Method and apparatus for utilizing non-cylindrical support sections to lift and level existing buildings from a location adjacent a side of the buildings
An apparatus and a method are provided for lifting and leveling an existing building from a position adjacent a side of the existing building. One or more non-cylindrical support sections having a substantially rectangular shapes and first and second ends are driven into the earth at a position adjacent a side of the existing building. A jack is used to lift the existing building to a desired height. The foundation of the building is then bracketed to the uppermost non-cylindrical support section to maintain the building at the new level. The non-cylindrical support section has low bearing and high friction characteristics. The low bearing characteristics enable the apparatus to be driven further into the earth than cylindrical pilings that are commonly used to lift and level existing buildings. The high friction characteristics assist in maintaining the stability of the apparatus once it has been installed.
[0001] The present invention relates to lifting and leveling (i.e., repairing) existing buildings that have settled unevenly or, for some other reason, have become unstable and need to be re-leveled and stabilized. More particularly, the present invention relates to a method and apparatus for repairing existing buildings by utilizing a support system that comprises an apparatus having non-cylindrical support sections that are driven into the earth adjacent a side of the building. The non-cylindrical support sections are strong and have relatively low bearing characteristics and relatively high friction characteristics.
BACKGROUND OF THE INVENTION[0002] Several methods and systems have been developed and used for lifting, leveling and stabilizing existing buildings. One common technique used for re-leveling and stabilizing buildings and houses is accomplished by digging a hole underneath a building foundation to a depth generally equal to the length of a cylindrical cement support piling (e.g., 12 inches), driving the cylindrical cement support pilings into the ground one on top of the other until a particular depth has been reached, and jacking a portion of the building up to a particular height by utilizing a jack that is located on the top surface of the uppermost piling.
[0003] The pilings are typically driven into the ground until a rock strata is encountered or until the depth of the hole containing the pilings is believed to be sufficiently deep. In situations where a rock strata cannot be reached, the pilings are typically driven to a depth great enough to cause friction between the earth and the outer surfaces of the pilings to prevent substantial movement of the pilings.
[0004] One of the problems associated with using this approach is that the cement pilings must have relatively large diameters to provide them with sufficient strength to be driven into the ground to a particular depth and to support the building. The larger the diameter of the cement piling, the more bearing it has, which makes it more difficult to drive the piling into the ground. Another problem associated with using cement pilings is that they often shatter when rock strata and/or tree roots are encountered. For all of these reasons, this type of support system is undesirable.
[0005] Another common technique for re-leveling and stabilizing buildings utilizes steel cylindrical pipe sections that are driven into the earth adjacent the side of the building until a sufficient depth is reached. The building foundation is then jacked up using a hydraulic jack to a desired height, and then the foundation is bracketed to the uppermost steel pipe section. The jack is then removed and the building is supported and stabilized by the support system. One of the benefits of using hollow steel pipe sections for this purpose is that they have less bearing than the aforementioned concrete pilings due to the fact that the steel pipe support sections are smaller in diameter than the concrete pilings. Also, steel pipe used for this purpose is normally stronger than concrete and therefore is unlikely to break when rock or tree roots are encountered. However, the steel pipe support sections may bend, which results in instability in the support structure.
[0006] One of the disadvantages of using hollow steel pipes for this purpose is that the smaller diameter results in overall less friction between the earth and the surfaces of the steel pipe sections. Also, steel pipes, even if they are galvanized, tend to rust due to water collecting within the pipes after the system has been installed.
