VOLUME REDUCING AGENTS FOR EXPANDED POLYSTYRENE, METHODS AND APPARATUS FOR PROCESSING EXPANDED POLYSTYRENE USING THE SAME

A volume reducing agent for processing polystyrene, containing 65-97 wt % of a first plasticizer having a solubility parameter less than the solubility parameter of the polystyrene; and 3-35 wt % of a second plasticizer having a solubility parameter higher than the solubility parameter of the polystyrene. The volume reducing agent is in liquid state, has a Ferdor solubility parameter close to that of polystyrene to be processed in the mixed state and transfers the resulting materials having reduced volume into gel-type products to be floated and easily separated.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates to a volume reducing agent for expanded polystyrene (EPS), methods and apparatus for processing expanded polystyrene using a volume reducing agent to reduce the volume of EPS known as bulky waste, as well as to recycle used EPS and recover high quality polystyrene.

[0003] 2. Description of the Related Art

[0004] Expanded polystyrene, also known as foamed styrene, has excellent thermal-protective or insulating properties and buffering effects. Expanded polystyrene is used throughout the world for a variety of different purposes including, for example, but not limited to transport packaging boxes for sea foods and shock-absorbing packing materials contained in package for home appliances.

[0005] EPS product is generally bulky, potentially causing disposal problems. For example, burning disposal of EPS generates a substantial amount, interfering with operation of a combustion furnace, and also has the problem of producing harmful gases. An additional problem of EPS having bulky property (or voluminous nature) is that there is a high vehicular transportation cost. Because EPS is normally soluble in some organic compounds such as aromatic hydrocarbons, hydrocarbon halides, etc., a particular disposal plant may be designed which enables waste EPS to be dissolved. However, such a plant must be run on a large scale and there are known potential environmental problems deriving from the resulting liquid product.

[0006] Another potential disposal process uses limonene, which can dissolving EPS. However, limonene has very low ignition point of 48° C. and is toxic and has an irritating odor, all of which are undesirable properties. As a result, limonene is considered an undesirable compound to be used within disposal plant with respect to safety and environmental concerns.

[0007] Due to restricted rules regarding a clean environment in recent years, a recycling process for used EPS or methods of increasing recycling capability have considered a most urgent necessity. In response to this need, the inventors have developed a safe and effective recycle process of EPS as a result of intensive studies to solve the aforementioned problems based on the concept of reducing the volume of EPS, rather than dissolution.

SUMMARY OF INVENTION

[0008] Accordingly, an object of the present invention is to provide a safe and effective method for volume reducing of EPS and to raise recycling capability thereof.

[0009] According to one aspect of the present invention, there is provided a volume reducing agent for processing polystyrene, containing a first plasticizer having a solubility parameter less than the solubility parameter of the polystyrene; and a second plasticizer having a solubility parameter higher than the solubility parameter of the polystyrene, wherein the agent is in liquid state, has the solubility parameter in the mixed state close to that of polystyrene to be processed, and transfers the resulting materials having reduced volume into gel-type products to be floated and easily separated.

[0010] According to another aspect of the present invention, there is provided a method for processing expanded polystyrene comprising the steps of: preparing a volume reducing agent, the volume reducing agent containing a first plasticizer having a solubility parameter less than the solubility parameter of the polystyrene; and a second plasticizer having a solubility parameter higher than the solubility parameter of the polystyrene, wherein the agent in the mixed state is in liquid state, has the solubility parameter close to that of polystyrene to be processed and transfers the resulting materials having reduced volume into gel-type products to be floated and easily separated; dipping in the volume reducing agent an expanded polystyrene which is crushed and is in a status having a specific shape or nonspecific shape to thereby reduce the volume of the expanded polystyrene; and dipping the volume-reduced expanded polystyrene in a neutralization solution to thereby obtain recycled polystyrene material.

[0011] According to still another aspect of the present invention, there is provided an apparatus for processing expanded polystyrene by using a volume reducing agent. The apparatus comprises: a main vessel in which the volume reducing agent is under-filled and pre-crushed expanded polystyrene in shape or shapeless states are permeated into the volume reducing agent; and an entrapping device for soaking the expanded polystyrene into the volume reducing agent and entrapping the expanded polystyrene in a gel type in floating state.

