Single crystal-manufacturing equipment and a method for manufacturing the same

- NGK Insulators, Ltd.

An equipment is disclosed for producing a single crystal in each of plural containers by thermally treating a raw material for the single crystal each charged in each of the container, including heaters provided corresponding to each of the containers, an elevator to move each of the containers upward and downward relatively to the respective one of the heaters, and a connecting member to connect at least one of the container and the heater of each of plural sets of the containers and the heaters mechanically to the elevator, wherein each container is moved vertically relatively to the respective one of the heaters by driving the elevator and passed through an area of thermal treatment formed by the heater to continuously form a melt in the raw material inside the container, and the single crystal is continuously produced in the container by solidifying the melt.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] This invention relates to an equipment and a method for manufacturing a single crystal such as Hg-Cd-Mn-Te based single crystal.

[0003] 2. Related Art Statement

[0004] Recently, attention is now paid to an erbium doped fiber amplifier. The wavelength of 0.98&mgr;m is particularly expected as an exciting wavelength for erbium. The bulky Hg-Cd-Mn-Te based single crystal is much expected as a material for an optical isolator with a wavelength of 0.98 &mgr;Mn band. The range of a composition usable for an optical isolator is described in JP-A 7-233000, for example.

[0005] It has been, however, difficult to grow a bulky Hg-Cd-Mn-Te based single crystal. For, since Hg is contained as a component having a high vapor pressure, the interior pressure of a crucible becomes extremely high, if a single crystal is grown by an ordinary Bridgeman process. Consequently, a crucible may be broken.

[0006] In JP-A 7-206598, an equipment using a high pressure Bridgeman furnace, by which a Hg-Cd-Mn-Te single crystal is formed, is described, for example. The equipment has a heater above a crucible over the high pressure Bridgeman furnace to prevent the precipitation of Hg with higher vapor pressure in the crucible. In JP-A-8-40800, a method for setting a material of single crystal in a container is so examined that in THM method (traveling heater method), the production of a twin crystal may be prevented and the diameter of the thus obtained single crystal may be made large.

[0007] Although the mass production of single crystals is attempted by making the diameter of the each single crystal large besides preventing generation of a twin crystal in particular according to the conventional single crystal-producing method, a difficult problem remains unsolved. That is, for manufacturing a single crystal at a relatively low cost, it is required that the diameter of the single crystal is large, but the vapor pressure of Hg increases in geometrical progression as its diameter becomes large, so that a high pressure Bridgeman furnace is used, and a container for forming the single crystal is required to be pressurized at about 30 kg/cm3.

[0008] Actually, compositional segregation is, however, recognized in the single crystal as viewed in its diametrical direction, and sometimes crystals with different phase are generated, because the state of a melt differs between the outer peripheral part and the center part. Thus, since the characteristics of such a single crystal as an optical isolator largely vary, it is difficult to obtain the single crystal satisfying the characteristics as the optical isolator. Moreover, the optical loss character of the isolator varies due to the deviation in the crystal orientation of the single crystal.

SUMMARY OF THE INVENTION

[0009] It is an object to improve and stabilize the characters of a single crystal as well as to simultaneously enable the mass production of single crystals by prohibiting a compositional segregation, generation of different phase, deviation in the crystal orientation, etc. in the single crystal in a manufacturing equipment for producing the single crystal in a container by thermally treating the container filled up with the sources of the single crystal such as a Hg-Cd-Mn-Te based single crystal.

[0010] This invention relates an equipment for producing a single crystal in each of plural containers by thermally treating a raw material for the single crystal each charged in each of the container, comprising heaters provided corresponding to each of the containers, an elevator to move each of the containers upward and downward relatively to the respective one of the heaters, and a connecting member to connect at least one of the container and the heater of each of plural sets of the containers and the heaters mechanically to the elevator, wherein each container is moved vertically relatively to the respective one of the heaters by driving the elevator and passed through an area of thermal treatment formed by the heater to continuously form a melt in the raw material inside the container, and the single crystal is continuously produced in the container by solidifying the melt.

[0011] This invention also relates a method for producing a single crystal in each of plural containers by thermal treating the each container filled up with sources of the single crystal, comprising each thermal treating equipment corresponding to the each container, an elevating drive equipment to move the each container upward and downward relatively to the each thermal treating equipment and connecting members to connect at least one of the plural containers and the plural the thermal treating equipment mechanically to the elevating drive equipment, wherein the each container is moved upward and downward relatively to the each thermal treating equipment by driving the elevating driving equipment and passed through an area of thermal treatment formed by the thermal treating equipment to generate melting zones in the sources of the container in successive, and the single crystal was generated in the container in successive by making the melting zones solid.

[0012] The present inventors have found that in the Hg-Cd-Mn-Te single crystal, for example, if the diameters of the single crystal and its container are increased, compositional segregation, generation of different phase of crystals and deviation in the crystalline orientation are likely to occur; so that it is very hard to control them microscopically. Based on the above finding, the inventors made further investigations. During this, they tried to mass-produce single crystals by making small the diameters of the single crystal and the container to be filled with a starting material for the single crystal and increasing the number of the containers to be thermal treated.

[0013] But they found that in the case of bundling plural sealed members and setting them in a single THM furnace and making experiments actually, different from their expectation, it is very hard to control the characteristics of the single crystals if many containers are employed, so that the above problems are unsolved. That is, the condition of the each single crystal produced varies depending upon the respective containers. For example, in the case that a single crystal having good characteristics usable for an optical isolator is produced in a container, compositional segregation and different phase of crystals often occur in the single crystals in many other containers and the crystalline orientation is deviated among the single crystals. This means that it is very difficult to control a melt finely in each container in the case of treating many containers with their small diameters as well as in the case of the single crystals with large diameters. Moreover it is possible to bundle three to four sealing members at the maximum, but not possible to simultaneously grow single crystals for by not less than five containers.

[0014] The inventors have studied to solve the fatal serious problems from the viewpoint of mass-production. During the studies, they have figured out the continuous production of the single crystals by providing heaters corresponding to respective containers, connecting each of the heaters mechanically to an elevator, vertically moving each of the heaters relative to the respective one of containers by driving the elevator, continuously producing a melt in the starting material for the single crystal by passing each container through an area for thermal treatment formed by the heater, thereafter solidifying the melt.

[0015] Thus they have found that in each of the containers, the compositional segregation of the single crystals and the generation of different phase of crystals were remarkably prohibited and the fluctuations in the crystalline orientation in the single crystal were not observed. Accordingly even in the single crystal with difficulty in controlling its melt, such as a Hg-Cd-Mn-Te based single crystal, the present invention first enables the mass-production of single crystals beyond a certain level without causing compositional segregation, generation of different phase of crystals or deviations in the crystalline direction.

[0016] The inventors further paid attention to the inner diameter of the container for growing the single crystal in developing an equipment which enables the mass-production of the single crystal, and have also found that by setting the inner diameter of the container into 7 mm or below, the single crystal having a desired composition within a particular range can be mass-produced for the weight of the starting material. If the diameter is beyond 8 mm, particularly since the composition largely differs between an outer peripheral part and a central part of the single crystal. Therefore, the composition of an outer peripheral portion cut out of the single crystal largely differs from that of a center portion of the single crystal, thereby giving a low yield during the growing step of the single crystal. However, by setting the inner diameter of that area of the container in which to grow the single crystal to 7 mm or below, the yield can be remarkably enhanced.

