Method for isolation of biosynthesis genes for bioactive molecules
Degenerate primers which hybridize with various classes of antibiotic biosynthesis genes were used to amplify fragments of DNA from soil and lichen extracts. Cloning and sequencing of the amplified products showed that these products included a variety of novel and previously uncharacterized antibiotic biosynthesis gene sequences, the products of which have the potential to be active as antibiotics, immunosuppressors, antitumor agents, etc. Thus, antibiotic biosynthesis genes can be recovered from soil or lichens by a combining a sample with a pair of amplification primers under conditions suitable for polymerase chain reaction amplification, wherein the primer set is a degenerate primer set selected to hybridize with conserved regions of known antibiotic biosynthetic pathway genes, for example Type I and Type II polyketide synthase genes, isopenicillin N synthase genes, and peptide synthetase genes; cycling the combined sample through a plurality of amplification cycles to amplify DNA complementary to the primer set; and isolating the amplified DNA.
Latest Terragen Diversity, Inc. Patents:
- Method for isolation of xylanase gene sequences from soil DNA, compositions useful in such method and compositions obtained thereby
- Method for inhibiting eukaryotic protein kinases
- Method for isolation of biosynthesis genes for bioactive molecules
- Method for isolating xylanase gene sequences from soil DNA, compositions useful in such method and compositions obtained thereby
- Method and composition for identifying inhibitors of eukaryotic cell processes
[0001] This application relates to a method for the isolation of biosynthesis genes for antibiotics and other bioactive molecules from complex natural sources such as humus, soil and lichens.
[0002] Antibiotics play an important role in man's efforts to combat disease and other economically detrimental effects of microorganisms. Traditionally, antibiotics have been identified by screening microorganisms, especially those found naturally in soil, for their ability to produce an antimicrobial substance. In some cases, the gene or genes responsible for antibiotic synthesis have then been identified and cloned into producer organisms which produce the antibiotic in an unregulated manner for commercial applications. However, it has been estimated that less than 1% of the microorganisms present in soil are culturable. Torsvik et al., Appl. Environ. Microbiol. 56: 782-787 (1990). Thus, much of the genetic diversity potentially available in soil microorganisms is unavailable through traditional techniques.
[0003] As pathogenic microorganisms become increasingly resistant to known antibiotics, it would, however, be highly desirable to be able to access the reservoir of genetic diversity found in soil, and to facilitate the exploration of new species of antibiotics which may be made by the vast numbers of unculturable organisms found there. It would further be desirable to have access to novel biosynthetic enzymes and the genes encoding such enzymes, which could be used in recombinant organisms for antibiotic production or for in vitro enzymatic synthesis of desirable compounds. Thus, it is an object of the present invention to provide a method and compositions for isolating DNA and DNA fragments encoding enzymes relevant to the production of pharmaceutically active molecules such as antibiotic biosynthesis enzymes.
SUMMARY OF THE INVENTION[0004] We have now identified degenerate primers which hybridize with various classes of antibiotic biosynthesis genes, and have used such primers to amplify fragments of DNA from soil and lichen extracts. Cloning and sequencing of the amplified products showed that these products included a variety of novel and previously uncharacterized antibiotic biosynthesis gene sequences, the products of which have the potential to be active as antibiotics, immunosuppressors, antitumor agents, etc. Thus, antibiotic biosynthesis genes can be recovered from soil by a method in accordance with the present invention comprising the steps of:
[0005] (a) combining a soil-derived sample with a pair of amplification primers under conditions suitable for polymerase chain reaction amplification, wherein the primer set is a degenerate primer set selected to hybridize with conserved regions of known antibiotic biosynthetic pathway genes, for example Type I and Type II polyketide synthase genes, isopenicillin N synthase genes, and peptide synthetase genes;
[0006] (b) cycling the combined sample through a plurality of amplification cycles to amplify DNA complementary to the primer set; and
[0007] (c) isolating the amplified DNA.
DETAILED DESCRIPTION OF THE INVENTION[0008] In accordance with the present invention, antibiotic biosynthesis genes can be recovered from soil and lichens by a method comprising the steps of:
[0009] (a) combining a humic or lichen-derived sample with a pair of amplification primers under conditions suitable for polymerase chain reaction amplification, wherein the primer set is a degenerate primer set selected to hybridize with conserved regions of an antibiotic biosynthesis gene;
[0010] (b) cycling the combined sample through a plurality of amplification cycles to amplify DNA complementary to the primer set; and
[0011] (c) isolating the amplified DNA.
[0012] As used in the specification and claims of this application, the term “humic or lichen-derived sample” encompasses any sample containing the DNA found in lichens or in samples of humic materials including soil, mud, peat moss, marine sediments, and effluvia from hot springs and thermal vents in accessible form for amplification, substantially without alteration of the natural ratios of such DNA in the sample. One exemplary form of a humic sample is a sample obtained by performing direct lysis as described by Barns et al., Proc. Nat'l Acad. Sci. USA 91:1609-1613 (1994) on a soil sample and then purifying the total DNA extract by column chromatography. Related extraction methods can be applied to the isolation of community DNA from other environmental sources. See, Trevors et al., eds. Nucleic Acids in the Environment, Springer Lab Manual (1995). Lichen-derived samples may be prepared from foliose lichens by the method of fungal DNA extraction described by Miao et al., Mol. Gen. Genet. 226: 214-223 (1991). Specific non-limiting procedures for isolation of DNA from humic and lichen samples are set forth in the examples herein.
