Semiconductor processing methods of forming transistors, semiconductor processing methods of forming dynamic random access memory circuitry, and related integrated circuitry

Semiconductor processing methods of forming transistors, semiconductor processing methods of forming dynamic random access memory circuitry, and related integrated circuitry are described. In one embodiment, active areas are formed over a substrate, with one of the active areas having a width of less than one micron, and with some of the active areas having different widths. A gate line is formed over the active areas to provide transistors having different threshold voltages. Preferably, the transistors are provided with different threshold voltages without using a separate channel implant for the transistors. In another embodiment, a plurality of shallow trench isolation regions are formed within a substrate and define a plurality of active areas having widths at least some of which being no greater than about one micron (or less), with some of the widths preferably being different. One or more gate lines may be coupled to the respective active areas to provide individual transistors, with the transistors corresponding to the active areas having the different widths having different threshold voltages. In another embodiment, two field effect transistors are fabricated having different threshold voltages without using a separate channel implant for one of the transistors versus the other.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

[0001] This invention relates to semiconductor processing methods of forming transistors, to semiconductor processing methods of forming dynamic random access memory circuitry, and to related integrated circuitry.

BACKGROUND OF THE INVENTION

[0002] Semiconductor processing typically involves a number of complicated steps which include patterning, etching, and doping or implanting steps, to name just a few, which are necessary to form desired integrated circuitry. One emphasis on improving the methods through which integrated circuitry is formed, and which is directed to reducing the processing complexity, relates to reducing the number of processing steps. By reducing the number of processing steps, risks associated with processing mistakes entering into the processing flow are reduced. Additionally, wherever possible, it is also highly desirable to reduce processing complexities while providing added flexibility in the processing itself.

[0003] For example, several processing steps are required to form transistor constructions. One or more of these steps can include a threshold voltage definition step in which one or more channel implantation steps are conducted to define the threshold voltage for the ultimately formed transistor. In some applications, it is desirable to have transistors with different threshold voltages. Typically, different threshold voltages are provided by additional masking and doping or implanting steps to adjust the doping concentration within the channel region of the various transistors desired to have the different threshold voltage. Specifically, one transistor might be masked while another receives a threshold implant; and then other of the transistors might be masked while the first-masked transistor receives a threshold implant.

[0004] This invention grew out of concerns associated with reducing the processing complexities involved in forming transistors having different threshold voltages.

SUMMARY OF THE INVENTION

[0005] Semiconductor processing methods of forming transistors, semiconductor processing methods of forming dynamic random access memory circuitry, and related integrated circuitry are described. In one embodiment, active areas are formed over a substrate, with one of the active areas having a width of less than one micron. A gate line is formed over the active areas to provide transistors having different threshold voltages. Preferably, the transistors are provided with different threshold voltages without using a separate channel implant for the transistors. The transistor with the lower of the threshold voltages corresponds to the active area having the width less than one micron.

[0006] In another embodiment, a plurality of shallow trench isolation (STI) regions are formed within a substrate and define a plurality of active areas having widths at least some of which are no greater than about one micron, with at least two of the widths preferably being different. A gate line is formed over the respective active areas to provide individual transistors, with the transistors corresponding to the active areas having the different widths having different threshold voltages. In an STI process, devices having width smaller than 1 micron typically also have a lower threshold voltage. This is referred to as “reversed narrow width; effect as contrasted with the case of transistors formed using LOCOS isolation, where threshold voltage tends to increase as device width decreases.

[0007] In another embodiment, two field effect transistors are fabricated having different threshold voltages without using a separate channel implant for one of the transistors versus the other.

[0008] In yet another embodiment, two series of field effect transistors are formed, with one series being isolated from adjacent devices by shallow trench isolation, the other series having active area widths greater than one micron. The one series is formed to have active area widths less than one micron to achieve lower threshold voltages than the other of the series.

[0009] In yet another embodiment, one of the two series of field effect transistors are isolated by shallow trench isolation, and different threshold voltages between the field effect transistors in different series are achieved by varying the active area widths of the field effect transistors in the series. At least one of the series preferably has active area widths less than one micron.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Preferred embodiments of the invention are described below with reference to the following accompanying drawings.

[0011] FIG. 1 is a diagrammatic side sectional view of the semiconductor wafer fragment in process in accordance with one embodiment of the invention.

[0012] FIG. 2 is a view of the FIG. 1 wafer fragment at a processing step which is subsequent to that which is shown in FIG. 1.