[0017] The reason is that the heat conduction from the heater is increased to stabilize the condition of the melt successively produced in the polycrystalline starting material and suppress different phase of crystals and the compositional segregation.

[0018] The inner diameter of the container is preferably 5 mm or below, more preferably 3 mm or below. Not particularly limited, the lower limit of the inner diameter is required to be larger than the dimension of the product to be manufactured.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] For a better understanding of the invention, reference is made to the attached drawings, wherein:

[0020] FIG. 1 is a plan view schematically showing a manufacturing equipment as an embodiment according to this invention;

[0021] FIG. 2 is a front view schematically showing a manufacturing equipment as an embodiment according to this invention;

[0022] FIG. 3 (a) is a cross sectional view schematically showing that a crucible 16 of a container 30 usable for this invention is filled up with powdery sources 17, FIG. 3 (b) is a cross sectional view schematically showing that polycrystalline starting material 20 in the container of FIG. 3(a) are thermally treated;

[0023] FIG. 4 (a) is a cross sectional view schematically showing that a single crystal 23 and a polycrystal 22 are generated in a crucible 16, FIG. 4(b) is a cross sectional view schematically showing a column like-body 24 obtained by cutting off the tubular-part of a crucible 16, and FIG. 4(c) is a cross sectional view taken on line IVc-IVc of FIG. 4(b);

[0024] FIG. 5(a) and (b) are plan views showing the cutting points in each sample when cutting out each sample shown in Table 3,4,7, and 8 of a single crystal wafer in comparative example A and B, respectively;

[0025] FIG. 6 (a) is a longitudinal cross sectional view showing that a single crystal 34 and a polycrystal 22 are generated in a crucible 36 in a seal up-member 35; and FIG. 6 (b) is a longitudinal cross sectional view showing a seal up-member and a crucible taken on normal direction to FIG. 6(a); and

[0026] FIG. 7(a) is a cross sectional view showing a position in up and down direction in the each sample cut off of a single crystal obtained in Example C; and FIG. 7(b) is a cross sectional view showing a position in transverse direction in the each sample cut off of a single crystal obtained in Example C.

DETAILED DESCRIPTION OF THE INVENTION

[0027] Specific embodiments of this invention will be also described in more detail hereinafter.

[0028] A polycrystalline starting material is preferred as a staitng material for filling up and being accommodated in the container, but a starting material composed of a mixture of metal powders before producing a polycrystal may be used.

[0029] In a preferable embodiment, each heater has a tubular shape and a corresponding container is accommodated in the interior of the heater. Accordingly the fluctuation in the characteristics of the single crystal in its diametrical direction is prevented, because a thermally treating area defined inside the heater has a substantially uniform temperature distribution as viewed in the diametrical direction of the container. The wording “each heater has a tubular shape” means including a case in which a resistive heat-generating wire has a tubular shape and a plate-like form of a resistive heat-generating body is shaped in a cylindrical form.

[0030] In another preferred embodiment, the heater has a melt-producing part to form a melt, a preheating part around an upper side of the melt-producing part, and an annealing part around a lower side of the melt-producing part. Thus by using such heaters, a successive process of pre-heating the starting material for the single crystal, producing the melt, producing the single crystal through solidifying the melt, and annealing the single crystal can be simultaneously effected under the same condition for all the containers. As a result, the fluctuations in crystallinity among the obtained single crystals are further suppressed.

[0031] In a further preferred embodiment, the container includes a crucible to be filled up with a starting material and a sealing member to accommodate and seal the crucible. In this case, the crucible particularly preferably includes a single crystal-growing part vertically extending and an enlarged part at an upper side of the single crystal-growing part.

[0032] Concrete embodiments of this invention are also described hereinafter, in reference to drawings.

[0033] FIG. 1 is a plan view schematically showing a heater as an embodiment according to this invention, and FIG. 2 is a front view schematically showing the heater of FIG. 1. FIG. 3(a) is a cross sectional view schematically showing that a seed crystal and a starting material are provided in a crucible 16 of a container 30, and FIG. 3(b) is a cross sectional view schematically showing a state in which a melt is produced in the starting material inside the crucible. FIG. 4(a) is a cross sectional view schematically showing that a single crystal has been produced in the crucible.

[0034] A manufacturing equipment of this invention is accommodated in an inner space 2 of a refractory material 1. Each container 7A, 7B, 7C, 7D, 7E, 7F is filled up with a starting material for a single crystal. Each heater 5A, 5B, 5C, 5D, 5E, 5F is provided in a corresponding container. In this embodiment, the heaters are arranged in a matrix of 2×3, transversely and vertically, respectively, but the number and arrangement of the heaters may be changed.

[0035] An elevator 4 moves each heater upward and downward relatively to the corresponding container. In this embodiment, the elevator is attached to around a spindle 10 and can be moved up and down along the spindle 10 with a driving mechanism (not shown).

[0036] A connecting member 3 is attached to the elevator 4. The connecting member 3 includes an attaching part 3g to the elevator 4 and attaching parts 3a, 3b, 3c, 3d, 3e, and 3f to the respective heaters 5A, 5B, 5C, 5D, 5E, and 5F. These attaching parts are connected to the attaching part 3g through a holding part 3h. Each container is fixed to a given portion with fixing spindles 8 and 9. Each heater can be moved up and down by driving the elevator 4.

[0037] Thermally treating areas 6A, 6B, 6C, 6D, 6E, and 6F are defined in the respective heaters. A single crystal is continuously produced in each container by passing the container through the thermally treating area, producing a melt in the starting material for the single crystal in the container, and solidifying the melt.

[0038] Each heater includes a preheating part 12, a melt-producing part 13, and an annealing part 14, for example as shown in FIG. 2. Thus the melt is continuously produced in the starting material inside each container as the corresponding heater moves up.

[0039] It is desirable that the each container, such as a container 30 of FIG. 3(a), includes a crucible 16 filled up with a starting material 17 and a sealing member 15 to accommodate and seal the crucible 16. In this embodiment, the crucible 16 includes an enlarged part 16a, a tubular part 16b, and a connecting part 16c to connect them. The sealing member 15 also includes an enlarged part 15a, a tubular part 15b, and a connecting part 15c. The numeral reference 16d denotes an opening of the crucible 16.

[0040] As a material of the above crucible, boron nitride, carbon, or amorphous glassy carbon is preferably used. Moreover a composite product consisting of any one of the above materials and a CVD processing thin film of pyrolytic carbon(p-C), pyrolytic boron nitride(p-BN) or p-C and p-BN CVD processing bulky crucible may be more preferably used, because of their smaller reactivity.

[0041] It is desirable that the enlarged part 16a and the tubular part 16b of the crucible are filled with starting material 17 composed of a mixed metal powders 17, and that the single crystal is produced at least in the cylindrical part 16b. For, in the crucible to actually grow the single crystal, the melt thereof is stably generated and thereby the quality of the single crystal becomes stabler by making the diameter of the crucible as small as possible. As the diameter of the crucible is decreased, however it is difficult to charge the starting material for the single crystal into the crucible. In this case, as the starting material is charged into the cylindrical part 16b through the enlarged part 16a, it is easy to filled up the sources into the crucible.