[0013] The humic or lichen-derived sample is combined with at least one, and optionally with several pairs of amplification primers under conditions suitable for polymerase chain reaction amplification. Polymerase chain-reaction (PCR) amplification is a well known process. The basic procedure, which is described in U.S. Pat. Nos. 4,683,202 and 4,683,195, which are incorporated herein by reference, makes uses of two amplification primers each of which hybridizes to a different one of the two strands of a DNA duplex. Multiple cycles of primer extension using a polymerase enzyme and denaturation are used to produce additional copies of the DNA in the region between the two primers. In the present invention, PCR amplification can be performed using any suitable polymerase enzyme, including Taq polymerase and Thermo Sequenase™.
[0014] The amplification primers employed in the method of the invention are degenerate primer sets selected to hybridize with conserved regions of known antibiotic biosynthetic genes, for example Type I and Type II polyketide synthase genes, isopenicillin N synthase genes, and peptide synthetase genes. Each degenerate primer set of the invention includes multiple primer species which hybridize with one DNA strand, and multiple primer species which hybridize with the other DNA strand. All of the primer species within a degenerate primer set which bind to the first strand are the same length, and hybridize with the same target region of the DNA. These primers all have very similar sequences, but have a few bases different in each species to account for the observed variations in the target region. For this reason, they are called degenerate primers.
[0015] Similarly, all of the primers within a degenerate primer set which bind to the second strand are the same length, hybridize with the same target region of the DNA, and have very similar sequences with a few bases different in each species to account for the observed variations in the target region.
[0016] The degenerate primer sets of the invention are selected to hybridize to highly conserved regions of known antibiotic biosynthesis genes in such a way that they flank a region of several hundred (e.g. 300) or more base pairs such that amplification leads to the selective reproduction of DNA spanning a substantial portion of the antibiotic biosynthesis gene. Selection of primer sets can be made based upon published sequences for classes of antibiotic biosynthesis genes.
[0017] For example, for amplification of Type I polyketide synthase genes, we have designed primers based upon the conserved sequences of six beta-ketoacyl carrier protein synthase domains of the erythromycin gene cluster. Donadio et al ., Science 252: 675-679 (1991); Donadio and Staver, Gene 126: 147-151 (1993). These primers have the sequences 1 5′-GC(C/G) (A/G)T(G/C) GAC CCG CAG CG CGC-3′ [SEQ ID No. 1] and 5′-GAT (C/G)(G/A)C GTC CGC (G/A)TT (C/G)GT (C/G)CC-3′ [SEQ ID No. 2].
[0018] The expected size of the PCR product is 1.2 kilobase pairs. Other degenerate primer sets for Type I and Type II polyketide synthetase genes could be determined from sequence information available in Hutchinson and Fujii, Ann. Rev. Microbiol. 49: 201-238 (1995).
[0019] Type II polyketide synthase gene clusters are characterized by the presence of chain length factor genes which are arranged at the 3′-end of the ketosynthase genes. Primers were designed based on one conserved region near the 3′-end of the ketosynthase gene and one at the middle portion of the chain length factor gene. The sequences of one suitable set of amplification primers are: 2 5′CT(C/G)AC(G/C)(G/T)(C/G)GG(C/G)CGIAC(C/G)GC(C/G)AC(C/G)CG-3′ SEQ ID No.3 and 5′GTT(C/G)AC(C/G)GCGTAGAACCA(C/G)GCGAA-3′ SEQ ID No.4
[0020] The expected size of the PCR product was 0.5 kilobase pairs. An alternative set of degenerate primers has the sequence 3 5′-TTCGG(C/G)GGITTCCAG(T/A)(C/G)IGC(C/G)ATG SEQ ID No.5 and 5′-TC(C/G)A(G/T)(C/G)AG(C/G)GC(C/G)AI(C/G)GA(C/G)TCGTAICC SEQ ID No.6.
[0021] These primers were designed based upon consensus sequences for the regions flanking the Ks&bgr;(chain length factor) genes. The consensus sequences are available from Hutchinson and Fujii, supra.
[0022] Primers were designed for beta-lactam biosynthetic genes on the basis of the conserved sequences of a number of isopenicillin N synthase genes as described in Aharanowitz et al., Ann. Rev. Microbiol. 46: 461-495 (1992). These primers have the sequences 4 5′-GG(C/G/T) TC(C/G) GG(C/G) TT(C/T) TTC TAC GC-3′ [SEQ ID No.7] and 5′-CCT (C/G)GG TCT GG(A/T) A(C/G)A G(C/G)A CG-3′ [SEQ ID No. 8].
[0023] The expected size of the PCR product is 570 base pairs. Other degenerate primer sets could be determined from sequence information available in Jensen and Demain, “Beta-Lactams” in Genetics and Biochemistry of Antibiotic Production (L. C. Vining and C, Studdard, eds.), pp 239-268, Butterworth-Heinemann, Newton, Mass. (1995).