[0012] It is to be understood that both the foregoing general description and following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] A more complete appreciation of the invention, and many of the attendant advantages, thereof, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, and wherein:

[0014] FIG. 1 illustrates a volume-reducing process orderly performed using volume reducing agent in an embodiment according to the present invention;

[0015] FIG. 2 is a plan view showing an apparatus embodiment of the present invention;

[0016] FIG. 3 is a cross-sectional view illustrating the embodiment of an entrapping device used in an embodiment of the present invention;

[0017] FIG. 4 is a cross-sectional view illustrating another embodiment of an entrapping device used in an embodiment of the present invention; and

[0018] FIG. 5 illustrates an apparatus and volume reducing process for reducing volume of EPS and to recycling or recovering pure polystyrene using a volume reducing agent of an embodiment according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0019] In order to accomplish the above captioned object, the present invention involves a volume reducing agent for processing EPS having solubility parameter close to that of polystyrene. The solubility parameter of polystyrene varies from 8.5 to 10.3 (cal/cm3)½ at the room temperature and atmosphere pressure, based on the Ferdor definition. This can be referred to as the Ferdor solubility parameter. The volume reducing agent is prepared by blending a first plasticizer having solubility parameter less than that of polystyrene by 1-3 (cal/cm3)½, that is, having a higher solubility than polystyrene, and a second plasticizer having the solubility parameter higher than that of polystyrene by 1-3 (cal/cm3)½, that is, having lower solubility.

[0020] Also, the present invention relates a method for processing the EPS which is to be re-used, the method comprising permeating (or infiltrating) EPS materials in shape or shapeless states prepared by preliminary crushing treatment into the volume-reducing agent, then soaking the result product into neutralizing solution (or counteragent solution) to obtain the re-usable polystyrene product which can be easily changed into virgin polystyrene.

[0021] Furthermore, the present invention involves an apparatus for processing EPS by using the volume reducing agent. The apparatus includes an under-filled vessel in which the volume-reducing agent is under-filled and pre-crushed or pulverized EPS in shape or shapeless states can be permeated into the volume reducing agent, and a device for entrapping EPS in suspended state the role of which soaks EPS into the volume-reducing agent within the main vessel and reduces the volume of EPS for certain period, then entraps EPS in gel state.

[0022] A preferred embodiment of the present invention will be hereinafter explained with reference to the appended FIG. 1 and FIG. 2, which, however, are not intended to be limiting of the present invention.

[0023] The present inventors took a notice to the characteristics of organic solvent having, though they can not serve to fully dissolve polystyrene based organic materials, the solubility parameter close to the sufficient level to dissolve said organic materials to be loose and promote the volume reduction and the plasticizing reaction of said organic materials, especially EPS. In other words, it was experimentally found that the gelling or plasticizing reaction of polystyrene-based organic materials, despite non-dissolving of the materials, can be accomplished by mixing the first plasticizer of the improved affinity to organic polymers and serving to loosen polymer chains by the penetration of the plasticizer into molecules of polymers and the second plasticizer of the lower affinity to organic polymers and serving to contract and/or coagulate (or condense).

[0024] Accordingly, a volume reducing agent of the present invention has the solubility parameter ranged from 8.3 to 10.3 (cal/cm3)½, close to that of polystyrene, to be applied in a blended state made by blending the first plasticizer having solubility parameter less than that of polystyrene, that is, having higher solubility and the second plasticizer having solubility parameter more than that of polystyrene, that is, having lower solubility.

[0025] The first plasticizer includes but not is limited to dicarbonate diesters such as diethyl adipate, dimethyl adipate, dimethyl glutarate, dibuthyl adipate, dimethyl succinate, di-n-propyl adipate, diisopropyl adipate and the like, and carbonate esters such as ethyl acetate, n-propyl acetate and the like which may be selectively used alone or in admixture thereof. Hydrocarbon based solvents such as benzene, toluene, xylene, decaline, cyclohexane and the like may be used as in combination with alkyl alcohol and isoalkyl alcohol existing in liquid state at normal temperature as the solvents to which polystyrene cannot be dissolved, depending on the composition thereof.