[0042] Thereafter the interior of the sealing member is normally vacuum-evacuated, and the crucible is sealed up by cutting the member under vacuum sealing. The powdery starting material 17 is once melted, and a polycrystal is made by quenching the thus obtained melt. Then, when moving each heater upward, the polycrystalline starting material 20 in the tubular part 16b is heated successively from the under side to produce a melt 21 as shown in FIG. 3(b). The melt 21 moves upward gradually.

[0043] When producing the final single crystal 23, as shown in FIG. 4(a), it is formed in the tubular part 16b inside the crucible 16. Hereupon the single crystal having a desired composition is produced in an area between broken lines B. A part of the single crystal near the seed crystal is in a composition-changing zone according to material phase diagram, and a part of the single crystal above this zone is in a uniform zone with the desired composition. The seed crystal 18 exists under the lower broken line B. A single crystal 40 having the same composition as the melt is produced above the upper broken line B. A polycrystal 22 is normally produced in the connecting part 16c and the enlarged part 16a. The surface of the polycrystal 22 descends from the surface A of the powdery starting material 17.

[0044] By using the above crucible, pores hardly occur in the single crystal 23 when the melt is supplemented, and the convection of the melt actively occurs to further suppress compositional segregation.

[0045] Thereafter it is particularly desirable to use only the part of the single crystal 23 with the uniform composition in the tubular part 16b. For, in the step of producing the single crystal 23, a surplus metal component contained the powdery starting 17 or the polycrystal 20 tends to move upward in the crucible 16, that is, into the enlarged part 16a, so that the surplus metal is localized in the polycrystal 40 of FIG. 4(a). Thus by abandoning the polycrystal formed in the enlarged part 16a and utilizing the single crystal 23 generated in the tubular part 16b, the characteristics of the single crystal, particularly, the optical characteristics thereof are more stabilized.

[0046] It is preferable that the seed crystal 18 is accommodated in the lowest part of the crucible 16 and the powdery starting material 17 is charged onto the seed crystal 18. Thereby the crystalline orientation of each 23 produced in the container 30 is more uninformed.

[0047] At least a part of the tubular part 16b of the crucible 16 can be cut out of the crucible 16. For example, along the broken lines B shown in FIG. 4(a), the tubular part 16b and the single crystal 23 are cut out. Thereby, for example, as shown in FIGS. 4(b) and (c), a column-like body 24 consisting of tubular covering part 26 and the single crystal 23 can be obtained and used as an optical material. In that case, light can pass through between a pair of ends 25 of the single crystal 23.

[0048] In this invention, as the diameter of the container in the area to produce the single crystal can be made smaller, the weight of the starting material 17 filled in the interior of each container 30 is relatively small. Accordingly the thermal treatment of the container 30 can be carried out under non-pressurizing condition.

[0049] In the boundary area between the melt-producing part 13 and the annealing part 14, a temperature gradient occurs. This temperature gradient is preferably 50° C./cm or more, thereby the velocity of the crystallization increases, so that different phase of crystal are unlikely to remain. Moreover the temperature gradient is more preferably 100° C./cm or below, thereby pores are prevented from occurring.

[0050] The vertical length of the melt-producing part is preferably 5 mm or more, by which the melt is stably produced with high reproductively. Moreover, that vertical length is preferably 30 mm or less. For, in the case of a too long melting part, an area giving a desired composition for the single crystal is decreased due to slow changing in the composition.

[0051] The vertical length of each of the preheating part and the annealing part is preferably 30 mm or more, which suppresses occurrence of pores and increases the crystallization speed. The vertical length each of the preheating part and the annealing part is preferably 100 mm or less.

[0052] The manufacturing method and equipment in this invention can be applied to single crystals having various compositions, for example, II-VI Group compound-based single crystals such as Hg-Mn-Te, Hg-Cd-Te, Cd-Mn-Te, Hg-Cd-Mn-Zn-Te, Hg-Cd-Mn-Te-Se and Zn-Be-Mg-Se-Te, and III-V Group compound-based single crystals such as Ga-Al-As-P and In-Al-As-P.

[0053] In particular, in the case of forming a single crystal having an Hg-Cd-Mn-Te composition, a mixture of an Hg-Te alloy and a Cd-Te alloy is used as a powdery starting material of the single crystal. Thereby the generation of heat nearby the reaction of their powdery starting material and the damage of the sealing due to such heat generation can be prohibited.

[0054] In the case of forming a single crystal having a Hg-Cd-Mn-Te composition, the temperature in the melt-producing part to grow the single crystal is preferably not less than 700° C. to not more than 1050° C. Moreover, in this case the temperature of the preheating part is preferably set lower than that of the melt-producing part by not less than 50° C. to not less than 300° C., so that the growth of the polycrystal can be controlled and leaving of Hg and Cd from the polycrystal which may cause compositional segregation can be prohibited. Moreover, the temperature of the annealing part is preferably not less than 400° C. to not more than 1000° C.

[0055] Furthermore in the case of forming a single crystal having an Hg-Cd-Mn-Te composition, the composition of the single crystal is preferably within the composition range defined by connecting points of (HgO.5Cd0.0Mn0.5)Te, (Hg0.08Cd0.8Mn0.12)Te, (Hg0.05Cd0.5Mn0.45)Te, and (Hg0.5Cd0.5Mn0.0)Te by straight line segments.

[0056] Each container and the corresponding sealing member are preferably fixed to extend in parallel to each other, and both the upper end and the lower end of each container are preferably fixed. By so doing, vibration of the melt is inhibited to control the formation of different phase of crystals.

[0057] Moreover, in FIG. 2 by way of example, each container is preferably fixed at three or four points at a joint portion 11 between each of fixing spindles 8 and 9 and each container by using ball-point screws to sustain the horizontal level or the circularity. Thereby the fluctuations of the melt is diminished to prohibit the occurrence of deviations in the crystalline orientation.

[0058] More concrete experimental results will be described hereinafter.

[0059] Example A

[0060] An optical material made of a single crystal having an Hg-Cd-Mn-Te composition was grown according to the above method as explained referring to FIG. 1 to FIG. 4. Concretely, as a powdery starting material 17, Cd, Mn, an Hg-Te alloy, and a Cd-Te alloy were employed. A crystal having a (111) orientation of CdTe (diameter: 3 mm, length: 30 mm) was used as a seed crystal. Three hundreds g of the starting material was formulated to give a composition of (Hg0.16Cd0.68Mn0.16)Te after the formulation. The sealing member 15 was formed of quartz glass in a thickness of 2 mm. The inner diameter and the length of the tubular part 16b of the crucible 16 were 3 mm and 300 mm, respectively. The inner diameter and the length of the enlarged part 16a of the crucible 16 were 5 mm and 50 mm, respectively. The crucible 16 was formed of p-BN bulk in a thickness of 1 mm. The seed crystal was put into the container, and 15 g of the powdery starting material was charged into the crucible 16. The crucible was put into the sealing quartz member, and the sealing member was sealed.

[0061] Containers 30 were formed by using 20 sealing members, and accommodated in a normal pressure electric furnace, which was heated to 1100° C. at 50° C./hour to melt the starting material 17. At that time, the system was designed such that the seed crystal 18 was prevented from melting through cooling with a cooling mechanism (not shown). As the temperature went up, the starting material put into the container turned to a melt, and the melt was formed at a location up to a level of a tapered part 16c of the crucible. Next, the container was cooled rapidly to obtain a polycrystalline starting material 20. Thereafter each container 30 was taken out and set into a manufacturing equipment of FIGS. 1 and 2.