SUMMARY OF THE INVENTION[0007] Accordingly, it would be desirable to provide a method and an apparatus for lifting and leveling existing buildings that overcome the aforementioned problems associated with existing support systems. The present invention provides a method and an apparatus for lifting and leveling existing buildings by utilizing a support system that lifts and levels an existing building along a side of the building utilizing non-cylindrical support sections. The apparatus of the present invention comprises at least one non-cylindrical support section that is substantially rectangular in shape and has first and second ends. The non-cylindrical support section is, in accordance with the method of the present invention, driven into the earth at a position adjacent a side of the existing building such that the first end of the first non-cylindrical support section is located beneath the second end of the first non-cylindrical support section. One or more of these support sections are driven into the earth to form a piling of a desired height. A jack is used to raise the foundation of the existing building to a desired height. The foundation of the building is fastened to the foundation of the building and to a location on the uppermost non-cylindrical support section to maintain the building at the raised position.
[0008] The non-cylindrical support section(s) has low bearing and high friction characteristics. The low bearing characteristics enable the apparatus to be driven further into the earth than cylindrical pilings that are commonly used to lift and level existing buildings. The high friction characteristics assist in maintaining the stability of the apparatus once it has been installed.
[0009] These and other features and advantages of the present invention will become apparent from the following description drawings and claims.
BRIEF DESCRIPTION OF THE DRAWINGS[0010] FIG. 1A is an end view of an H-beam that may be used to lift and level existing buildings in accordance with the method of the present invention.
[0011] FIG. 1B is a side view of the H-beam shown in FIG. 1A.
[0012] FIG. 2A is an end view of an I-beam that may be used to lift and level existing buildings in accordance with the method of the present invention.
[0013] FIG. 2B is a side view of the I-beam shown in FIG. 2A.
[0014] FIG. 3 is an illustration of the support system of the present invention once it has been installed to lift and level the foundation of a building.
[0015] FIG. 4A illustrates a side view of the apparatus of the present invention in accordance with one embodiment for attaching the sections shown in FIGS. 1A and 1B together as they are driven into the ground.
[0016] FIG. 4B illustrates a front view of the apparatus shown in FIG. 4A.
[0017] FIG. 5 is a flow chart demonstrating the method of the present invention in accordance with the one embodiment.
[0018] FIG. 6 is a flow chart demonstrating the method of the present invention in accordance with a second embodiment.
[0019] FIG. 7 is a plan view of the apparatus shown in FIG. 1B wherein the end of the apparatus is sharpened, or tapered, to further reduce bearing when the apparatus is driven into the earth in accordance with the method of the present invention.
DETAILED DESCRIPTION OF THE INVENTION[0020] As stated above, the present invention is directed to a method and an apparatus for lifting and leveling (i.e., repairing) existing structures, such as buildings and houses (hereinafter referred to collectively as “buildings”). The apparatus of the present invention in accordance with one embodiment comprises one or more H-beams 1, such as the H-beam shown in FIGS. 1A and 1B. FIG. 1A is a top (or bottom) view of an H-beam 1 of the type typically used in constructing large commercial buildings. FIG. 1B is a front view (or rear view) of the H-beam 1 shown in FIG. 1A. In accordance with the present invention, it has been determined the a beam having a non-cylindrical cross-section, such as a cross-section of the type shown in FIGS. 1A and 1B, for example, has decreased bearing characteristics, meaning that it can be driven into the ground easier and deeper than the concrete and steel piling sections that are currently used for lifting and leveling existing buildings.
[0021] The H-beam 1 shown in FIGS. 1A and 1B has decreased bearing characteristics due to the fact the area of the end (end view shown in FIG. 1A) of the beam 1 that is driven into the ground is less than that typically used for cement and hollow, steel pipe pilings. However, the outside area surface of the H-beam 1 (shown in FIG. 1B) is large enough to create friction between the earth and the beam 1 to help maintain the beam 1 in place once it has been installed. Therefore, the apparatus of the present invention has very desirable bearing and friction characteristics. Furthermore, the apparatus of the present invention is much stronger than steel pipes and cement pilings, and therefore has much greater stability than support apparatuses or systems comprised of steel pipes or cement pilings.
