A CIRCUIT DEVICE FOR CANCELLING OUT SPURIOUS PULSES IN A SWITCHED CAPACITANCE LOW-PASS FILTER, AND A FILTER INCORPORATING IT

A switched capacitor low-pass filter incorporates a plurality of integrator stages cascade connected together. The filter includes at least one stage that includes a circuit device for cancelling out glitch pulses. This device is a deglitching circuit provided within the filter. Preferably, each stage in the filter is formed of a deglitching device which acts as a smoothing integrator.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

[0001] This invention relates to a circuit device for cancelling out glitch pulses in a switched capacitor low-pass filter.

[0002] The invention also relates to a switched capacitor low-pass filter of a type which incorporates a cascade of integrator stages connected together and to the filter output, which output is fed back to the input of each stage.

BACKGROUND OF THE INVENTION

[0003] As is well known in this specific technical field, analog switched capacitor filters are at present extensively used for many audio applications.

[0004] These filters are more compact and accurate than the equally well known continuous time filters.

[0005] FIG. 1 herein illustrates schematically an embodiment of a switched capacitor low-pass filter of the fourth order. This filter is used in a D/A (Digital-to-Analog) converter effective to re-construct an audio signal, e.g., for sigma/delta applications.

[0006] The filter shown in FIG. 1 is of the IFLF type and comprises a cascade of integrator stages connected together. In addition, the filter output is feedback connected to the input of each stage.

[0007] With the filter being of the fourth order, there will be four integrator stages connected in series.

[0008] More particularly, each integrator includes an operational amplifier having two inputs and two outputs, with each output being feedback connected to a corresponding input through an integration capacitor.

[0009] Additional sampling capacitors are provided between each input and a corresponding voltage reference. Also, a pair of switching capacitors are placed between the filter output and each integrator stage.

[0010] Within the integrator, plural microswitches are arranged to switch the connections between the various capacitors and the operational amplifier.

[0011] During a first step, the switching capacitors placed at the input of each integrator stage are sampling the voltage supplied from the previous stage. During a subsequent step, these switching capacitors will transfer their stored charge to the integration capacitor which is feedback connected between outputs and inputs of the operational amplifier.

[0012] The output voltage from each operational amplifier is held “frozen” throughout the duration of the first or storage step, and will only change during the second or charge transfer step.

[0013] The succession of sampling and charge transfer steps result in a filtered signal being output which obeys the curve plotted in FIG. 2 for an ideal case with the input signal being sinusoidal.

[0014] When a case with real components is considered, however, a perturbed signal is always present at the filter output due to a series of glitch pulses, known as “glitches” in the art, appearing as the microswitches close (Step 2 in FIG. 1). These pulses are repeated at each switching between the first and the second step as shown in FIGS. 3a and 3b, for example.

[0015] This effect is caused by the operational amplifiers of the integrator stages having a finite frequency response.

[0016] Normally, no serious side effects occur while the discrete time mode of operation is maintained. In fact, the switching capacitors would lock the value of the input voltage at the end of the first sampling step, that is, once the pulsive disturbance can be regarded to have been exhausted.

[0017] Where the discrete time filter is, as is often the case in the audio field, interfaced to a continuous time circuit—which usually is another low-pass filter intended for attenuating high-frequency harmonics—then the effects of glitches may become serious.

[0018] In fact, the continuous time low-pass filter would then integrate the whole signal, and the glitch pulses along with it, thereby causing distortions to occur in the output signal.

[0019] To obviate this drawback, the prior art proposes a solution as schematically illustrated in FIG. 4.

[0020] A deglitching device or circuit is placed between the output of the switched capacitor filter and the input of the time continuous filter. This approach is a currently adopted one for commercially available D/A converters of the single-end type, although it can be used for differential applications as well.

[0021] While being in many ways advantageous and substantially achieving its objective, this prior solution cannot meet high performance requirements due to the noise introduced in the output signal.

[0022] The configuration shown in FIG. 4 actually exhibits overall noise which is the sum of the cascaded noise from the switched capacitor filter, the deglitching device, and the time continuous filter.

[0023] In essence, therefore, the signal-to-noise ratio provided by this solution is less than fully satisfactory.

SUMMARY OF THE INVENTION

[0024] An embodiment of this invention provides a circuit device which is effective to cancel out glitch pulses due to non-ideality of the operational amplifiers, at the output of a switched capacitor low-pass filter. This device has such constructional and functional features as to accommodate high signal-to-noise ratios resulting from high-performance filter operation and provides for a low introduction of noise, thereby removing the drawbacks that are besetting prior art approaches.