[0026] The second plasticizer used in the present invention includes but is not limited to alkylolamines existing in liquid state at normal temperature without dissolving polystyrene such as one, two and three substituents for nitrogen group of amines. Examples of such amines includes but are not limited to triethanolamine, trimethanolamine, diethanolamine and the like, and solvents consisting of alcohols such as ethylene glycol, diethylene glycol, ethylene glycol monomethylether and the like, and esters such as &ggr;-butyrolactone, ethylene carbonate, dimethyl phthalate and the like may be used alone or in admixture thereof.

[0027] Such prepared volume reducing agent is applied to EPS 1 in coagulated state illustrated in FIG. 1A. The polystyrene 1 contains a large amount of bubbles 2 and polymer ingredient 3, and volume reducing agent 4 applied to polystyrene 1 is penetrated within polystyrene 1 and serves to force polymer ingredient 3 outward and to extend due to the action of the first plasticizer of the volume-reducing agent as shown in FIG. 1B, and simultaneously to contract and condense polymer ingredient 3 by the effect of the second plasticizer of the volume-reducing agent, yielding the collapse of bubbles 2 as shown in FIG. 1C. Finally, EPS 1, after completion of the gelling or plasticizing process, can be reduced in by volume reducing agent 4 as shown in FIG. 1D.

[0028] In addition, as the result of testing different compounds as the first and second plasticizers to be selectively combined together to produce volume reducing agent, it was found that a dicarbonate diester such as dimethyl glutarate (having solubility parameter of 9.75), dimethyl adipate (having solubility parameter of 9.64), dimethyl succinate (having solubility parameter of 9.88) and the like may be most preferably used as the first plasticizer having solubility parameter close to that of polystyrene to be applied (see the following definition).

[0029] <Definition 1>

[0030] 10.1 (cal/cm3)½, 17.5 MPa½for commonly used polystyrene for packing material.

[0031] The solubility parameter of polystyrene actually varies from 8.56-10.3 (cal/cm3)½ or 17.4-20.1 (MPa)½ for different applications due to easy variation of polymer structure.

[0032] Likewise, it was also found that the most efficient compounds as the second plasticizer of the present invention were ethylene glycol (solubility parameter 14.8) and triethanolamine (solubility parameter 15.6). The solubility parameter defined herewith was the value calculated by Ferdors's method and may be slightly changed, based on the adapted parameter values at the condition of temperature and pressure.

[0033] Among different solvents previously described, solvents having the solubility parameter ranging from 8.0 to 10.5 may be used as the first plasticizer. Example of such solvents includes but is not limited to diethyl phthalate(10.0), dimethyl sebacinate (9.48), diethyl sebacinate (9.4), tricresyl phosphate (9.7), epoxin stearate (9.7), butyl oleate (9.5), ethylene glycol diacetate (10.0) and the like. As noted earlier, solvents having the solubility parameter value in the range of 1 to 3 (cal/cm3)½ less than that of polystyrene, for example, from 7.1 to 9.1 (cal/cm3 based on polystyrene having a value of 10.1, may be used as the first plasticizer.

[0034] Likewise, as the second plasticizer, solvents having a solubility parameter value of at least 10.5 such as dimethyl phthalate (10.9), diethylene glycol(12.6), ethylene carbonate(14.7) may be used in the present invention. As noted earlier, solvents having the solubility parameter value in the range of 1 to 3 (cal/cm3)½0 greater than that of polystyrene, for example, from 11.1 to 13.1 (cal/cm3)½ based on polystyrene having a value of 10.1, may be used as the second plasticizer.

[0035] From the result of another test for the above plasticizers, it was understood that the volume reducing agent consisting of the first and second plasticizers enables negative ions, certain forms of tourmaline and vibration of supersonic wave, or ultrasonication, to enhance or promote infiltration and separation of EPS.

