1989.
- Almagor et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits”, Journal of the American College of Cardiology, vol. 16, No. 6, pp. 1310-1314, Nov. 15, 1990.
- Andersen, et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” European Heart Journal (1992), 13, 704-708.
- Andersen, H.R. “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009.
- Batista RJ et al., “Partial left ventriculectomy to treat end-stage heart disease”, Ann Thorac Surg., vol. 64, Issue—3, pp. 634-638, Sep. 1997.
- Batista, M.D. et al., “Partial Left Ventriculectomy to Treat End-Stage Heart Disease,” The Society of Thoracic Surgeons, 1997, pp. 634-638.
- Beall AC Jr. et al., “Clinical experience with a dacron velour-covered teflon-disc mitral-valve prosthesis”, Ann Thorac Surg., vol. 5, Issue 5, pp. 402-410, May 1968.
- Beall et al., “Clinical experience with a dacron velour-covered teflon-disc mitral-valve prosthesis”, Ann Thorac Surg., vol. 5, Issue 5, pp. 402-410, May 1968.
- Benchimol et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man”, The American Journal of the Medical Sciences, vol. 273, No. 1, pp. 55-62, 1977.
- Dake et al., “Transluminal Placement of Endovascular Stent-Grafts for the Treatment of Descending Thoracic Aortic Aneurysms”, The New England Journal of Medicine, vol. 331, No. 26, pp. 1729-1734, Dec. 29, 1994.
- Fucci et alL., “Improved results with mitral valve repair using new surgical techniques”, Eur J Cardiothorac Surg. 1995;Issue 9, vol. 11, pp. 621-626.
- Fucci et al., “Improved results with mitral valve repair using new surgical techniques”, Eur J Cardiothorac Surg. 1995;Issue 9, vol. 11, pp. 621-626.
- Inoune, M.D., Kanji, et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery 87:394-402, 1984.
- Lawrence, Jr., et al., “Percutaneous Endovascular Graft: Experimental Evaluation”, Cardiovascular Radiology 163, pp. 357-360, May 1987.
- Maisano et al., ‘The edge-to-edge technique: a simplified method to correct mitral insufficiency’, Eur J Cardiothorac Surg., vol. 13, Issue—3, pp. 240-245, Mar. 1998.
- Maisano F et al., ‘The edge-to-edge technique: a simplified method to correct mitral insufficiency’, Eur J Cardiothorac Surg., vol. 13, Issue—3, pp. 240-245, Mar. 1998.
- Pavcnik: Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement; Cardiovascular Radiology (1992) 183, pp. 151-154.
- Porstmann et al., “Der Verschluß des Ductus Arteriosus Persistens Ohne Thorakotomie”, Thoraxchirurgie Vaskulare Chirurgie, Band 15, Heft 2, Stuttgart, im Apr. 1967, pp. 199-203.
- Praz et al., “Compassionate use of the PASCAL transcatheter mitral valve repair system for patients with severe mitral regurgitation: a multicentre, prospective, observational, first-in-man study,” Lancet vol. 390, pp. 773-780, 2017.
- Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154.
- Rashkind et al., “Creation of an Atrial Septal Defect Without Thoracotomy: A Pallative Approach to Complete Transposition of the Great Arteries”, The Journal of the American Medical Association, vol. 196, No. 11, pp. 173-174, Jun. 13, 1956.
- Rashkind et al., “Historical Aspects of Interventional Cardiology: Past, Present, and Future”, Texas Heart Institute Journal, Interventional Cardiology, vol. 13, No. 4, pp. 363-367, Dec. 1986.
- Reul RM et al., “Mitral valve reconstruction for mitral insufficiency”, Prog Cardiovasc Dis., vol. 39, Issue—6, May-Jun. 1997.
- Rosch, M.D., Josef, “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Interv Radiol 2003; 14:841-853.
- Ross, D.N, “Aortic Valve Surgery”, Surgery of the Aortic Valves, Guy's Hospital, London, pp. 192-197.
- Ross, “Aortic Valve Surgery,” At a meeting of the Council on Aug. 4, 1966. pp. 192-197.
- Sabbah et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview”, Journal of Cardiac Surgery, vol. 4, No. 4, pp. 302-309, Dec. 1989.
- Selby et al., “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems”, Radiology: 176. pp. 535-538, 1990.