[0022] FIGS. 2A and 2B show an alternative embodiment of the present invention in which I-beam support sections 4 are used by the support system of the present invention. The I-beam support sections 4 have similar bearing and friction characteristics as those of the H-beam 1, except that the I-beam 4 has a longer mid-section 5 that separates the top and bottom sections 6 of the I-beam 4. Those skilled in the art will understand, in view of the present disclosure, that non-cylindrical support sections other than those shown in FIGS. 1A-2B have similar bearing and friction characteristics and therefore are suitable for use with the present invention. For example, a second mid-section could be added to either of the H-beam or I-beam support sections (i.e., another section that would be parallel to mid-sections 3 or 5, respectively), or the support section could be constructed simply as a cross having to equal length perpendicular sections that intersect each other at their respective mid-points. Those skilled in the art will understand, in view of the description provided herein, the manner in which such alternative non-cylindrical support section designs could be used to achieve the goals of the present invention.
[0023] FIG. 3 illustrates a side view of the apparatus of the present invention in accordance with one embodiment wherein the apparatus is comprised of a plurality of H-beams that are utilized in accordance with the method of the present invention to lift and level a building. The apparatus 10 is shown installed and supporting a building foundation 8 after being driven into the ground, which is represented by the numeral 7. Method for installing the apparatus 10 of the present invention will be discussed below with reference to FIGS. 5 and 6.
[0024] The apparatus 10 is shown as comprising two H-beam sections 11 and 12, although, in reality, many more sections will typically be required to reach a suitable depth in the earth, e.g., until a depth is reached at which a rock strata is encountered. The support section 11 is driven into the ground at a location adjacent the foundation 8. Once the first section 11 has been driven into the ground, the next section 12 is driven into the ground on top of the first section 11. This process of driving the support sections into the ground creates a piling comprised of the combination of support sections. Once a suitable depth has been reached, a jack (not shown) is utilized to jack up the building to a suitable height, H. The foundation of the building is then bracketed by a bracket 20 to a location on the uppermost support section 12 to maintain the building at the new level. Friction between the apparatus 10 (i.e., support sections 11 and 12) and the earth and between the apparatus 10 and the bottom surface of the foundation 8 ensures that the support system will remain stable over time.
[0025] The bracket 20 is not limited to any particular design or configuration. Brackets exist that are utilized for lifting and leveling existing buildings and that are suitable for use with the present invention. Those skilled in the art will understand, in view of the present disclosure, that virtually an unlimited number of bracket designs can be used with the present invention for the intended purpose.
[0026] In accordance with the embodiment shown in FIG. 3, the H-beams 11 and 12 comprising the apparatus are not fastened together, but are kept in place through their contact with adjacent support sections, through the downward force associated with the weight of the building and though the settling of the soil about the support sections 11 and 12. FIGS. 4A and 4B illustrate side and front views, respectively, of the apparatus 10 shown in FIG. 3 further comprising fastening devices that are utilized to fasten adjacent support sections together, and further comprising a fourth support section 16, which is shown for the purposes of clearly demonstrating the manner in which the support sections can be fastened together in accordance with one embodiment. Although it is not necessary that adjacent support sections be fastened together, fastening adjacent support sections together in the manner shown in FIGS. 4A and 4B enhances stability and further ensures that the apparatus 10, once installed, will not shift, bend, etc. over time.
[0027] In accordance with one embodiment, a fastening device is used for fastening the lower support sections (16/11 and 11/12) together. The fastening device is comprised of a plate 19 located on opposing sides of the support sections (only front side shown in FIG. 4A), bolts 21, and nuts (not shown). The bolts 21 pass through openings formed in the plates 20 and the plates 19 on each side of the support section are pulled tightly against the support section by nuts that are fastened to the ends of the bolts 21.