[0024] For isolation of peptide synthetase genes, primers based on two of the conserved core sequences within the functional domains of peptide synthetase genes as described by Turgay and Marahiel, Peptide Res. 7:238-241 (1994) were utilized. These primers had the sequence 5 5′-ATCTACAC(G/C)TC(G/C)GGCAC(G/C)AC(G/C)GGCAAGCC(G/C)AAGGG-3′ SEQ ID No. 9 and 5′-A(A/T)IGAG(T/G)(C/G)ICCICC(G/C)(A/G)(A/G)(G/C)I(A/C)GAAGAA-3′ SEQ ID No. 10
[0025] The expected size of the PCR product is 1.2 kilobase pairs.
[0026] PCR amplification can also be used for isolating lichen-derived antibiotic biosynthesis genes and gene fragments. For isolation of Type I polyketide synthase genes from lichens, the primer set used was previously described by Keller et al. in Molec. Appl. to Food Safety Involving Toxic Microorganisms, J. L. Richard, ed., pp. 2630277 (1995), and had the following sequences. 6 5′-MGIGARGCIYTIGCIATGGAYCCICARCARMG SEQ ID No. 11 and 5′-GGRTCNCCIARYTGIGTICCIGTICCRTGIGC SEQ ID No. 12
[0027] The expected size of the PCR product is approximately 0.7 to 0.9 kilobases. Actual products evaluated ranged in size from 637 to 809 nucleotides (not including the 61 nt due to the primers).
[0028] Once the primers and the sample are cycled through sufficient thermal cycles to selectively amplify antibiotic biosynthetic DNA in the sample (generally around 25 cycles or more), the amplified DNA is isolated from the amplification mixture. Isolation can be accomplished in a variety of ways. For example, the PCR products can be isolated by electrophoresis on an agarose or polyacrylamide gel, visualized with a stain such as ethidium bromide and then excised from the gel for cloning. Primers modified with an affinity binding moiety such as biotin may also be used during the amplification step, in which case the affinity binding moiety can be used to facilitate the recovery. Thus, in the case of biotinylated primers, the amplified DNA can be recovered from the amplification mixture by coupling the biotin to a streptavidin-coated solid support, for example Dynal streptavidin-coated magnetic beads.
[0029] It will be appreciated that the DNA obtained as a result of this isolation will not generally be of a single type because of the degeneracy of the primers and the complexity of the initial sample. Thus, although these steps are sufficient to recover antibiotic biosynthesis genes from soil or lichen, it is preferable to further separate and characterize the individual species of amplified DNA.
[0030] This further separation and characterization can be accomplished by inserting the amplified DNA into an expression vector and cloning in a suitable host. The specific combination of vectors and hosts will be understood by persons skilled in the art, although bacterial expression vectors and bacterial hosts are generally preferred. Individual clones are then picked and the sequence of the cloned plasmid determined. While random selection has been employed successfully, selection of antibiotic biosynthesis gene-containing clones can be facilitated by screening using hybridization with DNA probes based on conserved sequences or by overlay of bacterial clones with an antibiotic-sensitive test strain.
[0031] Once the sequence of the cloned DNA is determined, it can be screened against existing libraries of nucleotide and protein sequences for confirmation as an antibiotic biosynthetic gene or gene fragment. Amplified DNA so-identified can be used in several ways. First, the amplified DNA, or distinctive portions thereof, can be used to as probes to screen libraries constructed from humic-derived or lichen DNA to facilitate the identification and isolation of full length antibiotic biosynthetic genes. Once isolated, these genes can be expressed in readily cultivated surrogate hosts, such as a Streptomyces species for soil-derived genes or an Aspergillus species for lichen-derived genes. General procedures for such expression are known in the art, for example from Fujii et al., Molec. Gen. Genet. 253:1010 (1996) and Bedford et al., J. Bacteriol. 177: 4544-4548 (1995), which are incorporated herein by reference. Second, amplified DNA which is different from previously known DNA can be used to generate hybrid antibiotic biosynthesis genes using the procedures described by McDaniel et al, Nature 375: 549-554 (1995); Stachelhaus et al., Science 269: 69-72 (1995); and Stachelhaus et al, Biochem, Pharmacol. 52: 177-186 (1996). In these procedures, the novel DNA sequences isolated using the method of the invention are spliced into a known antibiotic gene to provide an expressible sequence encoding a complete gene product.
[0032] Using the method of the invention, a number of unique nucleotide sequences have been identified and characterized. The sequences and the biosynthetic polypeptides/proteins for which they encode, given by sequence ID Nos. 13 to 80, are a further aspect of the present invention.
EXAMPLE 1[0033] Total DNA was extracted from soil samples by a direct lysis procedure as described by Barns et al. (1994). The high molecular weight DNA (>20 kb) in the extract was separated on a Sephadex G200 column (Pharmacia, Uppsala, Sweden) as described by Tsai and Olson, Appl. Environ. Microbiol. 58: 2292-2295 (1992).
