Grinding method

- Rolltest Oy

A grinding method for single-disc cylindrical grinding of elongated objects, such as cylindrical paper machine rollers, in which method the object to be ground is rotated about its axis and a grinding stone is rotated and its position on the surface of the object being ground is adjusted so that the grinding point of the grinding stone is held substantially at a constant distance from the center axis of the object being ground regardless of the deflection of the object. In the method, the position of the grinding stone is adjusted by means of an oscillating positioning controller synchronized with the rotation of the roller and receiving feedback from a measured quantity that bears a linear correlation to the change of position of the surface being ground.

Latest Rolltest Oy Patents:

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

[0001] The present invention relates to a grinding method as defined in the preamble of claim 1.

[0002] In particular, the invention relates to the grinding of substantially cylindrical paper machine rollers, but it can also be used in grinding the surfaces of other elongated cylindrical or conical objects. In the following, however, the invention will be mainly described by referring to cylindrical paper machine rollers.

[0003] Heavy and relatively long paper machine rollers are generally stored by suspending them by their hubs, with the result that the rollers are bent by the action of their own weight, i.e. curved downward relative to the straight line between their hubs. In practice, the roller hardly ever bends in one plane only; instead, due to a variation of stiffness and different positions during transport and storage, the ultimate deflection is a three-dimensional curve. When the roller is again mounted as a rotating component, it begins to straighten out slowly, approaching the straight line between its hubs. The speed and degree of straightening is proportional to the length of time the roller has been kept in a non-rotating condition in storage, Typically, this time varies from a few hours to several days.

[0004] When a grinding operation on a curved roller taken from storage is started, the deflection causes unnecessary working time expenses because the roller has to be rotated in the grinding machine for several hours before actual grinding can be started. By the time grinding is started, the roller is seldom completely straight, which is why the grinding pressure and also the amount of material removed vary depending on the degree of eccentricity of the roller. Thus, the roller undergoes unnecessary machining and material is removed from where it should not in order to achieve a desired rotational and length profile of the roller.

[0005] If the roller has originally been circular in section but undergone deflection during storage, it may have been ground to a non-circular cross-sectional form while expecting it to be straightened. If the roller is to be given a circular cross-sectional form, then it has to be ground long enough to allow the rotation to produce sufficient straightening or a sufficiently stable condition, and after this the grinding has to be continued until the deformation produced by incorrect grinding has been abraded.

[0006] After the roller has been ground, it is often put back in store, where the bending process starts again. When finally mounted in the paper machine, the roller may be as curved as before the grinding.

[0007] The object of the invention is to eliminate the above-mentioned drawbacks. A specific object of the invention is to disclose a new type of grinding method whereby the currently most widely used single-disc machines can achieve the same grinding precision that has previously only been attainable by using dual-disc machines with floating stone suspension.

[0008] As for the features characteristic of the grinding method of the invention, reference is made to the claims.

[0009] In the text of the present application, the roller form aimed at is described by the general term ‘circular’ to refer to the most advantageous rotational profile of a roller. The desired grinding profile of the roller may differ from a circular orbit if grinding is undertaken to compensate for errors arising in a grinding machine or paper machine from e.g. variations in roller stiffness.

[0010] In the invention, it has been discovered that the effect of the deflection of a roller can be compensated by using a suitable control system. The grinding stone can be made to follow the target circumference of the roller in addition to a desired length profile, so that only the non-circularity and other surface deformations of the roller are ground off. By taking the form of the deflection and its straightening during grinding into account, the roundness of the roller can be restored in the shortest possible time.

[0011] In the grinding method of the invention, when elongated objects of circular cross-section are ground by a single-disc cylindrical grinding process, the object being ground is rotated about its axis. In addition, the grinding stone is rotated and its position on the surface of the object being ground is adjusted so that the grinding point of the grinding stone is held substantially at a target distance from the actual center axis of the object being ground, regardless of the deflection of the object. According to the invention, the position of the grinding stone is adjusted by means of an oscillating positioning controller synchronized with the rotation of the roller and receiving feedback from a measured quantity that bears a linear correlation to the change of position of the surface being ground.