[0028] FIG. 4B is a front view of the apparatus 10 shown in FIG. 4A. The view provided in FIG. 4B illustrates the bolt 21 passing through two plates 19A and 19B, and a nut 28 fastened to the end of the bolt 21 to thereby pull the plates toward each other, which, in turn, fastens ends of adjacent support sections together. It will be understood by those skilled in the art, in view of the present disclosure, that many fastening device configurations can be used to accomplish the task of coupling the non-cylindrical support sections together. The configuration of the fastening device of the first type is an example of one suitable design for this purpose and is not intended to represent the only suitable design for this purpose. Those skilled in the art will understand, in view of the present disclosure, that this task can be accomplished in virtually an unlimited number of ways.
[0029] FIG. 5 is a flow chart illustrating the steps for performing the method 30 of the present invention in accordance with one embodiment. It should be noted that many of the steps shown in FIG. 5 do not need to be performed in the order depicted. Some steps are performed before others, but other steps may be performed in different sequences and/or simultaneously. The first step in the method depicted in the flow chart of FIG. 5 is to drive (e.g., by using a hydraulic ram) the non-cylindrical support section into the ground at the bottom of the hole, as indicated by block 33. The bottom end of the next support section is then placed on the top end of the lower support section and is pressed or rammed into the ground, as indicated by blocks 34 and 35. This process of driving the support sections into the ground is repeated until the non-cylindrical support sections cannot be further pressed into the ground (which typically occurs when the lower-most support section is at a depth of between 10 and 80 feet, but possibly more) and/or stable soil or rock has been reached, or simply a desired depth has been reached, as indicated by block 36. A jack, preferably a hydraulic jack, is then used to lift the building to a desired height, as indicated by block 37. The foundation is then attached by a bracket to the uppermost support section, as indicated by block 38. The jack can then be lowered and removed.
[0030] These steps will be performed at each location(s) that needs lifting, leveling and stabilization. The length of the piling may be adjusted if further lifting/leveling is ever needed. This can be accomplished by using a jack to support the building at the location of the piling, removing the bracket, jacking the building to the desired new height, and bracketing the foundation to the uppermost support section, which may be an additional support section that is driven into the ground if the existing uppermost support section does not provide the necessary height.
[0031] FIG. 6 is a flow chart illustrating the method 40 of the present invention in accordance with another embodiment, wherein the apparatus of the present invention illustrated in FIGS. 4A and 4B is utilized to lift and level an existing building. It should be noted that many of the steps shown in FIG. 6 do not need to be performed in the order depicted. Some steps are performed before others, but other steps may be performed in different sequences and/or simultaneously. The first step in the method depicted in the flow chart of FIG. 6 is to drive (e.g., by using a hydraulic ram) the non-cylindrical support section into the ground at a location adjacent the building, as indicated by block 43. The bottom end of the next support section is then placed on the top end of the lower support section and is driven or rammed into the ground, as indicated by blocks 44 and 45. The support sections are then coupled together in the manner described above with reference to FIGS. 4A and 4B, as indicated by block 46. This process of driving the support sections into the ground and coupling them together is repeated until the non-cylindrical support sections cannot be further pressed into the ground (which typically occurs when the lower-most support section is at a depth of between 10 and 80 feet, but possibly more) and/or stable soil or rock has been reached, or simply until a desired depth has been reached, as indicated by block 47. A jack, preferably a hydraulic jack, is then used to raise the building to the desired height, as indicated by blocks 48. The foundation is then bracketed to the uppermost support section, as indicated by block 49. Once the foundation is lifted and stabilized, the jack can then be lowered and removed.
[0032] In accordance with another embodiment of the present invention, the first support section driven into the ground as a tapered end. For example, if the apparatus of the present invention comprised a non-cylindrical support section having the shape shown in FIGS. 1A and 1B, the lowermost support section could have the shape shown in FIG. 7, which is a front view of an H-beam 50 having a tapered lower end 52. This tapered, or sharpened, lower end would result in even less bearing encountered when the piling is being installed. However, the piling would still have essentially the same desirable friction characteristics as if it were formed of support sections such as those shown in FIGS. 1A-2B.