[0013] FIG. 3 is a plan view of the FIG. 1 wafer fragment at a processing step which is subsequent to that which is shown in FIG. 2.

[0014] FIG. 4 is a side view of the FIG. 3 wafer fragment.

[0015] FIG. 5 is a schematic diagram of circuitry formed in accordance with another embodiment of the invention.

[0016] FIG. 6 is a schematic diagram of circuitry formed in accordance with another embodiment of the invention.

[0017] FIG. 7 is a schematic diagram of circuitry formed in accordance with another embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0018] This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).

[0019] Referring to FIG. 1, a semiconductor wafer fragment in process is shown generally at 10, and includes a semiconductive substrate 12. In the context of this document, the term “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above.

[0020] Referring to FIG. 2, a plurality of active areas are formed over substrate 12, with an exemplary pair of active areas 14, 16 being shown. Active areas 14, 16 can constitute individual active sub-areas within a larger active area. In a preferred embodiment, active areas or sub-areas 14, 16 are defined between a plurality of shallow trench isolation regions 18 which are received within substrate 12. The spacing of shallow trench isolation regions 18 defines a plurality of active area widths, with exemplary widths being shown at w1 and w2. Preferably, at least two of the widths are different from one another. Of course, more than two of the widths could be different from one another.

[0021] In one embodiment, some of the active area widths are no greater than about one micron. One micron happens to be a break point that is technologically dependent. In other words, STI transistors show a threshold voltage reduction with reducing gate width when the gate width is about one micron or less. It will be understood that other sizes that correspond to a break point in threshold voltage versus gate width or control element size for transistors made using other technologies could be used instead of “one micron”.

[0022] In one embodiment, one or both of widths w1 and w2 could be less than one micron. In a preferred embodiment, the different active area widths impart to transistors which are to be formed, different threshold voltages which, in a most preferred embodiment, are achieved without conducting or using a separate channel implant for the different transistors. Such results in a reduction in the number of processing steps which were previously required to form transistors having different threshold voltages.

[0023] In one embodiment, the different threshold voltages are each less than two volts. In another embodiment, the different threshold voltages are each less than one volt. In this example, the transistor having the lower of the threshold voltages corresponds to the transistor which is formed relative to the active area having the lesser or smaller active area width.

[0024] With respect to provision of the channel implant(s) which defines the threshold voltages, one or more such implants can be conducted relative to the active areas. Preferably, each of the one or more channel implants are common to the transistors having the different active area widths which, in turn, provides transistors having different threshold voltages.

[0025] FIG. 3 is a plan view of the FIG. 1 wafer fragment at a processing step which is subsequent to that which is shown in FIG. 2, and FIG. 4 is a side view of the FIG. 3 wafer fragment. A transistor gate line 20 is formed over respective active areas 14, 16 to provide individual transistors, wherein the transistors corresponding to the active areas having the different active area widths have different threshold voltages as discussed above. Gate lines such as line 20 typically have a gate oxide layer, one or more conductive layers such as polysilicon and a silicide layer, one or more insulative caps, and insulative sidewall spacers (not shown), none of which are specifically designated. The illustrated gate line constitutes a common gate line which is formed over the illustrated active areas. It is, of course, possible to form separate gate lines over the active areas having the different widths.

[0026] Alternately considered, and in accordance with one embodiment of the present invention, two series of field effect transistors are formed over substrate 12. One of the series of field effect transistors (an exemplary transistor of which being formed over active area 14) is isolated from other adjacent devices by shallow trench isolation regions 18. The other series of field effect transistors (an exemplary transistor of which being formed over active area 16) has active area widths greater than one micron, with the first-mentioned series being formed to have active area widths less than one micron to achieve lower threshold voltages than the other of the series. Preferably, the threshold voltages for the two series of field effect transistors are defined by one or more common channel implants. In a most preferred embodiment, the one or more common channel implants are the only implants which define the threshold voltages for the two series of field effect transistors.

[0027] Further and alternately considered, and in accordance with another embodiment of the present invention, the two series of field effect transistors just mentioned include at least one series which is isolated from adjacent devices by shallow trench isolation regions such as regions 18. Different threshold voltages are achieved between field effect transistors in the different series by varying the active area widths of the field effect transistors in the series, with at least one of the series having active area widths less than one micron, or less for future technologies.

[0028] Accordingly, field effect transistors can be fabricated having different threshold voltages without using a separate channel implant for the field effect transistors having the different threshold voltages. Such can result in a reduction in processing steps, which formerly included additional masking steps. One or more of the active areas can have widths less than one micron, with such widths being varied in order to change the threshold voltages of the transistors formed thereover.