[0036] Turning to the drawings, the exemplary embodiment of the method and apparatus for using the volume reducing agent for EPS are explained with reference to the accompanying drawings.

[0037] Referring to FIG. 2, there is shown a processing apparatus 5 includes a main vessel 6, a neutralization vessel 7, a conveyer means 8 and a crusher 9. Within the main vessel bath 6, the volume reducing agent 10 for EPS is filled and pre-crushed or pulverized EPS or EPS in shape or shapeless state 1 are successively added.

[0038] The main vessel 6 is equipped by a rotation device 11 for agitating the agent 10 to accelerate the process. Other than the rotation device 11, the supersonic wave vibrator, or ultrasonicator, can be also used as agitation means. Such vibration means do not only enhance and promote the volume reduction process, but also separate the foreign material out of EPS. It is further preferable to add alternative means such as ion generator, or ionic agent, and tourmaline and the like. The tourmaline may be in particles of less than 30 mm, or in particles of less than 30 &mgr;m. Drain valve 12 attached to the main vessel 6 can be opened to drain and discard impurities such as separated and precipitated ink or soil.

[0039] EPS 1 put into the main vessel 6 is permeated into the agent 10 and gradually reduced in volume. As seen in FIG. 2, EPS 1 provided into the left side of the main vessel 6 is delivered to the right side of the same bath and reduced in volume for a certain time period, thus the resulting volume-reduced EPS 1 passes through and is entrapped by the entrapping device 13.

[0040] The above entrapping device 13 includes a screw feeder and sieve 14 for picking-up EPS 1 reduced in volume which is floating at the right side of the vessel 6, the squeezed and processed EPS 1 being continuously provided to the neutralization vessel 7.

[0041] In the neutralization vessel 7 filled with counter agent 15 (neutralizing solution) processed EPS 1 is infiltrated into the neutralizing solution 15. Such solution, for example, a water solution containing 0.01% chlorine or 0.1% hydrogen peroxide prevents the further promotion of gelling or plasticizing reaction of EPS I already reduced in volume and enables the EPS 1 to be solidified.

[0042] As described above, EPS 1 entered into the vessel 7 passes from the left direction through the right direction of FIG. 2 in a floating state and is solidified, and discharged from the vessel 7 and is then delivered by the conveyor means 8, while being dried out, to the crusher 9. Such crusher 9 breaks up EPS 1 into fine pieces and enables the fine pieces to be provided into the bucket 16. Even though not shown, the crusher 9 may be replaced with compression device to change the process EPS into pellet, cables or sheets.

[0043] Accordingly, finely pieced EPS 1 in the bucket 16 is capable of re-used as a recycled polystyrene product so that the efficient recycling of synthetic resin sources is accomplished by the present invention.

<EXAMPLE 1>

[0044] Referring to FIG. 3, it shows the simplified embodiment of the entrapping device used in the present apparatus.

[0045] The main vessel numbered 6 is filled with the volume reducing agent 10, the numeral 7 being given to the neutralization vessel for underflowing the neutralizing solution. EPS 1 reduced in volume which is floating along the arrow direction in the bath 6 may be picked up by a meshed sieve 17 which intermittently swings in the directions shown by arrow A, and then successively thrown into the vessel 7. The details on the remainder of the configuration of the process apparatus 5 are arranged in the same manner as shown in FIG. 2.

<EXAMPLE 2>

[0046] FIG. 4 shows another modified and more developed embodiment of the entrapping device used in the present apparatus.

[0047] The entrapping device comprises an aspiration device 18 for sucking EPS 1 reduced in volume which is floating along the arrow direction in the bath 6, the device 18 being capable of delivering sucked EPS 1 from the bath 6 to the neutralization vessel 7. The details for other construction parts of the process apparatus 5 are arranged in the same manner as shown in FIG. 2 except where indicated.