[0034] The DNA extract (10-50 ng template DNA) was added to an amplification mixture (total volume 100 &mgr;l) containing 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 2 mM MgCl2, 200 &mgr;M of each deoxynucleotide triphosphate, 25 pmol of each Type I polyketide primer (Seq ID Nos 1 and 2) and 5.0 units of Taq polymerase (BRL Life Technologies, Gaithersburg, Md.). The mixture was then thermally cycled for 30 cycles in a MJ Research PTC-100 thermocycler using the following program: 7 denaturation 93° C. 60 seconds annealing 60° C. 30 seconds extension 72° C. 90 seconds
[0035] The PCR products were then electrophoresed in 1% agarose gels and stained with ethidium bromide to visualize the DNA bands. Bands containing PCR product of the expected size were excised from the gel and purified using a Qiaex Gel Extraction kit (Qiagen GmBH). The purified DNA was ligated to pCRII (Invitrogen) to generate a clone library using E. coli INV&agr;F competent cells. 18 clones were chosen at random from the library and sequenced using a Taq Dye Terminator Cycle Sequencing Kit and an Applied Biosystem DNA sequencer model 373. The sequencing primers used included the universal M13 (-20) forward primer, the M13 reverse primer and primers designed from the sequence data obtained. DNA sequences were translated into partial amino acid sequences using a software package from Geneworks (Intelligenetics, Inc.) with further manual adjustments and sent to the NCBI database by e-mail at blast@ncbi.nlm.nih.gov for comparison against protein databases. Altschul et al., “Basic Local Alignment Tool”, J. Mol. Biol. 215: 403-410 (1990).
[0036] Blast analysis of the 18 clones pointed to 12 unique sequences that were not identical to each other or to published sequences. Seq. ID No. 13 shows the complete DNA sequence of a representative unique clone (Clone ksfs). Seq. ID No. 14 shows the translated amino acid sequence of this clone. The greatest homology as determined by a Blast analysis is indicated to be Type I polyketide synthases. Similar results were obtained on the Blast search of the other 11 unique clones based upon partial sequences which were determined.
EXAMPLE 2[0037] The experiment of Example 1 was repeated using isopenicillin N synthase gene primers (Seq ID Nos. 7 and 8). The thermal cycling program was changed to include 60 second extension periods at 72° C., but otherwise the experimental conditions were the same. Twelve clones were picked at random and yielded one unique sequence that was not identical to published sequences. The complete sequence of this clone (Clone ipnsfs) is shown in Seq. ID. No. 15 and the translated amino acid sequence in Seq. ID No. 16. The BLAST search indicated greatest homology for this sequence with isopenicillin N synthases.
EXAMPLE 3[0038] The experiment of Example 1 was repeated using peptide synthetase primers (Seq. ID Nos 9 and 10). The amplification mixture was changed to a 50 &mgr;l volume containing 10 to 50 ng of template DNA, 20 mM (NH4)2SO4, 74 mM Tris-HCl (pH 8.8), 1.5 mM MgCl2, 0.01% Tween 20, 200 &mgr;M of each deoxynucleotide triphosphate, 25 pmol of each primer, 0.25% skim milk and 0.4 units of Ultra Therm DNA Polymerase (Bio/Can Scientific, Mississauga, Ontario). The mixture was thermocycled for 30 cycles using the following program: 8 denaturation 95° C. 60 seconds annealing 52° C. 60 seconds extension 72° C. 120 seconds.
[0039] Thirty clones containing a 1.2 kb insert have been partially sequenced. The BLAST analysis of the 30 clones pointed to 28 unique sequences that were not identical to each other or to published sequences. Varying degrees of homology to known peptide synthase genes were seen. Seq. ID No. 17 shows the complete DNA sequence of representative clone (ps32). Seq. ID.No. 18 shows the translated amino acid sequence of this clone. Based on a Blast search of these sequences, the greatest homology is to a peptide synthase gene such as the pristinamycin synthase gene from Streptomyces pristinaespiralis and Bacillus sp. peptide synthetase genes such as gramicidin S synthase and surfactin synthetase. Stachelhaus and Marahiel, FEMS Micro. Letters 125: 3-14 (1995); Turgay et al., Mol. Micro 6: 529-546 (1992).