[0025] The device includes a smoothing integrator stage of the switched capacitor filter together with a deglitching device.

[0026] The features and advantages of the invention will be apparent from the following description of an embodiment thereof, given by way of non limitative example with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] FIG. 1 is a diagrammatic view of a switched capacitor filter according to the prior art.

[0028] FIG. 2 is a schematic plotting of an ideal output signal from the filter of FIG. 1, when the input signal is of a sinusoidal type with high-frequency noise superposed on it.

[0029] FIGS. 3a and 3b show schematically respective voltage-time waveform plottings of the output signal from a real switched capacitor filter beset with glitch pulses (glitches) occurring at each switching.

[0030] FIG. 4 shows diagrammatically a circuit solution as provided by the prior art to obviate the glitch problem.

[0031] FIG. 5 shows diagrammatically a filtering stage as incorporated to a filter according to an embodiment of this invention.

[0032] FIG. 6 shows diagrammatically a switched capacitor filter formed of a cascade of stages according to an embodiment of the invention.

[0033] FIG. 7 shows comparative plottings of the outputs from a filter according FIG. 6 and a conventional design filter.

DETAILED DESCRIPTION

[0034] With reference to the drawing figures, generally and schematically shown at 1 is a circuit device, such as a deglitching circuit, which can be used, in accordance with an embodiment of this invention, to cancel out glitches in a switched capacitor filter 20 (FIG. 6).

[0035] The device 1 includes an operational amplifier 3 having two inputs and an output.

[0036] A first, non-inverting (+) input of the amplifier 3 is connected to a voltage reference, e.g., a signal ground GND.

[0037] The second, inverting (−) input of the amplifier 3 is to receive an input signal from an input terminal IN, via a first switched capacitor C1.

[0038] A first switch A1 is placed between the input terminal IN and one end of the first capacitor C1, and a second switch A2 is placed between the other end of the capacitor C1 and the inverting (−) input of the operational amplifier 3.

[0039] In addition, a third switch B1 is provided between the inverting (−) input of the amplifier 3 and the signal ground GND.

[0040] Advantageously, a second capacitor C2 is connected in a feedback connection between the output OUT and the inverting (−) input of the operational amplifier 3.

[0041] Also, a fourth switch B2 is connected between the output OUT of the amplifier 3 and the first end of the first capacitor C1, downstream of the first switch A1.

[0042] All the switches incorporated to the device 1 can be in the form of controlled microswitches, such as transistors.

[0043] The first capacitor C1 will sample the signal present at the input terminal IN during a first sampling step.

[0044] During a second successive step, the capacitor C1 is placed in parallel with the second capacitor C2, and the electric charge previously stored in the capacitor C1 during the first step is re-distributed between the two capacitors, C1 and C2. The charge transfer is effected through the external circuit link of the amplifier 3, specifically that including the fourth switch B2.

[0045] Advantageously, therefore, the operational amplifier 3 is not required to supply current during the switching transients between the first and the second step. Accordingly, no glitch voltage pulses will be produced on the signal presented at the output OUT.

[0046] It should be noted that the device 1 represents a low-pass stage which can be used to implement a switched capacitor filter, as shown in FIG. 6.

[0047] Advantageously, the device 1 can, in fact, replace the smoothing integrator representing the final stage of the filter shown in FIG. 1.

[0048] More particularly, assuming a low-frequency gain of unity, the device 1 could also replace each of the integrator stages shown in FIG. 1.

[0049] For example, in a preferred embodiment, all the integrator stages of a switched capacitor low-pass filter are implemented, according to one embodiment of the invention, by the device 1 of FIG. 5.

[0050] For example, as shown in FIG. 6, a fourth-order switched capacitor filter 20 is implemented by a cascade of integrator stages each having an intrinsic glitch-cancelling characteristic. The respective outputs of the filter shown in FIG. 6 are fed back as appropriate to the differential inputs of each integrator stage.

[0051] In essence, the switched capacitor filter 20 is formed of a cascade of deglitching devices, each operated as an integrator and the last operated as a smoothing integrator.

[0052] The filter 20 has a major advantage in that its circuit area requirements are low, as are the power consumption and noise involved.

