Method for making synthetic gems comprising elements recovered from complete or partial human or animal remains and the product thereof

The invention includes a novel synthetic gem comprising elements recovered from complete or partial human or animal remains. The invention also includes the process of manufacturing synthetic gems comprising carbon from a vertebrate by cremating human or animal remains to produce carbon in a particulate and gaseous form. The carbon is then filtered using a conventional filtering technique. The carbon and other elements are then purified and graphetized using a Halogen Purification technique. The gems are then created using conventional sublimation techniques. The synthetic gems may be faceted and polished utilizing conventional faceting and polishing techniques. The gems may also utilize a conventional marking system.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

[0001] This is a non-provisional application of provisional patent application Ser. No. 60/306,053 filed Jul. 17, 2001.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] This invention relates to a method for making synthetic gems comprising elements recovered from complete or partial human or animal remains. This invention also relates to synthetic gems comprising elements recovered from complete or partial human or animal remains.

[0004] 2. Description of the Related Art

[0005] Synthetic gems have been manufactured since the 1960s as an attempt to substitute for naturally occurring gems. Advances in the methods of manufacture have made it possible to produce synthetic gems of equal or better appearance than naturally occurring gems. Examples of these synthetic gems include the synthetic diamonds disclosed in U.S. Pat. No. 4,042,673, and the moissanite gems disclosed in, U.S. Pat. Nos. 5,762,896, 6,025,289, and 6,200,917.

[0006] Even though synthetic gems can be indistinguishable from naturally occurring gems to the untrained eye, a trained person in the jewelry field can easily distinguish between naturally occurring and synthetic gems by using the following methods, among others: viewing the refraction lines under a microscope, viewing metallic inclusions through the microscope, subjecting synthetic gems to shortwave ultraviolet light and viewing patterns caused by seed crystals under the microscope. Because of the relative ease with which a trained person can distinguish synthetic gems from naturally occurring gems, the synthetic gem's value is much lower than that of a naturally occurring gem. These factors have severely limited the appeal of the synthetic gems, and the success of the synthetic gem business as a whole. In the case of synthetic diamonds the cost to produce them is equal to, or more expensive than natural gem quality diamonds. Because of these factors, naturally occuring gems remain much more popular and valuable than synthetic gems.

[0007] Producers of synthetic gems are currently using graphite that is mined from beneath the earth's surface, or synthetic graphite made from burning wood in the absence of oxygen, as their source of carbon for producing synthetic gems. This carbon source cannot be traced to any specific vertebrate, and therefore a gem produced from this source would have several disadvantages when compared to the present invention: a synthetic gem made from mined graphite would not be used as a memorial gem in a memorial or funeral service for a deceased human or animal; a synthetic gem made from mined graphite would not be used as a keepsake that preserves the remains and memories of the deceased for bereaved family, friends, loved ones, lovers, or acquaintances; a synthetic gem made from mined graphite would not provide a symbol of the bond between two individuals who wish to express their commitment by providing ingredients to a single synthetic gem; and a synthetic gem made from mined graphite would not produce a unique collectable gem celebrating a famous person.

OBJECTS AND ADVANTAGES

[0008] It is, therefore, an object of the present invention to provide a novel synthetic gem comprising elements recovered from complete or partial human remains.

[0009] It is also an object of the present invention to provide a method for making a synthetic gem comprising elements recovered from complete or partial human remains.

[0010] It is yet another object of the present invention to provide a novel synthetic gem comprising elements recovered from complete or partial animal remains.

[0011] It is still another object of the present invention to provide a method for making a synthetic gem comprising elements recovered from complete or partial animal remains.

[0012] It is another object of the present invention to provide a synthetic gem to be used in a memorial or funeral service for a deceased human or animal.

[0013] It is a further object of the present invention to provide a synthetic gem to be used as a permanent keepsake that preserves the remains and memories of the deceased with a diamond-quality gem for bereaved family, friends, loved ones, lovers, or acquaintances.