- Serruys et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?”, European Heart Journal, 10, 774-782, pp. 37-45, 1989.
- Sigwart, Ulrich, “An Overview of Intravascular Stents: Old and New,” Chapter 48, Textbook of Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
- Uchida et al., “Modifications of Gianturco Expandable Wire Stents”, Technical Note, American Roentgen Ray Society, pp. 1185-1187, May 1988.
- Umaña et al., Bow-tie‘ mitral valve repair: an adjuvant technique for ischemic mitral regurgitation’, Ann Thorac Surg., vol. 66, Issue—6, pp. 1640-1646, Nov. 1998.
- Urban, M.D., Philip, “Coronary Artery Stenting,” Editions Medecine et Hygiene, Geneve, 1991, pp. 5-47.
- Umaña JP et al., Bow-tie‘ mitral valve repair: an adjuvant technique for ischemic mitral regurgitation’, Ann Thorac Surg., vol. 66, Issue—6, pp. 1640-1646, Nov. 1998.
- Watt et al., “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia: A Dose-Ranging Study and Interaction with Dipyridamole”, Br. J. Clin. Pharmac. 21, pp. 227-230, 1986.
- Wheatley, “Valve Prostheses,” Operative Surgery, 4th ed. pp. 415-424. 1986.
- Wheatley, David J., “Valve Prosthesis”, Rob & Smith's Operative Surgery, pp. 415-424, 1986.
- Kolata, Gina “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study”, The New York Times, Jan. 3, 1991, pp. 1-2 [online], [retrieved on Jul. 29, 2009]. Retrieved from the Internet <URL:http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-arteries-gets-a-faili . . . .
- Rashkind et al., “Historical Aspects of Interventional Cardiology: Past, Present, and Future”, Texas Heart Institute Journal, Interventional Cardiology, pp. 363-367.
- Praz et al., “Compassionate use of the PASCAL transcatheter mitral valve repair system for patients with severe mitral regurgitation: a multicentre, prospective, observational, first-in-man study,” The Lancet, vol. 390, Issue 10096, pp. 773-780, Aug. 19, 2017, Lancet, United States.
- Andersen, et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs”, European Heart Journal, vol. 13, No. 5, pp. 704-708, May 1, 1992, The European Society of Cardiology, Oxford University Press, United Kingdom.
- Andersen, H.R. “History of Percutaneous Aortic Valve Prosthesis,” Herz, vol. 34., No. 5, pp. 343-346, Aug. 2009, Urban & Vogel, Germany.
- Dotter et al., “Transluminal Treatment of Arteriosclerotic Obstruction: Description of a New Technic and a Preliminary Report of Its Application”, Circulation, vol. XXX, No. 30, pp. 654-670, Nov. 1, 1964, Lippincott Williams & Wilkins, Philadelphia, PA.
- Inoue et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter”, The Journal of Thoracic and Cardiovascular Surgery, vol. 87, No. 3, pp. 394-402, 1984.
- Pavcnik et al., “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for a Transcatheter Placement: Work in Progress”, Cardiovascular Radiology; 183, pp. 151-154, Apr. 1992.
- Rosch et al., “The Birth, Early Years and Future of Interventional Radiology,” Journal of Vascular and Interventional Radiology, vol. 14, No. 7, pp. 841-853, Jul. 1, 2003, Elsevier, United States.
- Selby et al., “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems”, Radiology, vol. 176, No. 2, pp. 535-538, Jul. 31, 1990, Radiological Society of North America, Oak Brook, IL.
- Serruys et al., “Stenting of coronary arteries. Are we the sorcerer's apprentice?”, European Heart Journal, vol. 10. No. 9 pp. 774-782, Sep. 1, 1989, The European Society of Cardiology, Oxford University Press, United Kingdom.
Type: Grant
Filed: Feb 13, 2023
Date of Patent: Oct 15, 2024
Patent Publication Number: 20230190458
Assignee: EDWARDS LIFESCIENCES CORPORATION (Irvine, CA)
Inventors: Mark Chau (Laguna Hills, CA), Marlowe E. Patterson (Orange, CA), Seung-Beom Yi (Mission Viejo, CA), Stephen C. Geist (Bend, OR), Travis Zenyo Oba (Yorba Linda, CA)
Primary Examiner: Jason-Dennis N Stewart
Application Number: 18/109,075
International Classification: A61F 2/24 (20060101);