[0048] FIG. 5 shows a preferred embodiment of the system for processing EPS and producing higher quality polystyrene from the EPS. Used EPS is usually stained with dirt or has paper or adhesive tape adhering. Such impurities act as an unfavorable factor to lower the quality of EPS reduced in volume, leading to a lower value of final products. Therefore, such impurities may be removed by human labor before processing. Apart from the expenses problem, manual removal has the important disadvantage that the removal of such impurities in used EPS to meet the level of final product to sufficiently be recycled for new EPS is practically impossible. However, with the embodiments of the present invention, it may be possible to remove impurities to the highest level and to reduce the volume of EPS without additional labor costs. This results in the rise of the value of the final product to be recycled as the raw material to make new EPS because of having higher purity and the advantage of reducing the volume of EPS without changing molecular structure of polystyrene.

[0049] Returning to FIG. 5, it is seen that the processing operation is initiated by the placement of used EPS into a hopper 101. If such EPS was heavily contaminated by dirt or the like, it may need to be washed before thrown into the hopper 101.

[0050] A first crusher 102 driven by a motor serves to primarily break the EPS into chunks and to feed them to a second crusher 103, where the pre-treated EPS is crushed into smaller pieces of desired particle size. The first crusher 102 has blades with wider gaps between themselves, bigger outside diameter and lower rotating speed than the second crusher 103, leading to high efficiency of electricity consumption, permitting pulverizing efficiency and uniform torque of the second crusher 103. On the contrary, the second crusher 103, in which the blades have smaller gaps between blades, smaller outer diameter and higher rotating speed than the first crusher 102 does, serves to break up EPS in desirable particle size, depending on the reaction time of the volume reducing agent for EPS. The second crusher 103 may comprise a certain type of cutter or mill positioned. Pulverized pieces from the secondary pulverizing process have about 10 mm in size, though it depends upon the performance of volume reducing agent solution.

[0051] As a rule, pulverized EPS particles are reduced in volume due to transferring from solid floating to gel state by the volume reducing agent solution. To increase the volume reduction rate and to produce the flow rate causing the movement of EPS toward a screw 106 may be achieved by immersing the blades of second crusher 103 into volume reducing agent solution to generate strong whirlpool. Such whirlpool increases the volume-reducing rate, the stream of fluid flows along a path 105, and the floating polystyrene flows into the screw 106 driven by motor 107, is compressed and transported into a chopper 112. In order to increase the reaction rate within this area, vibration of ultrasonic or injection of volume reducing agent solution may be adapted to the present invention. Screw 106 vertically positioned on a main vessel 104 can decrease the solution content, that is, the ratio of the volume reducing agent solution existed in processed EPS of reduced volume, to the maximum level by increasing the pressure at the outlet of the screw 106 much as possible. In case of square shaped main vessel, resistance due to the right-angled flow reduce the flow rate. Such resistance may be minimized by using donut-like main vessel having wider pulverizing area and narrower screw 106 area in order to lower flow resistance of flow produced by blade rotation in minimal.

[0052] To remove impurities, at the same time of reducing volume of EPS solution, the second crusher 103 generates bubbles by means of additives, if required, to agent solution. Through a bubble removal path 108, it is possible to remove dirt including dust and other floating impurities. Such agent solution is circulated by a pump 109 equipped to the main vessel 104 which is streamline-shaped along the path 105, passes through a filter 110, which removes floating materials or water existed in reducing agent solution. Bubble removal path 108 may be of the simple structure and can use paper or cotton textile. Materials of heavier density than the a volume reducing agent solution or separated by ions are collected at the bottom of main vessel 104 to a certain amount, and then drawn off through a valve 111.

