Composition and method for reducing serum cholesterol levels

A composition and method for reducing serum cholesterol in humans and animals is provided. The method comprises administering phytosterol and policosanol which together produce a synergistic effect in lowering serum cholesterol levels. Preferably the administered composition includes about 3.2:1 parts by weight of phytosterol and policosanol.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

[0001] This application is a continuation of application Ser. No. 09/395,524 filed on Sep. 14, 1999.

FIELD OF THE INVENTION

[0002] The present invention relates generally to compositions and methods for reducing serum cholesterol levels and, more particularly, to a composition and method for lowering serum cholesterol by administering policosanols and phytosterols.

BACKGROUND OF THE INVENTION

[0003] Elevated serum cholesterol levels (>200 mg/dL) have been indicated as a major risk factor for heart disease, the leading cause of death among Americans. As a result, experts have recommended that those individuals at high risk decrease serum cholesterol levels through dietary changes, a program of physical exercise, and lifestyle changes. It is recommended that the intake of saturated fat and dietary cholesterol be strictly limited and that soluble fiber consumption be increased. Strictly limiting the intake of saturated fat and cholesterol does not, itself, present a risk to proper health and nutrition. Even where saturated fat and cholesterol are severely restricted from the diet, the liver remains able to synthesize sufficient quantities of cholesterol to perform necessary bodily functions.

[0004] More recently, experts have begun to examine the individual components of the lipid profile, in addition to the total cholesterol level (TC). While an elevated TC is a risk factor, the levels of the various forms of cholesterol which make up TC may also be risk factors. Elevated low-density lipoprotein (LDL) is a cause for concern, as these loosely packed lipoproteins are more likely to lodge within the cardiovascular system leading to the formation of plaque. Low levels of high-density lipoproteins (HDL) are an additional risk factor, as they serve to sweep artery clogging cholesterol from the blood stream. A better indication of risk appears to be the ratio of TC:HDL.

[0005] A number of nutritional factors have been shown to improve serum cholesterol levels. For example, the use of phytosterols has been well documented in human clinical trials and in animal studies to lower serum cholesterol levels. This cholesterol lowering effect has been attributed to interference with the absorption of dietary cholesterol. Phytosterols, being structurally similar to cholesterol, competitively bind with cholesterol sterol receptor sites, thus preventing cholesterol uptake. Unlike their cholesterol counterparts, phytosterols are very poorly absorbed, and some are not absorbed at all. Therefore, phytosterols do not contribute to an increase in serum cholesterol levels. In addition to competing for receptor sites, phytosterols also compete for the enzyme cholesterol esterase. This enzyme is required by cholesterol for its breakdown to components which may be absorbed through the microvilli which line the wall of the small intestine. Thus, phytosterols also impede the enzymatic breakdown and intestinal absorption of cholesterol, which further reduces serum cholesterol levels.

[0006] Plant derived long-chained aliphatic alcohols have also been documented to reduce serum cholesterol levels in experimental models, healthy humans and in type II hypercholesterolemic patients. These aliphatic alcohols, collectively known as policosanol, have been employed in the treatment of elevated serum cholesterol levels in only the past five years, but policosanol has shown much promise, as reported in a number of published human clinical trials. The mechanism of action has not yet been elucidated, but policosanol's effectiveness is attributed to its influence on the bio-synthesis of cholesterol within the liver. This accounts for the ability of policosanol not only to decrease total cholesterol, but also to decrease LDL serum levels and increase HDL levels.

SUMMARY OF THE INVENTION

[0007] The present invention provides a composition for reducing serum cholesterol levels in humans and animals, and a method for reducing serum cholesterol levels in humans and animals by administering the composition. The composition comprises from about 5% to about 75% by weight of phytosterol, and from about 1% to about 60% by weight of policosanol. The composition further comprises from 0% to about 65% by weight of pharmaceutically acceptable formulation aids, such as diluents, stabilizers, binders, buffers, lubricants, coating agents, preservatives, emulsifiers and suspension agents.

[0008] In a preferred embodiment, the composition comprises from about 10% to about 60% by weight of phytosterol, and from about 3% to about 46% by weight of policosanol. In the most preferred embodiment of the invention, the composition comprises about 3.2:1 parts by weight of phytosterol and policosanol.

DETAILED DESCRIPTION OF THE INVENTION

[0009] As noted previously, policosanol is a mixture of high-molecular weight aliphatic alcohols. These alcohols occur naturally in wax form and are characterized by fatty alcohol chains ranging from 20 to 39 carbon atoms in length. The major component of policosanol are the aliphatic alcohols octacosanol and triacontanol. Policosanol is isolated from a number of different plant sources, including sugar cane wax and rice bran wax. The policosanol used in the preferred embodiment of the invention is obtained from rice bran wax and has the formulation set forth below in Table I. This material is sold under the name “Rice Bran Wax” and is available from Traco Labs, Inc. It should be understood, however, that the invention is not limited in this regard and that policosanol commonly available from other naturally occurring sources may be utilized. 1 TABLE I Rice Bran Wax typical long-chain aliphatic alcohol profile: Carbon Fatty Alcohol Composition (%) C22OH Docosanol (Behenyl Alcohol) 0.36 C24OH Tetracosanol (Lignoceryl Alcohol) 3.21 C26OH Hexacosanol (Cerotyl Alcohol) 2.93 C28OH Octacosanol (Montanyl Alcohol) 5.59 C30OH Triacontanol (Melissyl Alcohol) 8.35 C32OH Dotriacontanol 4.64 C34OH Tetratriacontanol 2.22 C36OH Hexatriacontanol  .50 Total policosanols 23-33%