[0040] Sequence ID Nos. 81 to 94 show an additional 7 unique sequences (nucleic acid and translated amino acid sequences) of 1.2 kb PCR products amplified from soil DNA samples using these primers. These sequences have been named ps 2, ps 3, ps 7, ps 10, ps 24, ps 25 and ps 30. The sequences are unique in that they are all different from each other and from ps 32, and while they show greatest homology to peptide synthetase sequences in the databases searched by BLAST analysis, they do not match any known sequence. Within each, the conserved motifs (TGD, KIRGXRIEL, NGK) common to peptide synthetase domains as described by Turgay and Marahiel (1994) can be identified. Descriptive information of the clones follows:
[0041] Clone ps 2.1204 bp, with conserved motifs SGD, KIRGFRIEL, NGK, 67% G+C
[0042] Clone ps 3, 1178 bp, with conserved motifs TGD, KIRGSRIEL, NGK, 59% G+C
[0043] Clone ps 7, 1222 bp with conserved motifs TGD, KIRGYRIEL, NGK, 55.5% G+C
[0044] Clone ps 10, 1171 bp with conserved motifs TGD, KIRGHRIEL, NLK, 63% G+C
[0045] Clone ps 24, 1190 bp with conserved motifs TGD, KIRGHRIAM, NQK, 56% G+C
[0046] Clone ps 25, 1178 bp with conserved motifs TGD, KLRGYRIEL, NDK 68% G+C
[0047] Clone ps 30, 1200 bp with conserved motifs TGD, KVRGFRIEP, NGK, 64.5% G+C
[0048] Clone ps 32, 1172 bp with conserved motifs TGD, KIRGFRIEL, SGK, 67% G+C
EXAMPLE 4[0049] The experiment of example 1 was repeated using the Type II polyketide synthase primers given by Seq. ID. Nos. 3 and 4. PCR amplification was carried out in a total volume of 50 &mgr;l containing 50 ng of soil DNA, 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 2 mM MgCl2, 200 &mgr;M of each deoxynucleotide triphosphate, 25 pmol of each primer and 5.0 units of Taq polymerase (BRL Life Technologies, Gaithersburg, Md.). The thermal cycling conditions included denaturations at 94° C. for 60 seconds, annealing at 58° C. for 30 seconds and extensions at 72° C. for seconds, repeated for a total of 30 cycles.
[0050] PCR amplification yielded products of the expected size of 0.5 kilobase pairs. Sequencing of 18 randomly selected clones revealed the presence of 5 unique sequence that were not identical to each other or to published sequences. Seq. ID No. 19 shows the complete DNA sequence of a representative clone (clone clf). The translated amino acid sequence of this clone is shown in Seq. ID. No. 20. In a BLAST search of this DNA sequence against the protein database, the greatest homology is indicated to chain length factor genes of the Type II polyketide synthases.
EXAMPLE 5[0051] The experiment of Example 1 was repeated using the Type I polyketide synthase primers designed for fungal sequences. (Seq. ID. Nos. 11 and 12) PCR amplifications were carried out with lichen DNA samples from a variety of lichen species representing 11 genera prepared as described in Miao et al. (1991), supra.
[0052] PCR amplifications were carried out in a total volume of 50 ul containing approximately 10 ng of lichen DNA and 1 unit of Taq polymerase in a reaction as per Example 4. The cycling protocol was 30 cycles of denaturation at 95° C. for 60 seconds, annealing at 57° C. for 2 minutes and extensions at 72° C. for 2 minutes.
[0053] Forty seven clones with inserts of the expected size have been partially sequenced. The sequences all show homology to Type I fungal polyketide synthase genes but are all distinct from each other and from known sequences. Seq. ID. No. 21 shows the complete DNA sequence of a 637 base pair product amplified from DNA extracted from the lichen Xanthoparmelia cumberlandia (clone Xa.cum.6A). The translated amino acid sequence is shown in Seq. ID. No. 22. The greatest homology as determined by Blast analysis is indicated to fungal Type I polyketide synthase genes. Sequence ID Nos. 29 and 30 show the DNA sequence and conceptual amino acid sequence, respectively, for a further clone Xa.cum.6H isolated in this experiment. Sequences of DNA and the corresponding amino acid sequences for seven other lichen samples, Leptogium corniculatum (Seq. ID Nos. 31-42), Parmelia sulcata (Seq. ID Nos. 43-50); Peltigera neopolydactyla (Seq. ID Nos. 51-60); P0seudocyphellaria anthrapsis (Seq. ID Nos. 61-62); Siphula ceratities (Seq. ID. Nos. 63-66); Thamnolia vermicularis (Seq. ID Nos. 67-68); and Usnea florida (Seq. ID Nos. 69-80). Each of these sequences showed homology by Blast analysis to fungal Type I polyketide synthase.
EXAMPLE 6[0054] The experiment of Example 5 was repeated on DNA from the lichen Solorina crocea using the degenerate peptide synthetase primers of Example 3. Freshly collected lichen (approximately 1.2 g) was washed in running tap water to remove conspicuous soil and field detritis, and then further cleaned under a dissecting microscope. The cleaned sample was then gently shaken in a 50 ml tube containing about 40 ml of 0.2% SDS for at least 30 minutes and rinsed thoroughly with water. Excess surface water was blotted from the washed, hydrated lichen, and the sample was frozen at −80° C. for at least 15 minutes then vacuum dried at room temperature for 4 hours. The lichen was ground in liquid nitrogen using a mortar and pestle to produce a lichen powder for use in preparing DNA extracts.