[0053] The chopper 112 is for extracting polystyrene only as the flake shape out of the floating jellified EPS by means of specific solvents having the affinity to reducing agent solution. Alternatively, chopper blade 114, driven by motor 113, is to increase the extraction rate of EPS by means of affinity solvent, while the jellified EPS is cut to finer pieces. At the outlet of chopper 112, the mixture composed of fully extracted polystyrene having fine particles, affinity solvent and volume-reducing agent solution is discharged, the polystyrene being filtered by a mesh type conveyor 116 and the rest solution is extracted downward and collected into a mixed solution bath 118. In order to minimize the amount of affinity solvent injected and to reduce the motor load, multiple ports for supplying solvent are arranged between inlet and outlet parts of the chopper 112. It is preferable to reduce the amount of the volume-reducing agent solution remaining on polystyrene filtered by the mesh type conveyor 116 to the lowest level by rising with the solvent. Such used solvent (containing trace of the volume reducing agent) is temporarily stored in an affinity solvent bath 119 and then re-supplied by pump 123 into the chopper 112. Optionally, the filter 110 can remove impurities. Furthermore, the mixed solution collected in the bath 118 is transported toward a distillation tower 125 in order to implement the purification process to obtain purified volume reducing agent solution. The resulting polystyrene separated from the mixed solution successively rinse through an affinity solvent nozzle 117 on polystyrene, are collected into a polystyrene hopper 120, dried in a dryer 121, and finally stored in a product reservoir 122. Such stored raw material may be transferred into the form of ingot through the extrusion process.

[0054] The discharged solution from the mixed solution bath 118 passes through a heat exchanger 124 and is preheated before flowing into the tower 125 and separated into the solvent vapor and the liquid solution of reduction agent within the tower 125, the solvent vapor rising toward top part of the tower while the liquid flowing into a reboiler 132 positioned at the bottom part of the tower 125. Such vapor is condensed into the liquid solvent of affinity to solvent within a condenser 126, fed to an affinity solvent tank 129, and the stored solvent is delivered again to the chopper 112 in order to remove polystyrene from jellified EPS by using a pump 130. Loss of solvent due to the distillation process can be supported in an affinity solvent reservoir 131. Uncondensed vapor in the condenser 126 may be directly discharged into tower 125 through valve 128 or, after the aspirating process by a vacuum pump 127, be released into the surrounding atmosphere.

[0055] Moreover, liquid entered into the reboiler 132 is under heating process to allow the residual affinity solvent components to be vaporized and returned back to the tower 125, while the rest and high purity reduction agent solution may be transported by solvent pump 133 into a solution tank 134. Stored solution can be recycled by using a solution recycle pump 135 to the main vessel 104 to reduce the volume of EPS.

[0056] As aforementioned in detail, it is apparent, according to the present process and apparatus for using the volume reducing agent, that the volume of used EPS is simply reduced or used EPS may be recycled to the new material for the high quality of new EPS.

[0057] Therefore, it is understood that EPS having remarkably reduced volume produced by the present invention can be conveniently and simply stored or transported to any desire sites. It is also possible to provide any temporary treatment installations without occupying substantial space. Additionally, it will be evident that the present invented process and apparatus has environmentally advantageous because the recycling process of used EPS for new EPS may be realized.

[0058] As compared to conventional prior arts, the present invention can provide a safe and improved recycling process for EPS based organic materials without generating toxic gas (for example, limonene). The present invention has multiple the advantages to simply reduce the volume of used EPS on the actual location and, because of the easy storage and transportation thereof, to noticeably save transporting and storage expenses. Accordingly, the present invention may be a solution to social problems in connection with landfill space for waste, traffic and air pollution due to the transportation of waste.

[0059] Additionally, as the result of performing the present invention, it is possible to easily produce polystyrene products having plasticity and use these products, leading to the production costs for manufacturing a lot of parts such as electronic appliances to be greatly saved. Moreover, it is also possible to effectively utilize petroleum resources by recycling used polystyrene.

[0060] As previously discussed, the present invention provides a safe and efficient method and apparatus to reduce the volume of EPS and to raise the recycling capacity thereof.

[0061] It will be apparent to those skilled in the art that various modifications and variations of the present invention can be made without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims

1. A volume-reducing agent for processing polystryrene, the volume-reducing agent comprising:

a first plasticizer having a Ferdor solubility parameter value of less than 10.1 (cal/cm3)½;
a second plasticizer having a Ferdor solubility parameter value of greater than 10.1 (cal/cm3)½;
said volume-reducing agent being a liquid at room temperature and having a Ferdor solubility value in the range of 8.3 to 10.3 (cal/cm3)½.