[0029] In operation, various methods of the invention provide integrated circuitry having transistors with different threshold voltages without the added processing complexity. In a preferred embodiment, various methods of the invention can provide dynamic random access memory circuitry having a memory array area for supporting memory circuitry and a peripheral area for supporting peripheral circuitry. A plurality of shallow trench isolation regions are received within the peripheral area of the substrate and define a plurality of active areas having widths within the substrate, some of the widths being no greater than about one micron. Preferably, at least two of the widths are different. A conductive line is formed or disposed over the respective active areas to provide MOS gate electrodes for individual transistors. The transistors corresponding to the active areas having the different widths preferably have different threshold voltages. Exemplary dynamic random access memory circuitry is described in U.S. Pat. Nos. 5,702,990 and 5,686,747, which are incorporated by reference.

[0030] Referring to FIG. 5, a circuit 28 is provided and includes transistors 30, 32. Such transistors can be fabricated, in accordance with the methods described above, to have different threshold voltages. In this example, transistor 30 serves as a pass transistor and has a low threshold voltage Vt1, while transistor 32 serves as a switching transistor and has a high threshold voltage Vth.

[0031] Referring to FIG. 6, a circuit 34 is provided and includes transistors 36, 38 which can have different threshold voltages. Such circuit comprises a portion of precharge circuitry for dynamic random access memory circuitry. In the example of FIG. 6, the transistor 36 has a low threshold voltage Vt1 and the transistor 38 has a high threshold voltage Vth.

[0032] Referring to FIG. 7, a circuit is shown generally at 40 and comprises transistors 42, 44 and 46 having threshold voltages Vt1, Vt2 and Vt3, respectively. The transistors 42, 44 and 46 are fabricated to be formed in a parallel configuration with a common gate line 48 interconnecting the transistors 42, 44 and 46 and coupling a signal CSAL to gates of the transistors. In this example, the transistors 42, 44, 46 each have different active area widths which results in different threshold voltages.

[0033] Also shown in FIG. 7 is a sense amplifier circuit 50 including cross-coupled transistors 52 and 54. In one embodiment, the transistors 52 and 54 are formed to have a low threshold voltage Vt1. When the signal CSAL goes to logic “1”, the common node labeled RNL* equilibrates the potentials on sources of the transistors 52 and 54 in preparation for reading stored data from memory cells in a memory array (not shown). In the example shown in FIG. 7, the circuit 40 acts as a pull-down circuit and equilibrates the node RNL* to ground. Use of multiple transistors 42, 44 and 46 having different threshold voltages facilitates (“softens”) sensing at the beginning of the sensing cycle and also more rapid sensing at the end of the cycle when differential signals have been developed by the transistors 52 and 54.

[0034] Advantages of the invention can include provision of a plurality of transistors having different threshold voltages, without the necessity of providing different dedicated processing steps to achieve such different threshold voltages. In various preferred embodiments, such results are attained through the use of shallow trench isolation and various so-called reverse narrow width characteristics. Additionally, current drive can be achieved using multiple narrow width devices in parallel (FIG. 7). The invention can be useful for low threshold voltage applications such as precharge circuitry in DRAM circuitry, or as output drivers where low threshold voltages are important to obtain higher signal levels.

[0035] In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.

Claims

1. A semiconductor processing method of forming transistors comprising:

forming a plurality of shallow trench isolation regions received within a substrate, the shallow trench isolation regions being formed to define a plurality of active areas having widths within the substrate, some of the widths being no greater than about one micron, at least two of the widths being different; and
forming a gate line over respective active areas to provide individual transistors, the transistors corresponding to the active areas having the different widths having different threshold voltages.

2. The semiconductor processing method of

claim 1 further comprising for the transistors having the different widths, providing the different threshold voltages without using a separate channel implant for the transistors.

3. The semiconductor processing method of

claim 1, wherein the two different widths are each less than one micron.

4. The semiconductor processing method of

claim 1, wherein the different threshold voltages are each less than 2 volts.

5. The semiconductor processing method of

claim 1, wherein the different threshold voltages are each less than 1 volt.

6. The semiconductor processing method of

claim 1, wherein the two different widths are each less than one micron, and the different threshold voltages are each less than 2 volts.

7. The semiconductor processing method of

claim 1, wherein the two different widths are each less than one micron, and the different threshold voltages are each less than 1 volt.