[0012] The method employs an analyzer which computes from an instantaneous measured quantity, such as distance, and from the roller position a mean vector value (amplitude and phase angle) of the roller surface, i.e. distance, at the rotational frequency of the roller. This vector value represents the eccentricity of the roller The eccentricity vector is then integrated by the controller and used to control the oscillator.

[0013] The measured quantity may be the distance of the surface as measured by electrical or optical means. This quantity may also be the input power or current of the grinding disc or the pressure applied by the grinding disc on the surface being ground. The essential point is that the measured quantity bears a linear correlation to the position change.

[0014] The output of the oscillating positioning controller is preferably summed with other grinding stone positioning signals, i.e. e.g. with a form curve, a structural defect correction and the grinding current value, so that the compensation will work in cooperation with other grinding methods.

[0015] The adjustment is preferably performed using a mathematical function forming a model of lengthways deflection of the axis of the object, said model being used to approximate the form of an acceptable physical deflection. The deflection model is preferably adaptive and it follows the straightening of the object occurring during grinding. An acceptable form of the eccentricity can be approximated e.g. by a sine function.

[0016] When the grinding method of the invention is used, grinding can be started immediately after the roller has been taken out of storage, without having to wait until the roller has been straightened. Thus, the time required for the grinding can be significantly reduced. In addition, rollers with a better overall profile are achieved than at present.

[0017] The method of the invention can generally be used in cylindrical grinding to correct the eccentricity resulting from faulty mounting of a workpiece behaving homogeneously in the direction of rotation. Mounting especially large and heavy objects in a centric manner is a laborious and time-consuming task. This method reduces the time required for mounting and improves the quality of the grinding result.

[0018] Applying the grinding method of the invention also involves indirect measurement of the eccentricity, surface contour and lengthways profile of the roller. In other words, a three-dimensional form profile measurement of the roller surface is produced as a by-product of the grinding. This information can be utilized in roller maintenance in estimating the condition of the roller and the final result of the grinding. This system is not a measuring device and its absolute accuracy can not be indicated in the manner required in the case of a measuring device. However, when used together with a known reference measuring device, this system may yield a measuring accuracy as required in maintenance grinding without consuming any time at all for the measurement.

Claims

1. Grinding method in single-disc cylindrical grinding of elongated objects of substantially circular cross-section, such as paper machine rollers, in which method

the object being ground is rotated about its axis, and
a grinding stone is rotated and its position on the surface of the object being ground is adjusted so that the grinding point of the grinding stone is held substantially at a certain distance from the actual center axis of the object being ground regardless of the deflection of the object,
characterized in chat
the position of the grinding stone is adjusted by means of an oscillating positioning controller synchronized with the rotation of the roller and receiving feedback from a measured quantity that bears a linear correlation to the change of position of the surface being ground.

2. Grinding method as defined in claim 1, characterized in that the positioning controller receives feedback from the input power of the grinding stone.

3. Grinding method as defined in claim 1, characterized in that the positioning controller receives feedback from a measurement of the distance of the surface being ground.

4. Grinding machine as defined in claim 1, characterized in that the output of the oscillating positioning controller is summed with other grinding stone positioning signals.

5. Grinding machine as defined in claim 1, characterized in that the adjustment is performed using a mathematical function forming a model of the lengthways deflection of the axis of the object, said model being used to approximate the form of an acceptable physical deflection.

6. Grinding machine as defined in claim 5, characterized in that the deflection model is adaptive and it follows the straightening of the object occurring during grinding.

7. Grinding machine as defined in claim 5, characterized in that the acceptable form of eccentricity is approximated by a sine function.

Patent History
Publication number: 20020090890
Type: Application
Filed: Dec 26, 2001
Publication Date: Jul 11, 2002
Applicant: Rolltest Oy (KANGASLAMPI)
Inventor: Teppo Syrjanen (Kangaslampi)
Application Number: 10025504
Classifications
Current U.S. Class: Of Tool Or Work Holder Position (451/9)
International Classification: B24B049/00;