2. The volume-reducing agent of claim 1, said first plasticizer being a dicarbonate diester or carbonate ester.

3. The volume-reducing agent of claim 2, said first plasticizer being a compound selected from diethyl adipate, dimethyl adipate, dimethyl glutarate, dibuthyl adipate, dimethyl succinate, di-n-propyl adipate, diisopropyl adipate, ethyl acetate, and n-propyl acetate.

4. The volume-reducing agent of claim 1, said first plasticizer being selected a compound selected from diethyl phthalate, dimethyl sebacinate, diethyl sebacinate, tricresyl phosphate, epoxin stearate, butyl oleate, and ethylene glycol diacetate.

5. The volume-reducing agent of claim 1, said second plasticizer being an alkylolaminie.

6. The volume-reducing agent of claim 5, said second plasticizer being a compound selected from triethanolamine, trimethanolamine, diethanolamine.

7. The volume-reducing agent of claim 1, said second plasticizer being an alcohol.

8. The volume-reducing agent of claim 7, said second plasticizer being a compound selected from ethylene glycol diethylene glycol, and ethylene glycol monoether.

9. The volume-reducing agent of claim 1, said second plasticizer being an ester.

10. The volume-reducing agent of claim 9, said second plasticizer being a compound selected from &ggr;-butyrolactone, ethylene carbonate, and dimethyl phthalate.

11. The volume-reducing agent of claim 1, said first plasticizer being a dicarbonate diester or carbonate ester, and said second plasticizer being an alkylolamine, an alcohol or an ester.

12. The volume-reducing agent of claim 1, said first plasticizer being present in the range of 65 to 97 weight-% of the volume-reducing agent and said second plasticizer being present in the range of 3 to 35 weight-% of the volume-reducing agent.

13. The volume-reducing agent of claim 12, said first plasticizer having a Ferdor solubility parameter value of in the range of approximately 7.1 to 9.1 (cal/cm3)½; and

said second plasticizer having a Ferdor solubility parameter value of in the range of approximately 11.1 to 13.1 (cal/cm3)½.

14. The volume-reducing agent of claim 1, further comprising:

tourmaline particles.

15. The volume-reducing agent of claim 14, said tourmaline particles being less than 30 mm in size.

16. The volume-reducing agent of claim 1, further comprising:

an anionic agent.

17. The volume-reducing agent of claim 1, further comprising:

a surface-active agent, said surface-active agent being less than 2 weight-% of the volume-reducing agent.

18. A composition of matter comprising the volume-reducing agent of claim 1 and further comprising: polystyrene.

19. The composition of matter of claim 18, said polystyrene being expanded polystyrene.

20. The composition of matter of claim 18, further comprising:

tourmaline particles.

21. The composition of matter of claim 18, further comprising:

an anionic agent.

22. The composition of matter of claim 18, further comprising:

a surface-active agent, said surface-active agent being present at less than 2 weight-% of the volume-reducing agent.

23. A method of processing expanded polystyrene, comprising the steps of:

obtaining a volume-reducing agent, said volume-reducing agent comprising:
a first plasticizer having a Ferdor solubility parameter value less than that of the expanded polystyrene to be processed;
a second plasticizer having a Ferdor solubility parameter value of greater than than that of the expanded polystyrene to be processed;
said volume-reducing agent being a liquid at room temperature and having a Ferdor solubility value close to the that of the polystyrene to be processed;
dipping the expanded polystyrene into the volume-reducing agent to yield a volume-reduced polystyrene; and
dipping the volume-reduced polystyrene in a neutralization solution.

24. The method of claim 23, said first plasticizer being present in the range of 65 to 97 weight-% of the volume-reducing agent and said second plasticizer being present in the range of 3 to 35 weight-% of the volume-reducing agent.

25. The method of claim 23, said first plasticizer having a Ferdor solubility parameter value of in the range of approximately 7.1 to 9.1 (cal/cm3)½; and

said second plasticizer having a Ferdor solubility parameter value of in the range of approximately 111.1 to 13.1 (cal/cm3)½.