[0033] It should be noted that while the present invention has been described with reference to the particular embodiments, it is not limited to the particular embodiments described herein. Those skilled in the art will understand, in view of the present disclosure, that modifications can be made to the embodiments described herein and that such modifications are within the scope of the present invention.
Claims
1. An apparatus for lifting and leveling an existing building from a position adjacent the existing building, the apparatus comprising:
- at least a first non-cylindrical support section, the first non-cylindrical support section having a substantially rectangular shape, the first support section having a first end and a second end, wherein when the apparatus is installed, the first end is located within the earth at said position adjacent the existing building; and
- a bracket, wherein when the apparatus is installed and the existing building has been lifted to a desired height by using a jack, the bracket is used to fasten a foundation of the existing building to said at least one non-cylindrical support section to maintain the building at a desired level.
2. The apparatus of claim 1, wherein said first non-cylindrical support section is an H-beam.
3. The apparatus of claim 1, wherein said first non-cylindrical support section is an I-beam.
4. An apparatus for lifting and leveling an existing building from a position adjacent the existing building, the apparatus comprising:
- a first non-cylindrical support section, the first non-cylindrical support section having a substantially rectangular shape, the first support section having a first end and a second end, wherein when the apparatus is installed, the first end is located within the earth at a position adjacent a side of the existing building;
- a second non-cylindrical support section, the second non-cylindrical support section having a substantially rectangular shape, the second non-cylindrical support section having a first end and a second end, wherein when the apparatus is installed, the first end of the second non-cylindrical support section is located within the earth beneath said first non-cylindrical support section such that the first end of said first non-cylindrical support section is in contact with the second end of said second non-cylindrical support section; and
- a bracket, wherein when the apparatus is installed and the existing building has been lifted to a desired height by using a jack, the bracket is used to fasten a foundation of the existing building to said second non-cylindrical support section to maintain the building at a desired level.
5. The apparatus of claim 4, wherein said first and second non-cylindrical support sections are H-beams.
6. The apparatus of claim 4, wherein said first and second non-cylindrical support sections are I-beams.
7. A method for lifting and leveling an existing building from a position adjacent a side of the existing building, the method comprising:
- driving a first non-cylindrical support section into the earth adjacent a side of the existing building, the first non-cylindrical support section having a substantially rectangular shape, the first support section having a first end and a second end, the first end being located below the second end within the earth at said position adjacent a side of the existing building; and
- jacking up the existing building to lift the existing building to a desired height; and
- bracketing a foundation of the existing building to said first non-cylindrical support section.
8. The method of claim 7, wherein said first non-cylindrical support section is an H-beam.
9. The method of claim 7, wherein said first non-cylindrical support section is an I-beam.
10. A method for lifting and leveling an existing building from a position adjacent a side of the existing building, the method comprising:
- driving a first non-cylindrical support section into the earth adjacent a side of the existing building, the first non-cylindrical support section having a substantially rectangular shape, the first support section having a first end and a second end, the first end being located below the second end within the earth at said position adjacent a side of the existing building;
- driving a second non-cylindrical support section into the earth through the portion of the hole extending underneath the building, the second non-cylindrical support section having a substantially rectangular shape, the second non-cylindrical support section having a first end and a second end, the first end being located below the second end within the earth at said position adjacent a side of the existing building;
- jacking up the existing building to lift the existing building to a desired height; and
- bracketing a foundation of the existing building to said second non-cylindrical support section.
11. The method of claim 10, wherein said first and second non-cylindrical support sections are H-beams.
12. The method of claim 10, wherein said first and second non-cylindrical support sections are I-beams.
Type: Application
Filed: Mar 6, 2001
Publication Date: Sep 12, 2002
Inventor: Mark Dimitrijevic (Deerpark, TX)
Application Number: 09800350
International Classification: E04G001/22; E04B002/82;