[0014] It is still another object of the present invention to provide a synthetic gem which is a symbol of the bond between two individuals who wish to express their commitment by providing ingredients to a single synthetic gem.

[0015] It is yet another object of the present invention to provide a synthetic gem which provides a unique authenticated collectable gem celebrating a famous person.

[0016] Accordingly, the present invention eliminates the disadvantages of natural gems which cannot be traced to any specific vertebrate.

[0017] These together with other objects of the invention, along with the various features of novelty which characterize the invention, are pointed out with particularity in the detailed description annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be had to the accompanying descriptive matter in which there is illustrated a preferred embodiment of the invention.

BRIEF SUMMARY OF THE INVENTION

[0018] A broad aspect of the invention comprises a novel synthetic gem comprising elements recovered from complete or partial human or animal remains. The present invention also includes the method for making a synthetic gem comprising elements recovered from complete or partial human or animal remains.

[0019] The process of manufacturing synthetic gems comprising carbon from a vertebrate comprises the steps of cremating human or animal remains to produce carbon in a particulate and gaseous form. The carbon is then collected or filtered using a conventional collection or filtering technique. The carbon and other elements are then purified and graphetized, using a High Temperature Vacuum Induction Purification technique. The gems are then created using conventional sublimation techniques. The synthetic gems may be faceted and polished utilizing conventional faceting and polishing techniques. The gems may also utilize a conventional marking system.

[0020] In use, the synthetic gem can function as a memorial item to be used in a funeral or memorial ceremony by survivors, family, friends, loved ones, and acquaintances.

[0021] In addition, it can be used to remember a deceased loved one by mounting it in a number of different ways including, but not limited to: keepsakes, memorials, mementos, collectors items, loose gems, gems set in rings, watches, bracelets, pendants, earrings, anklets, waist bands, ornaments, crucifixes, rosaries, necklaces, statues, figurines, sculptures, art work, or custom gold, silver, platinum, brass, bronze, stainless steel, or copper settings.

[0022] There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional features of the invention that will be described hereinafter and that will form the subject matter of the invention. Those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other devices or methods for carrying out the several purposes of the present invention. It is important, therefore, that the invention be regarded as including such equivalent constructions and methods insofar as they do not depart from the spirit and scope of the present disclosure.

DRAWINGS

[0023] Not Applicable

DETAILED DESCRIPTION OF THE INVENTION

[0024] While the invention may be susceptible to embodiments in different forms, there will be described in detail, specific embodiments with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention, and is not intended to limit the invention to that which is described herein.

[0025] The present invention is a novel synthetic gem comprising elements recovered from complete or partial human or animal remains. The present invention also includes the method for making a synthetic gem comprising elements recovered from complete or partial human or animal remains.

[0026] The process of manufacturing synthetic gems comprising carbon from a vertebrate begins with one of several conventional cremation processes well-known in the art. Cremation as defined by World Book Encyclopedia “is burning a dead body to ashes.” The cremation is performed in a building called a crematory or crematorium. The body is put in a coffin or other container, which is burned in a special oven for several hours. The body is generally burned at a temperature that can range from approximately 1000 degrees Fahrenheit up to approximately 1800 degrees Fahrenheit. In order to facilitate higher airborne particulate carbon levels, a higher gas to air ratio is used so that the gas burners cremate the body at the low end of the temperature range. This cremation process produces sufficient carbon in particulate and gaseous form, and is collected using filtering or collection techniques. The cremation processes that could be used include, but are not limited to those described in the following patents: U.S. Pat. Nos. 5,957,065 and 4,603,644 and the U.S. Patents cited therein.