8. A method of forming a pair of field effect transistors comprising:

forming a pair of active areas over a substrate, one of the active areas having a width less than one micron;
forming a gate line over both active areas to provide a pair of transistors having different threshold voltages, the transistors being provided with the different threshold voltages without using a separate channel implant for either transistor; and
wherein the transistor with the lower of the threshold voltages corresponds to the active area having the width less than one micron.

9. The method of

claim 8 further comprising forming the transistor having the higher of the threshold voltages to have an active area width greater than one micron.

10. The method of

claim 8 further comprising forming the transistor having the higher of the threshold voltages to have an active area width less than one micron.

11. The method of

claim 8 further comprising conducting only one common channel implant for the pair of transistors.

12. The method of

claim 8, wherein the forming of the pair of active areas comprises forming shallow trench isolation regions received within the substrate proximate the active areas.

13. The method of

claim 8, wherein the forming of the gate line comprises forming a common gate line over the active areas.

14. The method of

claim 8, wherein the forming of the gate line comprises forming a common gate line over the active areas, the transistors being formed in a parallel configuration.

15. A method of forming integrated circuitry comprising fabricating two field effect transistors having different threshold voltages without using a separate channel implant for one of the transistors versus the other.

16. The method of

claim 15, wherein the fabricating of the two field effect transistors comprises forming at least one active area of one of the transistors to have a width less than one micron.

17. The method of

claim 15, wherein the fabricating of the two field effect transistors comprises forming both active areas of the transistors to have widths less than one micron.

18. The method of

claim 15, wherein the fabricating of the two field effect transistors comprises forming both active areas of the transistors to have different widths.

19. The method of

claim 15, wherein the fabricating of the two field effect transistors comprises forming both active areas of the transistors to have different widths, each of which being less than one micron.

20. The method of

claim 15, wherein the fabricating of the two field effect transistors comprises forming shallow trench isolation regions within a substrate proximate the two field effect transistors, the shallow trench isolation regions defining, at least in part, active area widths of the transistors.

21. A semiconductor processing method comprising forming two series of field effect transistors over a substrate, one series being isolated from adjacent devices by shallow trench isolation, the other series having active area widths greater than one micron, the one series being formed to have active area widths less than one micron to achieve lower threshold voltages than the other of the series.

22. The semiconductor processing method of

claim 21, wherein the threshold voltages for the two series of field effect transistors are defined by a common channel implant.

23. The semiconductor processing method of

claim 21, wherein the threshold voltages for the two series of field effect transistors are defined by a common channel implant, said implant being the only channel implant which defines the threshold voltages for the two series of field effect transistors.

24. The semiconductor processing method of

claim 21, wherein the threshold voltages for the two series of field effect transistors are defined by one or more common channel implants.

25. The semiconductor processing method of

claim 21, wherein the threshold voltages for the two series of field effect transistors are defined by one or more common channel implants, said common channel implants being the only channel implants which define the threshold voltages for the two series of field effect transistors.

26. A semiconductor processing method comprising forming two series of field effect transistors over a substrate, at least one series being isolated from adjacent devices by shallow trench isolation, and further comprising achieving different threshold voltages between field effect transistors in different series by varying the active area widths of the field effect transistors in the series, at least one series having active area widths less than one micron.

27. The semiconductor processing method of

claim 26, wherein the threshold voltages for the two series of field effect transistors are defined by a common channel implant.

28. The semiconductor processing method of

claim 26, wherein the threshold voltages for the two series of field effect transistors are defined by a common channel implant, said implant being the only channel implant which defines the threshold voltages for the two series of field effect transistors.

29. The semiconductor processing method of

claim 26, wherein the threshold voltages for the two series of field effect transistors are defined by one or more common channel implants.

30. The semiconductor processing method of

claim 26, wherein the threshold voltages for the two series of field effect transistors are defined by one or more common channel implants, said common channel implants being the only channel implants which define the threshold voltages for the two series of field effect transistors.

31. A semiconductor processing method of forming dynamic random access memory circuitry comprising:

providing a substrate having a memory array area over which memory circuitry is to be formed, and a peripheral area over which peripheral circuitry is to be formed;
forming a plurality of shallow trench isolation regions received within the peripheral area of the substrate, the shallow trench isolation regions being formed to define a plurality of active areas having widths within the substrate, some of the widths being no greater than about one micron, at least two of the widths being different; and
forming a conductive line over respective active areas to provide individual transistor gates, the transistors corresponding to the active areas having the different widths having different threshold voltages.