[0010] Phytosterols are also mixtures of long-chained aliphatic alcohols in a wax form. They are naturally occurring in many common vegetable food products. The particular phytosterol used in the preferred embodiment of the invention is derived from vegetable oil and has the formulation set forth in Table II. This material is sold under the trademark “CHOLESTATIN” and is available from Traco Labs, Inc. Again, however, it should be understood that the invention is not limited to this particular phytosterol product, and that any number of other commonly available phytosterols can be used. 2 TABLE II Phytosterol composition: Total sterols 88% Min. Assay Specification B-Sitosterol 43% Min. campesterol 25% Min. stigmasterol 15% Min.

[0011] As noted previously, phytosterol and policosanol lower serum cholesterol links by two independent and unrelated mechanisms of action. However, both compounds together are expected to have a synergistic effect on lowering serum cholesterol. As previously mentioned, phytosterols impede the enzymatic breakdown and intestinal absorption of cholesterol, which reduces serum cholesterol levels. Policosanol acts directly on the cholesterol synthesis pathway itself, thereby inhibiting the bio-synthesis of cholesterol from saturated fat. However, both compounds together are expected to have a synergistic effect on lowering serum cholesterol levels. Thus, the combination of both phytosterol and policosanol into a single composition is expected to provide a more effective treatment for elevated serum cholesterol than would be expected from the additive effect of both components.

[0012] Examples of compositions made according to the invention is set forth below:

EXAMPLE 1

[0013] 3 tablet formula: ingredient amt/cap function “CHOLESTATIN” (Min. 88% phytosterols) 250 mg active “Rice Bran Wax” (23-33% policosanols) 250 mg active Calcium phosphate 261.7 mg base Cellulose 49.4 mg tablet coating agent Stearic acid 23.8 mg lubricant Magnesium stearate 6.8 mg lubricant Silicon dioxide 9.4 mg diluent

EXAMPLE 2

[0014] 4 Soft gelatin capsule formulation: ingredient amt/cag function “CHOLESTATIN” (Min. 88% 250 mg active phytosterols) “Rice Bran Wax” (23-33% policosanols) 250 mg active Medium Chain Triglycerides 700 mg diluent/emulssifying suspending agent

[0015] Previous clinical and toxicological testing of policosanol and phytosterol has shown that the tolerance of both components is good. Significantly larger doses of both waxes are readily tolerated. Occasional GI irritation might be expected at extremely high doses, far greater than the normal dosage range. In the event such irritation should occur, it would be expected to be minimal, and would not pose any risk to health.

[0016] Toxicology performed on the 50% phytosterol/50% rice bran wax composition has proven that the composition is non-toxic at an oral dose of 5000 mg/kg of body weight in Sprague-Dawley rats. Accordingly, oral dosages in humans of up to a maximum dosage of 1500 mg administered three times per day is considered appropriate.

[0017] While preferred embodiments have been shown and described, various modifications and substitutions may be made without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of example and not by limitation.

Claims

1. A composition for reducing serum cholesterol levels in humans and animals, said composition comprising: from about 5% to about 75% by weight of phytosterol, from about 1% to about 60% by weight of policosanol, and from 0% to about 65% by weight of pharmaceutically acceptable formulation aids.

2. The composition of

claim 1, wherein the composition comprises from about 10% to about 60% by weight of phytosterol, and from about 3% to about 46% by weight of policosanol.

3. The composition of

claim 1, wherein the composition comprises about 3.2:1 parts by weight of phytosterol and policosanol.

4. The composition of

claim 1, wherein the formulation aids comprise diluents, stabilizers, binders, buffers, lubricants, coating agents, preservatives, emulsifiers, and suspension agents.

5. A method for reducing serum cholesterol levels in humans and animals by administering to at least one of a human and an animal from about 5% to about 75% by weight of phytosterol, from about 1% to about 60% by weight of policosanol, and from 0% to about 65% by weight of pharmaceutically acceptable formulation aids.

6. The method of

claim 5, further comprising administering a mixture including from about 10% to about 60% by weight of phytosterol, and from about 3% to about 46% by weight of policosanol.

7. The method of

claim 5, further comprising administering about 3.2:1 parts by weight of phytosterol and policosanol.

8. The method of

claim 5, further comprising administering formulation aids selected from the group including diluents, stabilizers, binders, buffers, lubricants, coating agents, preservatives, emulsifiers and suspension agents.
Patent History
Publication number: 20010034338
Type: Application
Filed: Feb 20, 2001
Publication Date: Oct 25, 2001
Inventor: Harlan Lee Sorkin (Champaign, IL)
Application Number: 09789150
Classifications
Current U.S. Class: With Additional Active Ingredient (514/171); Alicyclic Ring Containing (514/729)
International Classification: A61K031/575; A61K031/045;