[0062] Hereupon the inner diameter and the length of the melt-producing part in each heater were 15 mm and 10 mm, respectively. The length of each of the preheating part and the annealing part was 50 mm. The heater was formed of a tubular heat-generating body of a metal, alloy, or ceramic material. The opposite ends of each container 30 were fixed by fixing spindles.

[0063] As above mentioned, twenty containers 30 were fixed at given locations, and thereafter the temperature was raised at a heating rate of 50° C./hour under normal pressure with use of the heaters. The position of the melt-producing part was aligned to the upper end of the seed crystal 18 and held at 1050° C. Moreover the temperature of the pre-heating part and that of the annealing part were held at 800° C. The temperature gradient between the preheating part and the melt-producing part and that between the annealing part and the melt-producing part were both 75° C./cm. Holding the above condition, the heaters were simultaneously moved at 30 mm/day, while the temperature of the melt-producing part was fell down to 950° C. at 100° C./day. When its temperature reached 950° C. in 24 hours, the melt-producing part was held at the same temperature, and each heater was continuously moved for 9 days. After growing a single crystal, the melt-producing part was fell down at 50° C./hour, and twenty sealing members were removed.

[0064] Each crucible was taken out of the corresponding sealing member thus removed, and the grown crystals were cut out each in a thickness of 3.5 mm, starting from a point above the seed crystal 18 to obtain 70 samples. The totally 1400 grown samples were obtained from the totally 20 crucibles, and the composition and the optical characteristics, i.e., the Faraday rotation angle and the cut-off wavelength of light absorption were investigated with respect to them. Results obtained are listed in Tables 1 and 2. 1 TABLE 1 Position Faraday Cut-off Crucible of Composition rotation wavelength Practically No. sample Hg Cd Mn Te (deg/cm Oe) (nm) usable or not 1  1 0.00 1.00 0.00 1.0 X  3 0.08 0.74 0.18 1.0 0.042 880 X  5 0.10 0.73 0.17 1.0 0.045 890 X  7 0.12 0.71 0.17 1.0 0.048 900 X  9 0.14 0.70 0.16 1.0 0.056 920 &Dgr; 10 0.15 0.69 0.16 1.0 0.058 930 &Dgr; 11 0.16 0.68 0.16 1.0 0.060 940 ◯ 12 0.16 0.68 0.16 1.0 0.060 940 ◯ 13 0.16 0.68 0.16 1.0 0.060 940 ◯ 15 0.16 0.68 0.16 1.0 0.060 940 ◯ 20 0.16 0.68 0.16 1.0 0.060 940 ◯ 25 0.16 0.68 0.16 1.0 0.060 940 ◯ 30 0.16 0.68 0.16 1.0 0.060 940 ◯ 35 0.16 0.68 0.16 1.0 0.060 940 ◯ 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 45 0.16 0.68 0.16 1.0 0.060 940 ◯ 50 0.16 0.68 0.16 1.0 0.060 940 ◯ 55 0.16 0.68 0.16 1.0 0.060 940 ◯ 60 0.16 0.68 0.16 1.0 0.060 940 ◯ 63 0.16 0.68 0.16 1.0 0.060 940 ◯ 64 0.16 0.68 0.16 1.0 0.060 940 ◯ 65 0.16 0.68 0.16 1.0 0.060 940 ◯ 66 0.25 0.61 0.14 1.0 measurement X impossible 67 0.48 0.42 0.10 1.0 measurement X impossible 68 0.30 0.57 0.13 1.0 measurement X impossible 69 0.16 0.68 0.16 1.0 polycrystal X 70 0.16 0.68 0.16 1.0 polycrystal X

[0065] 2 TABLE 2 Position Faraday Cut-off Crucible of Composition rotation wavelength Practically No. sample Hg Cd Mn Te (deg/cm Oe) (nm) usable or not  2 10 0.15 0.69 0.16 1.0 0.058 930 X 11 0.16 0.68 0.16 1.0 0.060 940 ◯ 20 0.16 0.68 0.16 1.0 0.060 940 ◯ 30 0.16 0.68 0.16 1.0 0.060 940 ◯ 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 60 0.16 0.68 0.16 1.0 0.060 940 ◯ 65 0.16 0.68 0.16 1.0 0.060 940 ◯ 66 0.25 0.61 0.14 1.0 measurement X impossible  3 40 0.16 0.68 0.16 1.0 0.060 940 ◯  4 40 0.16 0.68 0.16 1.0 0.060 940 ◯  5 40 0.16 0.68 0.16 1.0 0.060 940 ◯  6 40 0.16 0.68 0.16 1.0 0.060 940 ◯  7 40 0.16 0.68 0.16 1.0 0.060 940 ◯  8 40 0.16 0.68 0.16 1.0 0.060 940 ◯  9 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 10 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 11 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 12 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 13 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 14 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 15 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 16 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 17 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 18 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 19 40 0.16 0.68 0.16 1.0 0.060 940 ◯ 20 40 0.16 0.68 0.16 1.0 0.060 940 ◯

[0066] In Table 1, the results are given on No. 1 among the twenty crucibles. The wording “Position of sample” means the position of each sample in a case where samples were cut out successively upwardly in order starting from above the seed crystal 18. The smaller the number of the position of the sample, the nearer the position to the seed crystal 18, whereas the larger the number of the position of the sample, the farther the position of the sample to the seed crystal.

[0067] Apparent from the above, in one grown crystal, ten samples in the lower part of the crucible were ones in the composition-changing area, and five samples in the upper part thereof were ones in an area of the melt, so that they cannot be employed as optical isolator elements at a wavelength of 980 nm. Moreover as shown in Table 1 and 2, the midst fifty five samples have a uniform composition for each of all twenty grown crystals. Accordingly it is confirmed that 1100 single crystal samples having the uniform composition could be obtained at the same time.

[0068] Comparative Example A

[0069] A single crystal was grown by a conventional THM method. As a sealing member also functioning as a crucible, a container made of quartz glass having an inner diameter of 15 mm, a length of 100 mm, and a tlhickness of 3 mm was employed. About 75 grams of the starting material was put into the container, and the sealing member was sealed in vacuum. A 20 mm-long lower part of the container was formed in a tapered shape, and a seed crystal having the diameter of 3 mm and the length of 30 mm was placed under the tapered part, and the starting material was melted and a single crystal was grown as in Example A. The single crystal was grown under a pressure of 30 atms in an Ar gas by using a THM growing furnace having a pressurizing container with a pressure-resistance of 100 atms. A heating mechanism employed had a melt-producing part with an inner of 30 mm and a length of 20 mm, an annealing part and a pre-heating part each having an inner diameter of 30 mm and a length of 50 mm. The growing speed of the single crystal was 4 mm/day, and 20 days were needed for the growth.