[0055] To prepare the DNA extracts, 0.28 g of lichen. powder was placed into 18 2-ml microfuge tubes, and each aliquot was mixed with 1.25 ml isolation buffer (150 mM EDTA, 50 mM Tris pH 8, 1% sodium lauroyl sarcosine) and extracted for 1 hour at 62° C. The samples were centrifuged for three minutes to pellet cellular debris and a cloudy supernatant was decanted into new microfuge tubes. Each sample of the supemate was mixed with 750 &mgr;l 7.5 M ammonium acetate, incubated on ice for 30 minutes and centrifuged for five minutes at 16,000 ×g to precipitate proteins. The supernatant fluid was saved in new microfuge tubes and nucleic acids were precipitated with 0.6 volumes of isopropanol overnight at 4° C. Samples were centrifuged for five minutes at 16,000 ×g to pellet nucleic acids. The pellets were dissolved in TE containing RNAse (18 &mgr;g total) at 50° C. for 45 minutes. The solutions were then extracted with an equal volume of TE saturated phenol:chloroform (1:1), and again with chloroform. DNA in the aqueous phase was precipitated with 0.1 M sodium acetate and two volumes of ethanol at −20° C. for 2 hours, and then pelleted by centrifugation for five minutes at 16,000 ×g. The DNA pellet was washed with 75% ethanol, vacuum dried at room temperature for 3 minutes and then dissolved in TE. The final amount of DNA recovered was approximately 70 &mgr;g according to fluorometric measurement.
[0056] Two clones containing the expected 1.2 kb insert were sequenced and found to contain the same sequence shown in Seq. ID. No. 23. Seq. ID. No. 24 shows the translated amino acid sequence. The sequence is distinct, with greatest homology as determined by Blast analysis to the peptide synthase module of the cyanobacterium Microcyctis aeruginosa.
EXAMPLE 7[0057] The experiment of example 4 was repeated using the Type II polyketide synthase primers given by Seq. ID. Nos. 5 and 6. Three starting samples were used for recovery of Type II polyketide synthase genes: two uncharacterized strains of Streptomyces (strains WEC 68A and WEC 71 B) which had been shown to contain Type II polyketide synthase genes, and a soil sample obtained from a forest area near Vancouver, British Columbia. The soil sample was prepared using the basic protocol from Holben et al, Appl. Environ. Microbiol. 54: 703- 711 (1988) with variations in parameters such as mix time to adjust for the individual characteristics of the soil samples.
[0058] Streptomyces genomic DNA preparations suitable for PCR amplification were prepared from the mycelia harvested from a 50 ml culture in tryptic soy broth (Difco) which had been grown for 3 days at 300 C. The mycelia were collected by centrifugation at 2500 ×g for 10 minutes, the pellets were washed in 10% v/v glycerol and the washed pellets were frozen at −200C. The size of the pellets will vary with different strains; for extraction, 1 g samples were suspended in 5 ml TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA) in a 50 ml screw cap Oakridge tube and lysozyme (to 10 mg/ml) and RNase (to 40 ug/g) were added. Following incubation at 300C. for 45 min. a drop of each suspension was transferred to a microscope slide, one drop of 10% SDS was added and the suspension was checked for complete clearing and increased viscosity, indicating lysis. Most strains lyse with this incubation time, but incubation in lysozyme may be continued if necessary. (For strains which are very resistant to lysis, small amounts of DNA suitable for PCR amplification may often be prepared on a FastPrep™ instrument as described below.) Following confirmation of sufficient incubation time in lysozyme, 1.2 ml of 0.5 M EDTA, pH 8.0 was added to the suspension and mixed gently then 0.13 ml of 10 mg/ml Proteinase K (Gibco/BRL) solution was added and incubated for 5 min. at 300C. 0.7 ml of 10% SDS was added, mixed gently by tilting, then incubated again at 300 C. for 2 hours. Following lysis, three successive phenol/chloroform extractions were performed by adding a volume equivalent to the aqueous phase each time of a 1:1 mixture of ultrapure Tris buffer saturated phenol (Gibco/BRL) and chloroform. The aqueous phase was recovered each time following centrifugation at 2500 ×g for 10 min. in a shortened (i.e.wide bore) Pasteur pipet to minimize shearing; DNA was precipitated from the final aqueous phase with the addition of 0.1 volume of 3M Na acetate, pH 4.8 and 1 volume of isopropanol at room temperature. DNA was spooled from the solution onto a sealed Pasteur pipet, rinsed in ice cold 70% ethanol and solubilized in 0.5 ml TE buffer overnight at room temperature. DNA yields (as determined spectrophotometrically) typically range from 1 to 3 mg from 1 g of mycelia.
[0059] An alternative method for the preparation of small amounts of Streptomyces DNA suitable for PCR amplification has been found to be useful for strains resistant to lysis or when a faster method is desirable. This method makes use of the FastPrep™ instrument (Savant) and the methods and kit supplied by BIO 101 (Bio/Can Scientific, Mississauga, Canada). A 2 ml aliquot from a 20 ml, 3 day culture in tryptic soy broth is pelleted in a 2 ml microfuge tube and the size of the mycelial pellet is estimated. “Small” pellets are resuspended in 100 ul of sterile distilled water; larger pellets are resuspended in 200-300 ul of water. 200 ul of suspension is transferred to a homogenization tube from the kit. Following the manufacturer's protocol for the preparation of DNA from medium hard tissue, the large bead is added to this tube (which already contains a small bead) and 1 ml of solution CLS-TC from the kit is added and the samples are processed in the instrument for 10 seconds at speed setting 4.5. Samples are then spun 15 min. at 10,000 ×g at 40C. and 600 ul of the supernatant is transferred to a clean microfuge tube, 400 ul of Binding Matrix is added and mixed gently, then the sample is spun for 1 min. as above. The supernatant is discarded while the pellet is resuspended in 500 ul SEWS-M and transferred to a SPIN™ Filter unit. This is spun for 1 minute, the contents of the catch tube are discarded and the unit is spun again to dry. The filter unit is transferred to a new microfuge tube and DNA is eluted from the matrix in 100 ul DES which is left on the filter for 2-3 min. at room temperature. Eluted DNA is collected by spinning once again and this DNA is now ready to use in PCR amplifications. Due to components of the final solution, DNA prepared by this method is difficult to quantify.