[0027] Carbon elements produced during the cremation process are collected using one of several conventional collection or filtering techniques before these gases escape into the air from the smokestack of the cremation oven. The filtering or other techniques that could be used for this process include, but are not limited to: electrostatic filtering, dry scrubbing, cartridge filtering, and wet scrubbing, as described in but not limited to the following patents: U.S. Pat. Nos. 5,406,582, 5,198,001, 6,241,809, 6,231,648, 6,231,643, 6,110,256, 6,113,795, 6,106,592, 6,096,118, 6,203,600 and 6,193,782. The preferred process for carbon collection is to retrieve the carbon from the cremation oven after the body has been cremated. The preferred process for collection begins with the oven operator positioning the body in the oven so that the head and chest area are not positioned directly underneath the main burner. This can be accomplished by positioning the body to the left or right side of the main burner, or positioning the body so that the legs and feet are underneath the main burner rather than the head and torso. Positioning the body in this manner assures that carbon will remain in the body's head area. The carbon can then be gathered by hand, or by using a metal shovel or scoop, or the like. Alternatively, one or more body parts may be cremated.

[0028] An alternative process for carbon collection is using a filter system. The filtering is accomplished by use of a horizontal cartridge dust collector with special high temperature fiberglass filter cartridges with 2″ pleats, ceramic potting, and temperature resistant silicone gasketing. The filters are capable of handling temperatures of 500 degrees Fahrenheit, and 2400 cfm of air flow. The total filter area is 996 square feet and provides an air to cloth ratio of 4:1. This ratio is needed in order to bleed in approximately 65% of ambient air to cool the air below 500 degrees Fahrenheit. A 7.5 horsepower motor/blower is included in the filter housing to provide up to 4000 cfm air flow to maintain proper flow through the filter media. The carbon particles will be removed from the filter with reverse pulses of air, and deposited in a metal drawer below the filter cartridges.

[0029] Another alternative embodiment for carbon collection involves collecting carbon from pulverized cremated remains. These remains consist mostly of ash, but depending on how the cremation was performed, there may be traces of carbon particles mixed in with the ashes. The remains can be placed in a vacuum induction furnace. The furnace is heated to 2000 degrees centigrade in a vacuum ranging from 30 toir to 500 torr. Chlorine gas is injected into the furnace, and reacts with the impurities to form chlorides. The impurities leave the carbon in the form of chloride gases, and are filtered as they exit the furnace. The ash is removed leaving carbon. Once these particles of carbon have been collected, they are purified, and graphetized.

[0030] The carbon and other elements are purified, and graphetized using conventional carbon purification techniques. The preferred purification technique is Halogen Purification. This is done with the use of a High Temperature Vacuum Induction Furnace. The High Temperature Vacuum Induction Furnace utilizes vacuum pressure in the range of 30 torr to 500 torr and a temperature up to 3000 degrees Centigrade. Chlorine gas is injected into the furnace, and reacts with the impurities to form chlorides. The impurities leave the carbon in the form of chloride gases, and are filtered as they exit the furnace. After the impurities have been removed, the carbon that remains is pure within 10 ppm. In addition to being pure withnin 10 ppm, the carbon also becomes graphetized by the high temperatures. It is necessary to provide graphite for the crystal growth process.

[0031] Using the process of crystal growth from sublimation according to techniques of the type described but not limited to the process described in U.S. Pat. Nos. 34,061, 6,200,917, 6,025,289, 6,045,613, 4,042.673 and 5,762,896, the purified/graphetized carbon from vertebrates is used to replace or supplement purified/graphetized carbon of non-vertebrates, and processed into synthetic gems comprising carbon from vertebrates.

[0032] The synthetic gems may be faceted and polished utilizing conventional faceting and polishing techniques, which are well-known in the art.

[0033] The gems, as a client selected option, may utilize a laser marking system such as that disclosed in U.S. Pat. No. 6,211,484 in order to mark each gem with it's own individual identification corresponding to the vertebrate which supplied at least a portion of the carbon for the gem.

[0034] In use, the synthetic gem can function as a memorial item to be used in a funeral or memorial ceremony by survivors, family, friends, loved ones, and acquaintances.