[0070] Consequently, a single crystal was formed in a diameter of 15 mm and a length of 60 mm. The single crystal was transversely cut to obtain 15 wafers having a thickness of 3.5 mm and a diameter of 15 mm. Their characteristics were measured as in Example A, and results are listed in Table 3 and 4. 3 TABLE 3 Position Faraday Cut-off Wafer of Composition rotation wavelength Practically No. sample Hg Cd Mn Te (deg/cm Oe) (nm) usable or not 1 a 0.10 0.73 0.17 1.0 0.045 890 X b 0.10 0.73 0.17 1.0 0.045 890 X c 0.09 0.73 0.18 1.0 0.043 885 X d 0.08 0.74 0.18 1.0 0.042 880 X e 0.08 0.74 0.18 1.0 0.042 880 X 3 a 0.12 0.71 0.17 1.0 0.048 900 X b 0.12 0.71 0.17 1.0 0.048 900 X c 0.11 0.72 0.17 1.0 0.047 895 X d 0.10 0.73 0.17 1.0 0.045 890 X e 0.10 0.73 0.17 1.0 0.045 890 X 5 a 0.14 0.70 0.16 1.0 0.056 920 &Dgr; b 0.14 0.70 0.16 1.0 0.056 920 &Dgr; c 0.13 0.70 0.17 1.0 0.052 910 X d 0.12 0.71 0.17 1.0 0.048 900 X e 0.12 0.71 0.17 1.0 0.048 900 X 6 a 0.16 0.68 0.16 1.0 0.060 940 ◯ b 0.16 0.68 0.16 1.0 0.060 940 ◯ c 0.15 0.69 0.16 1.0 0.058 930 &Dgr; d 0.14 0.70 0.16 1.0 0.056 920 &Dgr; e 0.13 0.70 0.17 1.0 0.052 910 X 8 a 0.16 0.68 0.16 1.0 0.060 940 ◯ b 0.16 0.68 0.16 1.0 0.060 940 ◯ c 0.15 0.69 0.16 1.0 0.058 930 &Dgr; d 0.14 0.70 0.16 1.0 0.056 920 &Dgr; e 0.13 0.70 0.17 1.0 0.052 910 X

[0071] 4 TABLE 4 Position Faraday Cut-off Wafer of Composition rotation wavelength Practically No. sample Hg Cd Mn Te (deg/cm Oe) (nm) usable or not 10 a 0.16 0.68 0.16 1.0 0.060 940 ◯ b 0.16 0.68 0.16 1.0 0.060 940 ◯ c 0.15 0.69 0.16 1.0 0.058 930 &Dgr; d 0.14 0.70 0.16 1.0 0.056 920 &Dgr; e 0.13 0.70 0.17 1.0 0.052 910 X 11 a 0.19 0.66 0.15 1.0 0.060 970 X b 0.18 0.67 0.15 1.0 0.060 960 X c 0.18 0.67 0.15 1.0 0.061 960 X d 0.17 0.67 0.16 1.0 0.062 950 X e 0.17 0.67 0.16 1.0 0.062 950 X 13 a 0.30 0.57 0.13 1.0 measurement X impossible b 0.30 0.57 0.13 1.0 measurement X impossible c 0.30 0.57 0.13 1.0 measurement X impossible d 0.30 0.57 0.13 1.0 measurement X impossible e 0.30 0.57 0.13 1.0 measurement X impossible 15 a 0.48 0.42 0.10 1.0 measurement X impossible b 0.48 0.42 0.10 1.0 measurement X impossible c 0.48 0.42 0.10 1.0 measurement X impossible d 0.48 0.42 0.10 1.0 measurement X impossible e 0.48 0.42 0.10 1.0 measurement X impossible

[0072] In Table 3 and 4, the wafer number denotes the first, second, third, through fifteenth wafer from the bottom of the sample. The position of the sample denoted the each position as shown in FIG. 5(a). It is realized that the area of a desired composition is around the thickness with 7 mm and the length with 25 mm nearby the center of the wafer. That is, in this growing method, only 30 elements of a desired composition having the diameter with 2 mm and the length with 3.5 mm were obtained.

[0073] Example B

[0074] A growing experiment was carried out as in the Example A. However the thickness of the quartz glass was 3 mm, the inner diameter and the length of the crucible 16b were 6 mm and 200 mm respectively, the inner diameter and the length of the enlarged part were 10 mm and 50 mm respectively. A crucible made of graphite coated with pyrolytic carbon thin film in its interior (total thickness with 2 mm) was employed as the crucible 16. The powdery sources with 30 g was put into the crucible 16. The number of container was 10. The inner diameter and the length of the melt-producing part were 18 mm and 15 mm respectively and the length of the pre-heating part and annealing part was 50 mm.

[0075] The 10 containers 30 were fixed at given places, thereafter the thermal treating equipment was heated at 50° C./hour under normal pressure. The position of the melt producing part was prepared in equal to the upper end of the original crystal 18 and the melt-producing part was held at 1050° C. The temperature of the pre-heating part and the annealing part was held at 800° C. At this time, the temperature gradients of between the pre-heating part and the melt-producing part and between the annealing part and the melt-producing part were 65° C./cm respectively. Holding the above conditions, the each thermal treating equipment was moved at 10 mm/day at the same time and the temperature of the melt-producing part was fell down to 950° C. at 50° C./day. When its temperature was 950° C. at 48 hours later, by holding the temperature the each thermal treating equipment was continued to be moved for 15 days. After growing, the melt-producing part was cooled at 50° C./hour and the 10 seal up-member were taken out.

[0076] The each crucible was taken out of the each seal up-member and 40 wafers were cut out in the thickness with 3.5 mm and the diameter with 6 mm of the seed crystal 18 in turn from the upper part thereof. 4 samples was formed in the diameter with 2.5 mm of the each wafer to obtain 160 samples. Accordingly 1600 samples were totally formed of 10 grown crystals. Their composition, Faraday rotation angle and cut off wavelength of light absorption were investigated. The results were listed in Table 5 and 6. 5 TABLE 5 Position Faraday Cut-off Crucible of Composition rotation wavelength Practically No. sample Hg Cd Mn Te (deg/cm Oe) (nm) usable or not 1  1 0.00 1.00 0.00 1.0 measurement X impossible  3 0.08 0.74 0.18 1.0 0.042 880 X  5 0.10 0.73 0.17 1.0 0.045 890 X  7 0.12 0.71 0.17 1.0 0.048 900 X  9 0.14 0.70 0.16 1.0 0.056 920 &Dgr; 10 0.15 0.69 0.16 1.0 0.058 930 &Dgr; 11 0.16 0.68 0.16 1.0 0.060 940 ◯ 12 0.16 0.68 0.16 1.0 0.060 940 ◯ 13 0.16 0.68 0.16 1.0 0.060 940 ◯ 15 0.16 0.68 0.16 1.0 0.060 940 ◯ 20-1 0.16 0.68 0.16 1.0 0.060 940 ◯ 20-2 0.16 0.68 0.16 1.0 0.060 940 ◯ 20-3 0.16 0.68 0.16 1.0 0.060 940 ◯ 20-4 0.16 0.68 0.16 1.0 0.060 940 ◯ 25 0.16 0.68 0.16 1.0 0.060 940 ◯ 30 0.16 0.68 0.16 1.0 0.060 940 ◯ 33 0.16 0.68 0.16 1.0 0.060 940 ◯ 34 0.16 0.68 0.16 1.0 0.060 940 ◯ 35 0.16 0.68 0.16 1.0 0.060 940 ◯ 36 0.25 0.61 0.14 1.0 measurement X impossible 37 0.48 0.42 0.10 1.0 measurement X impossible 38 0.30 0.57 0.13 1.0 measurement X impossible 39 0.16 0.68 0.16 1.0 polycrystal X 40 0.16 0.68 0.16 1.0 polycrystal X