[0060] Typically 1 ul or {fraction (1/10)} ul of this eluate is suitable as a template for PCR; larger quantities may be inhibitory to the PCR polymerase.
[0061] PCR amplification was carried out in a total volume of 50 ul containing 50 ng of DNA, 5% DMSO, 1.25 mM MgCl2, 200 uM of each deoxynucleotide triphosphate, 0.5 ug of each primer and 5.0 units of Taq polymerase (BRL Life Technologies, Gaithersburg, Md.). The thermal cycling started with a ‘touch-down’ sequence, lowering the annealing temperature from 65° C. to 58° C. over the course of 8 cycles. The temperature of the annealing step was then maintained at 58° C. for a further 35 cycles. The overall cycle used was: denaturation at 94° C. for 45 seconds, annealing at 65° C. to 58° C. for 1 minute and extension at 72° C. for 2 minutes. The size of the amplified fragments was expected to be approximately 1.5 kb.
[0062] Amplification of the two Streptomyces strains produced DNA fragments of the expected size (1482 bp and 1538 bp). Open reading frame analysis of the two sequences revealed the presence of a set of three ORFs each, corresponding to the 3′-ends of the putative Ks&agr;-subunit genes (50 to 60 bp), possible full-length Ks&agr;&bgr;genes (approx. 1.2 kb) and the first halves of potential ACP genes (approx 100 bp). In each sequence, the first and second ORFs were linked by a stop codon overlap typical of Ks&agr;&bgr;gene pair junctions and a possible indication of tight coexpression through translational coupling. The two Ks&bgr;genes were separated from the downstream ACP genes by a short spacer, again consistent with the expected gene organization.
[0063] Two clones were selected from among clones created using the soil DNA as a source which were found to produce 1.5 kb inserts. These inserts were sequenced and found to exhibit similarity to known KS&bgr;genes with three ORFs as described above. The translated amino acid sequences of the four genes are shown in Sequence ID Nos 25 to 28.
[0064] The four putative KS&bgr;genes had G+C content over 70% which is typical for the coding regions of Actinomycete genes. Results of data base searches established that the deduced products of all four ORFs were similar to known KS&bgr;gene products from Type II polyketide synthases but they did not match any known sequences.
EXAMPLE 8[0065] DNA can be extracted from large volumes of soil in accordance with the following procedure. Place dry soil into a sterile blender with 0.2% sodium pyrophosphate (100 ml/100 grams of soil). The pH of the sodium pyrophosphate solution should be about 10, although some variation to account for the characteristics of the soil may be appropriate. The mixture is blended for 30 seconds, decanted into centrifuges bottles and then centrifuged for 15 minutes at 100 ×g at 4° C. The supernatant is decanted, filtered two times through cheese cloth and saved. The pelleted soil is extracted an additional two times using the same procedure.
[0066] After the extractions, the pooled supernatants are centrifuged for 15 minutes at 10,500 ×g and the pellets are collected. The pellet may be incubated for 6 hours at 55° C. in pre-germination medium (0.5% w/v yeast extract (Difco), 0.5% w/v casamino acids (Difco) with 0,005 M CaCl2 and 0.025 M TES, pH 8.0 (added separately from sterile stock after autoclaving other components)) and then repelleted, or it may be used directly. In either case, the pellet (approximately 30-200 mg) is mixed with 5 ml 1X TE (pH 8.0), 500 &mgr;l 0.5 M EDTA (pH 8.0) and 500 &mgr;l-20 mg/ml lysozyme in 1X TE (pH 8.0) and incubated for 30 minutes at 37° C. 500 &mgr;l of 20% SDS and 100 &mgr;l-1% proteinase K in TE and 1% SDS are then added and the mixture is vortexed gently before incubating for 60 minutes at 55° C. or overnight at 37° C.
[0067] The incubated mixture is combined with 10 ml 20% polyvinylpyrrolidone (avg. MW=40,000) and incubated for 10 minutes at 70° C. One-half volume of 7.5 M ammonium acetate (stored at −20° C.) is then added, the resulting mixture is placed for 10 minutes on a low speed shaker, and then centrifuged for 20 minutes at 18,5000 ×g. The supernatant is combined with 1 volume of isopropanol and incubated for 30 minutes at −20° C. before centrifuging for 20 minutes at 18,500 ×g. The pellet from this centrifugation is washed in 70% ethanol, and centrifuged for 10 minutes at 18,500 ×g. The pellet from this final centrifugation is collected and air dried.