26. The method of claim 23, said volume-reducing agent further comprising an anionic agent or tourmaline in the range of 0.01 to 10 weight-% of the volume-reducing agent.

27. The method of claim 23, said neutralization solution being an aqueous solution of chlorine or hydrogen peroxide.

28. The method of claim 23, further comprising the step of:

crushing the expanded polystyrene before dipping the expanded polystyrene into the volume-reducing agent.

29. The method of claim 23, said first plasticizer being a dicarbonate diester or carbonate ester, and said second plasticizer being an alkylolamine, an alcohol or an ester.

30. The method of claim 28, further comprising the step of washing the expanded polystyrene before crushing.

31. The method of claim 28, said crushing step comprising crushing with a first crusher followed by crushing by a second crusher having smaller blade diameter and faster rotating speed than the first crusher.

32. An apparatus for processing expanded polystyrene, comprising:

a main vessel for holding a volume-reducing agent;
an entrapment device located near the top of the main vessel, for entrapping solids floating in the main vessel and transferring the solids out of the main vessel;
a neutralization vessel positioned to receive solids transferred by the entrapment device, and shaped to hold a neutralization solution, said neutralization vessel further comprising means for discharging material floating in the vessel;
a conveyor means for conveying and drying material discharged form the neutralization vessel; and
a product crusher positioned to receive dried material from the conveyor means.

33. The apparatus of claim 32, further comprising:

a volume-reducing agent partially filling the main vessel, said volume-reducing agent comprising:
a first plasticizer having a Ferdor solubility parameter value of less than 10.1 (cal/cm3)½;
a second plasticizer having a Ferdor solubility parameter value of greater than 10.1 (cal/cm3)½;
said volume-reducing agent being a liquid at room temperature and having a Ferdor solubility value in the range of 8.3 to 10.3 (cal/cm3)½.

34. The apparatus of claim 33, further comprising:

a neutralization solution in said neutralization vessel, said neutralization solution being an aqueous solution of chlorine or hydrogen peroxide.

35. The apparatus of claim 32, said entrapment device further comprising:

a sieve for picking up material floating in the main vessel; and
a screw feeder for transporting the material picked up by the sieve.

36. The apparatus of claim 32, said entrapment device further comprising:

a meshed sieve hinged to swing between a position for picking material in the main vessel and a position for throwing material into the neutralization vessel.

37. The apparatus of claim 32, said entrapment device further comprising:

an aspiration device for withdrawing solids floating in the main vessel, removing excess liquid from the solids, and discharging the solids into the neutralization vessel.

38. The apparatus of claim 32, further comprising:

a first main vessel crusher having blades, mounted above the main vessel, for crushing material fed to the first vessel; and
a second main vessel crusher having blades smaller in diameter than the blades of the first main vessel crusher, mounted between the first main vessel crusher and the main vessel, for crushing material exiting the first crusher.

39. The apparatus of claim 32, said main vessel further comprising a rotation device or ultrasonicator for mixing materials in the main vessel.

40. The apparatus of claim 32, said main vessel further comprising a bubble removal path.

41. The apparatus of claim 32, said main vessel further comprising a filter for filtering solutions in the main vessel.

42. The apparatus of claim 32, further comprising:

a mesh-type conveyor positioned to receive material from the product crusher.

43. The apparatus of claim 42, further comprising:

a mixed solution bath below the mesh-type conveyor, for receiving solutions extracted through the mesh-type conveyor.

44. The apparatus of claim 43, further comprising:

a distillation tower connected to the mixed solution bath, for recycling solvents from the mixed solution bath.
Patent History
Publication number: 20020077376
Type: Application
Filed: Dec 18, 2000
Publication Date: Jun 20, 2002
Inventors: Hiroaki Usui (Tokyo), Jae-Hong Kim (Seoul), Dong-Hoon Choi (Seoul), Yoshiharu Kimura (Kyoto-city), Kenya Motoyoshi (Tokyo)
Application Number: 09737815
Classifications