[0077] 6 TABLE 6 Position Faraday Cut-off Crucible of Composition rotation wavelength Practically No. sample Hg Cd Mn Te (deg/cm Oe) (nm) usable or not 2 10 0.15 0.69 0.16 1.0 0.058 930 X 11 0.16 0.68 0.16 1.0 0.060 940 ◯ 20 0.16 0.68 0.16 1.0 0.060 940 ◯ 30 0.16 0.68 0.16 1.0 0.060 940 ◯ 35 0.16 0.68 0.16 1.0 0.060 940 ◯ 36 0.25 0.61 0.14 1.0 measurement X impossible 3 20 0.16 0.68 0.16 1.0 0.060 940 ◯ 4 20 0.16 0.68 0.16 1.0 0.060 940 ◯ 5 20 0.16 0.68 0.16 1.0 0.060 940 ◯ 6 20 0.16 0.68 0.16 1.0 0.060 940 ◯ 7 20 0.16 0.68 0.16 1.0 0.060 940 ◯ 8 20 0.16 0.68 0.16 1.0 0.060 940 ◯ 9 20 0.16 0.68 0.16 1.0 0.060 940 ◯ 10  20 0.16 0.68 0.16 1.0 0.060 940 ◯

[0078] In Table 5, the results of the crucible with numerical number 1 were presented. The wording “the position of the wafer” means the cut off position of each wafer when cutting out the wafer upward from the seed crystal 18 in turn. As the number of the position of the wafer is small, the position of the cut off wafer is nearby the seed crystal. As the number is large, the position is far from the seed crystal. Since the positions of cut out samples of the each wafer were symmetric each other, only one sample per one wafer was examined in principle. In this point, the wording “└20-1┘˜└20-4┘denotes the four samples in the wafer 20.

[0079] As realizing the above-mentioned, since in one growing crystal, the 10 lower part's samples were the changing area of their composition and the 5 upper part's samples were the melted area, they could not be employed as an optical isolator with 980 nm. Moreover as shown in FIGS. 5 and 6, the 100 midst samples have uniform composition in the every ten crystals. Thus it is confirmed that 1000 samples having uniform composition are obtained at the same time.

[0080] Comparative Example B

[0081] A single crystal was grown as in the Comparative Example A. As a crucible and a seal up-member, a container made of quartz glass having the inner diameter with 10 mm, the length with 200 mm, and the thickness with 3 mm was employed. The sources with 75g were put into the container and seal up in vacuum. The lower part 20 mm of the container was formed in tapered shape and an seed crystal having the diameter with 3 mm and the length with 30 mm was prepared under the tapered part, thereafter the sources were melted to grow a single crystal as in the Example A. The single crystal was grown under the 30 atm of Ar gas by using a THM growing furnace having a pressurizing container with the pressure-resistance of 100 atin. The employed heating system has a melt-producing part having the inner diameter with 20 mm and the length with 15 mm, an annealing part and a pre-heating part having the inner diameter with 30 mm and the length with 50 mm respectively. The single crystal was grown for 20 days at the growing velocity with 7 mm/day.

[0082] Accordingly the single crystal was formed in the diameter with 10 mm and the length 140 mm. The single crystal was cut off in the transverse direction thereof to obtain 35 wafers having the thickness with 3.5 mm and the diameter with 10 mm. The measured results as in the Example A were listed in Table 7 and 8. 7 TABLE 7 Position Faraday Cut-off Wafer of Composition rotation wavelength Practically No. sample Hg Cd Mn Te (deg/cm Oe) (nm) usable or not 1 a 0.10 0.73 0.17 1.0 0.045 890 X b 0.08 0.74 0.18 1.0 0.042 880 X 3 a 0.12 0.71 0.17 1.0 0.048 900 X b 0.10 0.73 0.17 1.0 0.045 890 X 5 a 0.13 0.70 0.17 1.0 0.052 910 X b 0.10 0.73 0.17 1.0 0.045 890 X 7 a 0.14 0.70 0.16 1.0 0.056 920 &Dgr; b 0.12 0.71 0.17 1.0 0.048 900 X 9 a 0.15 0.69 0.16 1.0 0.058 930 &Dgr; b 0.12 0.71 0.17 1.0 0.048 900 X 10  a 0.16 0.68 0.16 1.0 0.060 940 ◯ b 0.13 0.70 0.17 1.0 0.052 910 X 15  a 0.16 0.68 0.16 1.0 0.060 940 ◯ b 0.13 0.70 0.17 1.0 0.052 910 X 20  a 0.16 0.68 0.16 1.0 0.060 940 ◯ b 0.13 0.70 0.17 1.0 0.052 910 X

[0083] 8 TABLE 8 Position Faraday Cut-off Wafer of Composition rotation wavelength Practically No. sample Hg Cd Mn Te (deg/cm Oe) (nm) usable or not 25 a 0.16 0.68 0.16 1.0 0.060 940 ◯ b 0.13 0.70 0.17 1.0 0.052 910 X 29 a 0.16 0.68 0.16 1.0 0.060 940 ◯ b 0.13 0.70 0.17 1.0 0.052 910 X 30 a 0.17 0.67 0.16 1.0 0.062 950 X b 0.14 0.70 0.16 1.0 0.056 920 &Dgr; 31 a 0.19 0.66 0.15 1.0 0.060 970 X b 0.17 0.67 0.16 1.0 0.062 950 X 33 a 0.30 0.57 0.13 1.0 measurement X impossible b 0.30 0.57 0.13 1.0 measurement X impossible 35 a 0.48 0.57 0.13 1.0 measurement X impossible b 0.48 0.42 0.10 1.0 measurement X impossible

[0084] In Table 7 and 8, the wafer number denotes the first, second, third, through thirtieth wafer from the bottom of the sample. The position of the sample denoted the each position as shown in FIG. 5(b). It is realized that the area of a desired composition is the one around the thickness with 6 mm and the length with 80 mm nearby the center of the wafer. That is, in this growing method, only 80 elements of a desired composition having the diameter with 2.5 mm and the length with 3.5 mm were obtained.

[0085] Example C

[0086] This invention is adaptable for manufacturing a plate-like or a board-like single crystal. In this case, a container to grow a single crystal is required to have a shape of like board. In particular, the container has a crucible and a seal up-member to accommodate the crucible, and the crucible has a board like-part extending upward and downward thereof and a enlarged part formed above the board like-part.

[0087] The thus obtained plate-like or board-like single crystals can be utilized for the mass-production of Faraday elements with polarizer elements. That is, a number of chips can be produced by using such plate-like or board-like single crystals as Faraday elements, bonding plate-like polarizers such as rutile or polar cor to surfaces of the Faraday elements to obtain joined bodies, and cutting and grinding the joined bodies and finally obtain the cut pieces.

[0088] Referring to FIGS. 6(a) and (b), a further preferred embodiment will be described, wherein in FIGS. 6(a) and 6(b) the same reference numerals are given to the same constituent parts as in FIGS. 4(a) and 4(b), and their explanation is omitted. A container 33 includes a crucible 36 and a sealing member 35 to seal the container. The crucible 36 includes an enlarged part 36a, a plate-like part 36b, and a connecting part 36c between them. The sealing member 35 includes an enlarged part 35a, a plate-like part 35b, and a connecting part 35c between them. The reference numeral 36d denotes an opening of the crucible 36.