EXAMPLE 9[0068] To extract DNA from small amounts of soil the following procedure can be used. Combine soil (approx 1 g) with 1 ml distilled water, vortex to suspend and pellet at 19,000 ×g for 5 minutes. After removing the supernatant, freeze/thaw the samples twice by either of the following techniques (a) −20° C. freezer, 30 minutes, followed by 50-60° C. water bath (2 minutes), repeated 2 times; or (b) quick freeze in EtOH-dry ice bath (dip in until frozen, approx one minute) followed by 60° C. water bath (2 minutes), repeated 2 times. The pellets are then suspended in 350 &mgr;l TE buffer (pH 8.0), 50 &mgr;l 0.5 M EDTA and 50 &mgr;l -20 mg/ml lysozyme in TE buffer, vortexed and incubated at 37° C. for 30 minutes in a water bath. 50 &mgr;l of 20% SDS and 10 &mgr;l 1% Proteinase K/1% SDS in TE buffer is added, vortexed, and incubated for one hour at 55° C. or overnight at 37° C. One-tenth volume of 20% polyvinylpyrrolidone (avg. MW=40,000) is then added and incubated at 70° C. for 10 minutes. One-half volume of 7.5 M ammonium acetate (stored at −20° C.) is added, the tubes are shaken at low speed for ten minutes and then centrifuged at 19,000 ×g for 20 minutes. The supernatant is collected using pipets with cut tips to avoid shearing DNA, combined with one volume of isopropanol, mixed gently, and stored at −20° C. for 30 minutes or 4° C. overnight. The DNA is then collected as a pellet by centrifugation at 19,000 ×g for 10 minutes. The resulting pellet is washed with 0.5 ml of 70% ethanol (stored at −20° C.) and then air or vacuum dried. The dried DNA is then dissolved in 50-150 ul of TE buffer, incubated at 4° C. for one hour and then heated to 60° C. for 10 minutes to facilitate dissolving DNA. The resulting solutions are stored at −20° C. until use.
Claims
1. A method for recovery of antibiotic biosynthetic DNA from humic materials or lichen comprising the steps of:
- (a) combining a humic or lichen-derived sample with a set of amplification primers under conditions suitable for polymerase chain reaction amplification, wherein the primer set is a degenerate primer set selected to hybridize with conserved regions of antibiotic biosynthetic gene;
- (b) cycling the combined sample through a plurality of amplification cycles to amplify DNA complementary to the primer set; and
- (c) isolating the amplified DNA.
2. The method according to claim 1, wherein the primer set hybridizes with a polyketide synthase gene.
3. The method according to claim 2, wherein the primer set comprises primers having the sequence set forth in SEQ ID Nos. 1 and 2.
4. The method according to claim 2, wherein the primer set comprises primers having the sequence set forth in SEQ ID Nos. 3 and 4.
5. The method according to claim 2, wherein the primer set comprises primers having the sequence set forth in SEQ ID Nos. 5 and 6.
6. The method according to claim 2, wherein the primer set comprises primers having the sequence set forth in SEQ ID Nos. 11 and 12.
7. The method according to claim 1, wherein the primer set hybridizes with a isopenicillin N synthase gene.
8. The method according to claim 7, wherein the primer set comprises primers having the sequence set forth in SEQ ID Nos. 7 and 8.
9. The method according to claim 1, wherein the primer set hybridizes with a peptide synthetase gene.
10. The method according to claim 9, wherein the primer set comprises primers having the sequence set forth in SEQ ID Nos. 9 and 10.
11. The method according to claim 1, wherein the sample comprises DNA extracted from a soil sample.
12. The method according to claim 1, wherein the sample is a lichen-derived sample.
13. The method according to claim 1, further comprising the steps of cloning the isolated DNA into a host organism, and isolating the cloned DNA.
14. The method according to claim 13, wherein the host organism is E. coli.
15. An oligonucleotide primer having the sequence as defined in any of Seq. ID. Nos. 1 through 8.
16. A composition comprising two oligonucleotide primers having the sequence as defined in Seq. ID Nos. 1 and 2; 3 and 4; 5 and 6; or 7 and 8.
17. A polynucleotide comprising a region having the sequence given by any of sequence ID Nos. 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91 or 93.
18. A biosynthetic polypeptide encoded by a polynucleotide comprising a region having the sequence given by any of sequence ID Nos. 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79 81, 83, 85, 87, 89, 91 or 93.
19. The biosynthetic polypeptide of claim 18, wherein the polypeptide has the amino acid sequence given by any of Sequence ID Nos. 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 3,4 3,6 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92 or 94.
Type: Application
Filed: Aug 8, 2001
Publication Date: Sep 12, 2002
Applicant: Terragen Diversity, Inc.
Inventors: Barbara Kathleen Waters (Delta), Vivian P.W. Miao (Surrey), Yap Wai Ho (Singapore), Seow Kah Tong (Johor)
Application Number: 09924256
International Classification: C12P019/34; C12Q001/68; C07H021/04; C12N009/24;