[0035] In addition, it can be used to remember a deceased loved one by mounting it in a number of different ways including, but not limited to: keepsakes, memorials, mementos, collectors items, loose gems, gems set in rings, watches, bracelets, pendants, earrings, anklets, waist bands, ornaments, crucifixes, rosaries, necklaces, statues, figurines, sculptures, art work, or custom gold, silver, platinum, brass, bronze, stainless steel, or copper settings.

[0036] The resulting synthetic gem quality crystal comprising carbon from a vertebrate has a unique character to it, because it specifically relates to the vertebrate which supplied at least a portion of the carbon for the gem. This personal touch makes it much more valuable and meaningful to the owner of such a gem. The gem could also be marked with its own individual identification corresponding to the vertebrate that the gem originated from so that it could not be confused with a synthetic gem not comprising carbon from a vertebrate.

[0037] Hence, while the invention has been described in connection with a preferred embodiment and method, it will be understood that it is not intended that the invention be limited to that embodiment and method. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as disclosed.

[0038] As to the manner of usage and operation of the instant invention, same should be apparent from the above disclosure, and accordingly no further discussion relevant to the manner of usage and operation of the instant invention shall be provided.

[0039] With respect to the above description then, it is to be realized that the optimum proportions for the elements of the invention, and variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships described in the specification are intended to be encompassed by the present invention.

[0040] Therefore, the foregoing is considered illustrative of only the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact method, construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.

Claims

1. A synthetic gem comprising elements recovered from human remains.

2. The gem of claim 1 wherein the elements comprise carbon.

3. A synthetic gem comprising elements recovered from animal remains.

4. The gem of claim 3 wherein the elements comprise carbon.

5. The method of making a synthetic gem comprising elements recovered from human remains comprising the steps of:

a) cremating human remains to produce carbon;
b) filtering the carbon;
c) purifying the carbon;
d) graphetizing the carbon; and
e) creating gems using crystal growth sublimation.

6. The method of claim 5 wherein the carbon is purified using a Halogen Purification technique.

7. The method of claim 6 wherein the Halogen Purification technique comprises a High Temperature Vacuum Induction Purification technique.

8. The method of claim 5 wherein the carbon is graphetized using a High Temperature Vacuum Induction Purification technique.

9. The method of claim 5 further comprising the steps of faceting and polishing the gems.

10. The method of claim 6 further comprising the steps of faceting and polishing the gems.

11. The method of claim 5 further comprising the steps of marking the gems with various indicia.

12. The method of claim 10 further comprising the steps of marking the gems with various indicia.

13. The method of making a synthetic gem comprising elements recovered from animal remains comprising the steps of:

a. cremating animal remains to produce carbon;
b. filtering the carbon;
c. purifying the carbon;
d. graphetizing the carbon; and
e. creating gems using crystal growth sublimation.

14. The method of claim 13 wherein the carbon is purified using a Halogen Purification technique.

15. The method of claim 14 wherein the Halogen Purification technique comprises a High Temperature Vacuum Induction Purification technique.

16. The method of claim 13 wherein the carbon is graphetized using a High Temperature Vacuum Induction Purification technique.

17. The method of claim 13 further comprising the steps of faceting and polishing the gems.

18. The method of claim 14 further comprising the steps of faceting and polishing the gems.

19. The method of claim 13 further comprising the steps of marking the gems with various indicia.

20. The method of claim 18 further comprising the steps of marking the gems with various indicia.

Patent History
Publication number: 20030017932
Type: Application
Filed: Mar 18, 2002
Publication Date: Jan 23, 2003
Inventors: Russell P. VandenBiesen (Naperville, IL), Gregory R. Herro (Chicago, IL), Dean T. VandenBiesen (Oshkosh, WI)
Application Number: 10100666
Classifications
Current U.S. Class: Synthetic Precious Stones (e.g., Single Crystals, Etc.) (501/86)
International Classification: C30B029/02;