[0089] From the viewpoint of making the composition of an obtained single crystal more uniform, the thickness of the inner space of the plate like-part of the crucible is preferably 5 mm or less, more preferably 3 mm or less. Although the lower limit of thickness is not particularly limited, it is required to be at least not less than the thickness of a final product. From the viewpoint of maltng the handling of the single crystal easy, it is preferably 2 mm or more. Although the width of the inner space of the plate-like part of the crucible is not limited, it may be set to be 10 to 80 mm, for example.

[0090] According to the above-mentioned method explained in referring to FIG. 1 to FIG. 4, a single crystal having a composition of Hg-Cd-Mn-Te was grown as an optical material by using the container shown in FIG. 6(a) and (b). Cd, Mn, an Hg-Te and Cd-Te were employed as a powdery starting material 17. A plate-like Cd-Te crystal having a (111) crystalline orientation (thickness: 4 mm, width: 15 mm, length: 30 mm) was used as a seed crystal. The starting material, 400 g, was formulated to give a formulated composition of (Hg0.16Cd0.68Mn0.16)Te. The sealing member 15 was formed of quartz glass in a thickness of 2 mm. The thickness, the width and the length of the inner space of the plate-like part 36b were 3 mm, 15 mm and 12 mm, respectively. The thickness, the width and the length of the inner space of the enlarged part 36a were 5 mm, 15 mm and 30 mm, respectively. The crucible was formed of 1 mm thick p-B N. After putting the seed crystal into the container, 40 g of the powdery starting material was charged into the crucible 36, the crucible was placed in the sealing member, and the sealing member was sealed.

[0091] The each container 33 was formed of 10 seal up-members to obtain a polycrystal as in Example A. Consequently the each container 33 was taken out and prepared in the manufacturing equipment of FIGS. 1 and 2. In this case, the inner space of the melt-producing part in the thermal treating equipment was formed in the thickness with 15 mm, the width with 30 mm and the length with 10 mm. The length of the pre-heating part and the annealing part was 50 mm. The thermal equipment was also formed of a plate like-exothermic body made of metal, alloy or ceramic material. The ends of the each container 33 were fixed with fixing axes.

[0092] As mentioned above, ten containers 33 were fixed at given places, and the temperature was raised at 50° C./hour under normal pressure by using heaters. The position of the melt-producing part was aligned with the upper end of the seed crystal 38, and the melt-producing part was held at 1050° C. The temperature of each of the preheating part and the annealing part was held at 800° C. At this time, the temperature gradient between tie preheating part and the melt-producing part and that between the annealing part and the melt-producing part were both 65° C./cm. Holding the above condition, the heaters were all simultaneously moved at 10 mm/day, while the temperature of the melt-producing part was fell down to 950° C. at 50° C./day. When its temperature reached 950° C. in 48 hours, the temperature was kept as it was, and the heaters were continuously moved for 9 days. After growing, the melt-producing part was cooled at 50° C./hour, and ten sealing member were removed.

[0093] Each crucible was taken out of the corresponding sealing member removed, and grown crystals were cut out in a length of 12 mm out starting from above the seed crystal 38 to obtain nine samples. Each sample was cut to have a vertical size of 12 mm, a lateral size of 12 mm, and polished at the opposite surfaces to give a thickness of 3.5 mm. Ninety samples were totally formed of totally 10 crystals. The composition and optical characteristics, i.e., Faraday rotation angle and cut off wavelength in light absorption were examined with respect to them. Results are given in Tables 9 and 10. 9 TABLE 9 Position Faraday Cut-off Crucible of Composition rotation wavelength Practically No. sample Hg Cd Mn Te (deg/cm Oe) (nm) usable or not 1 1a 0.08 0.74 0.18 1.0 0.042 880 X 1b 0.10 0.73 0.17 1.0 0.045 890 X 1c 0.12 0.71 0.17 1.0 0.048 900 X 2a 0.14 0.70 0.16 1.0 0.056 920 &Dgr; 2b 0.15 0.69 0.16 1.0 0.058 930 &Dgr; 2c 0.16 0.68 0.16 1.0 0.060 940 ◯ 3a 0.16 0.68 0.16 1.0 0.060 940 ◯ 3b 0.16 0.68 0.16 1.0 0.060 940 ◯ 3c 0.16 0.68 0.16 1.0 0.060 940 ◯ 3d 0.16 0.68 0.16 1.0 0.060 940 ◯ 3e 0.16 0.68 0.16 1.0 0.060 940 ◯ 3f 0.16 0.68 0.16 1.0 0.060 940 ◯ 3g 0.16 0.68 0.16 1.0 0.060 940 ◯ 4b 0.16 0.68 0.16 1.0 0.060 940 ◯ 5b 0.16 0.68 0.16 1.0 0.060 940 ◯ 6b 0.16 0.68 0.16 1.0 0.060 940 ◯ 7b 0.16 0.68 0.16 1.0 0.060 940 ◯ 8a 0.16 0.68 0.16 1.0 0.060 940 ◯ 8b 0.16 0.68 0.16 1.0 0.060 940 ◯ 8c 0.16 0.68 0.16 1.0 0.060 940 ◯ 8d 0.16 0.68 0.16 1.0 0.060 940 ◯ 8e 0.16 0.68 0.16 1.0 0.060 940 ◯ 8f 0.16 0.68 0.16 1.0 0.060 940 ◯ 8g 0.16 0.68 0.16 1.0 0.060 940 ◯ 9a 0.25 0.61 0.14 1.0 measurement X impossible 9b 0.48 0.42 0.10 1.0 measurement X impossible 9c 0.30 0.57 0.13 1.0 measurement X impossible

[0094] 10 TABLE 10 Position Faraday Cut-off Crucible of Composition rotation wavelength Practically No. sample Hg Cd Mn Te (deg/cm Oe) (nm) usable or not 2 2b 0.15 0.69 0.16 1.0 0.058 930 X 3b 0.16 0.68 0.16 1.0 0.060 940 ◯ 4b 0.16 0.68 0.16 1.0 0.060 940 ◯ 5b 0.16 0.68 0.16 1.0 0.060 940 ◯ 6b 0.16 0.68 0.16 1.0 0.060 940 ◯ 7b 0.16 0.68 0.16 1.0 0.060 940 ◯ 8b 0.16 0.68 0.16 1.0 0.060 940 ◯ 9b 0.48 0.42 0.10 1.0 measurement impossible 3 5b 0.16 0.68 0.16 1.0 0.060 940 ◯ 4 5b 0.16 0.68 0.16 1.0 0.060 940 ◯ 5 5b 0.16 0.68 0.16 1.0 0.060 940 ◯ 6 5b 0.16 0.68 0.16 1.0 0.060 940 ◯ 7 5b 0.16 0.68 0.16 1.0 0.060 940 ◯ 8 5b 0.16 0.68 0.16 1.0 0.060 940 ◯ 9 5b 0.16 0.68 0.16 1.0 0.060 940 ◯ 10  5b 0.16 0.68 0.16 1.0 0.060 940 ◯

[0095] In Table 9 are shown results on No. 1 among ten crucibles. The wording “Position of sample” means the position of each sample in a case where samples were cut out successively upwardly in order starting from above the seed crystal 38 as shown in FIG. 7(a). The sample immediately above the seed crystal 38 is denoted by “1”, and that immediately under the polycrystal 22 is denoted by “9”. As shown in FIG. 7(b), the composition, Faraday rotation angle and cut-off wavelength in light absorption were examined with respect to each sample at points “a” to “g”. The positions “a” to “g” were shown in the sample positions.