[0053] FIG. 7 shows comparative plottings of output signals from the filter 20 shown in FIG. 6, and from a conventional type of filter.

[0054] The important benefits in terms of glitch smoothing provided by this invention can be readily appreciated from this graph.

[0055] From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims

1. A circuit device for canceling glitch pulses in a switched capacitor low-pass filter, including a smoothing final integrator stage, the circuit device comprising a deglitching circuit provided within the filter and serving as a smoothing integrator stage.

2. A device according to claim 1, wherein said deglitching circuit comprises an operational amplifier having non-inverting and inverting inputs and an output; the non-inverting input being connected to a voltage reference, and the inverting input receiving an input signal from an input terminal via a first switched capacitor.

3. A device according to claim 2, wherein, provided between said input terminal and one end of the first capacitor is a first switch, and between another end of the first capacitor and the inverting input of the operational amplifier is a second switch.

4. A device according to claim 2, wherein a third switch is provided between the inverting input of the operational amplifier and said voltage reference, and a second capacitor is connected in a feedback connection between the output of the operational amplifier and the inverting input of the amplifier.

5. A device according to claim 4, wherein a fourth switch is connected between the output of the operational amplifier and said one end of the first capacitor, downstream of the first switch.

6. A switched capacitor low-pass filter, comprising a first filter output; and a cascade of integrator stages that are connected together and to the first filter output, with the first filter output being feedback-connected to an input of each integrator stage; wherein one of the integrator stages includes a deglitching circuit provided within the filter to serve as a smoothing integrator stage.

7. A switched capacitor low-pass filter according to claim 6, wherein the deglitching circuit includes:

an amplifier having a first input and a first output; and
a first switched capacitor that couples a first input node to a voltage reference during a first phase and couples the first input to the first output during a second phase.

8. A switched capacitor low-pass filter according to claim 7 wherein the amplifier includes a second input and a second output and the deglitching circuit further includes a second switched capacitor that couples a second input node to the voltage reference during the first phase and couples the second input to the second output during the second phase.

9. A switched capacitor low-pass filter according to claim 7 wherein the deglitching circuit further includes:

a first switch coupling the first input node to the first switched capacitor and having a control terminal responsive to a first control signal;
a second switch coupling the first switched capacitor to the voltage reference and having a control terminal responsive to the first control signal;
a third switch coupling the first switched capacitor to the first input of the amplifier and having a control terminal responsive to a second control signal; and
a fourth switch coupling the first switched capacitor to the first output of the amplifier and having a control terminal responsive to the second control signal.

10. A switched capacitor low-pass filter according to claim 6 wherein the deglitching circuit is includes in a final one of the integrator stages which is directly coupled to the first filter output.

11. A switched capacitor low-pass filter according to claim 6 wherein each of the integrator stages includes its own deglitching circuit.

12. A switched capacitor low-pass filter according to claim 6 wherein the cascade of integrator stages includes four integrator stages.

13. A switched capacitor low-pass filter according to claim 6 wherein each of the integrator stages includes:

an amplifier having a first input and a first output; and
a first switched capacitor that couples a first input node to a voltage reference during a first phase and couples the first input to the first output during a second phase.

14. A switched capacitor low-pass filter according to claim 13 wherein the amplifier of each of the integrator stages includes a second input and a second output and each of the integrator stages further includes a second switched capacitor that couples a second input node to the voltage reference during the first phase and couples the second input to the second output during the second phase.

15. A method of reducing glitches in a switched capacitor filter that includes a first filter output and a final stage amplifier with a first input and a first output coupled to the first filter output, the method comprising:

connecting a first switched capacitor between a first input node and the first input of the amplifier in response to a first control signal; and
connecting the first switched capacitor between the first input and first output of the amplifier in response to a second control signal.

16. The method of claim 15 wherein the amplifier includes a second input and a second output, the method further comprising:

connecting a second switched capacitor between a second input node and the second input of the amplifier in response to the first control signal; and
connecting the second switched capacitor between the second input and second output of the amplifier in response to the second control signal.
Patent History
Publication number: 20020000927
Type: Application
Filed: Jun 25, 1999
Publication Date: Jan 3, 2002
Inventors: MARCO ANGELICI (GALLIATE LOMBARDO), MARCO RONCHI (CAVENAGO BRIANZA)
Application Number: 09340177
Classifications
Current U.S. Class: Using Charge Coupled Devices Or Switched Capacitances (341/150)
International Classification: H03M001/66;