32. The semiconductor processing method of

claim 31 further comprising for the transistors having the different widths, providing the different threshold voltages without using a separate channel implant for the transistors.

33. The semiconductor processing method of

claim 31, wherein the two different widths are each less than one micron.

34. A transistor assembly comprising:

a plurality of active areas having widths defined by shallow trench isolation regions of no greater than about one micron, at least some of the widths being different; and
gate lines disposed over the plurality of active areas to provide individual transistors, those transistors whose widths are different having different threshold voltages from one another.

35. The transistor assembly of

claim 34, wherein the threshold voltages of at least some of the individual transistors are less than one volt.

36. The transistor assembly of

claim 34, wherein individual transistors having active areas with the smaller widths have threshold voltages which are smaller than other individual transistors having active areas with larger widths.

37. The transistor assembly of

claim 34, wherein one of the transistors comprises a portion of precharge circuitry for dynamic random access memory circuitry.

38. The transistor assembly of

claim 34, wherein one of the transistors comprises a pass transistor.

39. The transistor assembly of

claim 34, wherein one of the transistors comprises a portion of sense amplifier circuitry for dynamic random access memory circuitry and has a lower threshold voltage Vt1.

40. The transistor assembly of

claim 34, wherein some of the transistors are joined together in a parallel configuration.

41. Dynamic random access memory circuitry comprising:

a substrate having a memory array area for supporting memory circuitry and a peripheral area for supporting peripheral circuitry;
a plurality of active areas within the peripheral area having widths defined by shallow trench isolation regions of no greater than about one micron, at least some of the widths being different; and
conductive lines disposed over the plurality of active areas to provide individual transistors, those transistors whose widths are different having different threshold voltages from one another.

42. The dynamic random access memory circuitry of

claim 41, wherein the threshold voltages of at least some of the individual transistors are less than one volt.

43. The dynamic random access memory circuitry of

claim 41, wherein individual transistors having active areas with the smaller widths have threshold voltages which are smaller than other individual transistors having active areas with larger widths.

44. A transistor assembly comprising:

an active area;
a plurality of spaced-apart shallow trench isolation regions received by the active area and defining active sub-areas therebetween, individual active sub-areas having respective widths, at least one of the widths being no greater than about one micron and at least one other sub-area having a width which is different from the one width; and
a gate line extending over the one and the other sub-area and defining, in part, separate transistors, wherein the separate transistors have different threshold voltages.

45. The transistor assembly of

claim 44, further comprising a gate line extending over a plurality of the active sub-areas defining a plurality of transistors, each active sub-area width of an associated transistor being no greater than about one micron.

46. The transistor assembly of

claim 44, further comprising a gate line extending over a plurality of the active sub-areas defining a plurality of transistors, each active sub-area width of an associated transistor being no greater than about one micron, wherein more than two of the plurality of transistors have different threshold voltages.

47. The transistor assembly of

claim 44, wherein said gate line comprises a common gate line which extends over a plurality of the active sub-areas defining a plurality of transistors, each active sub-area width of an associated transistor being no greater than about one micron.

48. The transistor assembly of

claim 44, wherein said gate line comprises a common gate line which extends over a plurality of the active sub-areas defining a plurality of transistors, each active sub-area width of an associated transistor being no greater than about one micron and said plurality of transistors being joined in a parallel configuration.

49. A transistor assembly comprising:

an active area;
a plurality of spaced-apart shallow trench isolation regions received by the active area and defining active sub-areas therebetween, individual active sub-areas having respective widths, at least one of the widths being no greater than about one micron and at least one other sub-area having a width which is less than the one width; and
a gate line extending over the one and the other sub-area and defining, in part, separate transistors, wherein the separate transistors have different threshold voltages, wherein said gate line comprises a common gate line which extends over a plurality of the active sub-areas defining a plurality of transistors, each active sub-area width of an associated transistor being no greater than about one micron and said plurality of transistors being joined in a parallel configuration to provide a pull down circuit coupled to a common node.

50. The transistor assembly of

claim 49, further comprising a sense amplifier formed from pair of transistors, each of the pair having a gate that is cross-coupled to a drain of another of the pair, sources of the pair being coupled to the common node.
Patent History
Publication number: 20010012664
Type: Application
Filed: Apr 12, 2001
Publication Date: Aug 9, 2001
Inventor: Luan C. Tran (Meridian, ID)
Application Number: 09834660
Classifications