[0096] As seen in the above, since in one grown crystal, the lower two samples were in a composition-changing area, and the upper one sample was in a portion 40 of the melt. As shown in Tables 9 and 10, the midst six samples had a uniform composition with respect to each of ten samples. Twenty five optical isolator elements having a vertical size of 2 mm and a lateral size of 2 mm were obtained from one usable plate-like sample after cutting.

[0097] As above mentioned, according to this invention, in the single crystal-manufacturing equipment in which the single crystal is grown by thermal treating the starting material filled in the container, the compositional segregation, the generation of different phase, and deviation in the crystal orientation in the single crystal are prevented, so that the characters of the single crystal are developed and stabilized in addition to be capable of mass-producing single crystals.

Claims

1. An equipment for producing a single crystal in each of plural containers by thermally treating a raw material for the single crystal each charged in each of the container, comprising heaters provided corresponding to each of the containers, an elevator to move each of the containers upward and downward relatively to the respective one of the heaters, and a connecting member to connect at least one of the container and the heater of each of plural sets of the containers and the heaters mechanically to the elevator, wherein each container is moved vertically relatively to the respective one of the heaters by driving the elevator and passed through an area of thermal treatment formed by the heater to continuously form a melt in the raw material inside the container, and the single crystal is continuously produced in the container by solidifying the melt.

2. The single crystal-producing equipment as claimed in

claim 1, wherein each of the heaters comprises a melt-forming part to produce the melt, a preheating part formed above the melt-producing part, and an annealing part below the melt-producing part.

3. The single crystal-producing equipment as claimed in

claim 1 or
2, wherein the each of the heaters has a configuration to be capable of accommodating and surrounding the respective one of the containers.

4. The single crystal-producing equipment as claimed in

claim 1 or
2, wherein each of the containers comprises a crucible filled with the starting material and a sealing member to accommodate and seal the crucible.

5. The single crystal-producing equipment as claimed in

claim 1 or
2, wherein the inner diameter of an area of the container to grow the single crystal is 7 mm and below.

6. The single crystal-producing equipment as claimed in

claim 1 or
2, wherein each of the containers comprises a crucible filled with the starting material and a sealing member to accommodate and seal the crucible, and each of the crucibles comprises a tubular part extending upward and downward and an enlarged part at an upper side of the tubular part.

7. The single crystal-producing equipment as claimed in

claim 1 or
2, wherein each of the containers comprises a crucible filled with the starting material and a sealing member to accommodate and seal the crucible, each of the crucibles comprises a tubular part extending upward and downward and an enlarged part at an upper side of the tubular part, and the interior diameter of the tubular part is 7 mm and below.

8. The single crystal-producing equipment as claimed in

claim 1 or
2, wherein each of the containers comprises a crucible filled with the starting material and a sealing member to accommodate and seal the crucible, and each of the crucibles comprises a plate-like part vertically extending and an enlarged part at an upper side of the plate-like part.

9. The single crystal-producing equipment as claimed in

claim 1 or
2, wherein each of the containers comprises a crucible filled with the starting material and a sealing member to accommodate and seal the crucible, each of the crucibles comprises a plate-like part vertically extending and an enlarged part at an upper side of the plate-like part, and an the thickness of an interior space of the plate-like part is 2 mm to 5 mm.

10. A method for producing a single crystal in each of plural containers by thermal treating the each container filled up with sources of the single crystal, comprising each thermal treating equipment corresponding to the each container, an elevating drive equipment to move the each container upward and downward relatively to the each thermal treating equipment and connecting members to connect at least one of the plural containers and the plural the thermal treating equipment mechanically to the elevating drive equipment, wherein the each container is moved upward and downward relatively to the each thermal treating equipment by driving the elevating driving equipment and passed through an area of thermal treatment formed by the thermal treating equipment to generate melting zones in the sources of the container in successive, and the single crystal was generated in the container in successive by making the melting zones solid.

11. The single crystal-producing method as claimed in

claim 10, wherein each of the containers comprises a crucible charged with the starting material and a sealing member to accommodate and seal the crucible.

12. The single crystal-producing method as claimed in

claim 11, wherein a seed crystal for the single crystal is accommodated in a lowermost portion of the crucible and the starting material is charged onto the seed crystal.

13. The single crystal-producing method as claimed in

claim 11 or
12, wherein the crucible comprises a tubular part vertically extending and an enlarged part at an upper side of the tubular part, the tubular part and the enlarged part are filled with the starting material and the single crystal is produced in at least the tubular part.

14. The single crystal-producing method as claimed in

claim 11 or
12, wherein the crucible comprises a plate-like part extending vertically and an enlarged part at an upper side of the plate-like part, the plate-like part and the enlarged part are filled with the starting material, and the single crystal is produced in at least the plate-like part.

15. The single crystal-producing method as claimed in

claim 11 or
12, wherein the crucible comprises a tubular part vertically extending and an enlarged part at an upper side of the tubular part, the tubular part and the enlarged part are filled with the starting material, and the single crystal is produced in the tubular part and the enlarged part.

16. The single crystal-producing method as claimed in

claim 11 or
12, wherein the crucible comprises a plate-like part extending vertically and an enlarged part at an upper side of the plate-like part, the plate-like part and the enlarged part are filled with the starting material, and the single crystal is produced in the plate-like part and the enlarged part.

17. The single crystal-producing method as claimed in

claim 11 or
12, wherein The single crystal-producing method as claimed in
claim 11 or
12, wherein the crucible comprises a tubular part vertically extending and an enlarged part at an upper side of the tubular part, the tubular part and the enlarged part are filled with the starting material and the single crystal is produced in at least the tubular part, and a column-like body is obtained by cutting out the tubular part of the crucible, said column-like body comprising the tubular part of the crucible and a part of the single crystal thus cut out.

18. The single crystal-producing method as claimed in

claim 11 or
12, wherein the crucible comprises a plate-like part extending vertically and an enlarged part at an upper side of the plate-like part, the plate-like part and the enlarged part are filled with the starting material, and the single crystal is produced in at least the plate-like part, and a column-like body is obtained by cutting out the tubular part of the crucible, said column-like body comprising the tubular part of the crucible and a part of the single crystal thus cut out.

19. The single crystal-producing method as claimed in any one of

claims 10 to
12, wherein the thermal treatment is carried out under non-pressurized condition.

20. The single crystal-producing method as claimed in any one of

claims 10 to
12, wherein the single crystal has a composition of Hg-Cd-Mn-Te, and an Hg-Te alloy and a Cd-Te alloy are employed as the starting material for the single crystal.
Patent History
Publication number: 20010020441
Type: Application
Filed: Apr 19, 2001
Publication Date: Sep 13, 2001
Applicant: NGK Insulators, Ltd.
Inventors: Ryuichi Ohuchi (Nagoya), Minoru Imaeda (Nagoya)
Application Number: 09838409
Classifications
Current U.S. Class: Apparatus (117/200)
International Classification: C30B001/00;