Heat transfer device

A heat transfer device includes a thermal superconducting body, which has a hollow heat transfer body and a heat transfer layer. The hollow heat transfer body is made of a heat conductive material and has a flat top portion and a flat bottom portion connected to the flat top portion and cooperating with the flat top portion to form a sealed vacuum receiving space therebetween. The heat transfer layer is made of a thermal superconductor material, is disposed in the vacuum receiving space, and forms a superconductor lining on an inner wall surface of the heat transfer body.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority of Taiwanese application No. 91207634, filed on May 24, 2002.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The invention relates to a heat transfer device, more particularly to a heat transfer device capable of rapidly and efficiently transferring heat.

[0004] 2. Description of the Related Art

[0005] Referring to FIG. 1, a conventional heat pipe 1 used for heat transfer includes a sealed metal tube 12 and a work fluid 13 contained therein. Heat is absorbed at one end by vaporization of the work fluid 13 and is released at the other end by condensation of the vapor of the work fluid 13. However, the heat conducting speed of the heat pipe 1 is limited by the amount of latent heat of liquid vaporization and by the speed of the change state of the work fluid 13. Moreover, the heat pipe 1 suffers from thermal losses, which further reduce the thermal efficiency.

[0006] Additionally, in a conventional portable electronic device, the amount of heat released by a heat source, such as a central processing unit (CPU) of the device, increases with the increase in the functions and the processing speed of the device. Therefore, conventional heat transfer devices, such as the aforesaid heat pipe, can not be utilized for efficiently removing heat from the electronic device.

SUMMARY OF THE INVENTION

[0007] Therefore, the object of the present invention is to provide a heat transfer device capable of rapidly and efficiently transferring heat.

[0008] The heat transfer device according to this invention includes a thermal superconducting body, which has a hollow heat transfer body and a heat transfer layer.

[0009] The hollow heat transfer body is made of a heat conductive material and has a flat top portion and a flat bottom portion connected to the flat top portion and cooperating with the flat top portion to form a sealed vacuum receiving space therebetween.

[0010] The heat transfer layer is made of a thermal superconductor material, is disposed in the vacuum receiving space, and forms a superconductor lining on an inner wall surface of the heat transfer body.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiment with reference to the accompanying drawings, of which:

[0012] FIG. 1 is a fragmentary sectional view of a conventional heat pipe;

[0013] FIG. 2 is a schematic block diagram of the preferred embodiment of a heat transfer device according to this invention;

[0014] FIG. 3 is a schematic view of the preferred embodiment in a state of use;

[0015] FIG. 4 is a perspective view of the preferred embodiment;

[0016] FIG. 5 is a sectional view of the preferred embodiment;

[0017] FIG. 6 is a perspective view of a portable computer which includes the preferred embodiment of the heat transfer device according to this invention; and

[0018] FIG. 7 is a partially enlarged perspective view of the portable computer.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0019] Before the present invention is described in greater detail, it should be noted that like elements are denoted by the same reference numerals throughout the disclosure.

[0020] Referring to FIGS. 2 and 3, the preferred embodiment of a heat transfer device according to this invention is shown to include a thermal superconducting body 5, a heat collecting plate 6, and heat conducting paste 7, and is mounted on a heat source 4, such as a central processing unit (CPU), an integrated circuit (IC), and the like.

[0021] Referring to FIG. 4 and 5, the thermal superconducting body 5 includes a hollow heat transfer body 55 and a heat transfer layer 57. The hollow heat transfer body 55 is made of a heat conductive material, such as aluminum, copper, or a metal alloy, or a material which exhibits excellent heat conducting characteristics, such as ceramics, glass, graphite, or thermal conductive plastic. The hollow heat transfer body 55 can be formed in any suitable shape, and has a flat top portion 52 and a flat bottom portion 51 connected to the flat top portion 52 and cooperating with the flat top portion 52 to form a sealed vacuum receiving space 56 therebetween. The flat top portion 52 is formed with a plurality of recesses 53, each of which has a bottom that extends to and that is in contact with the flat bottom portion 51.

[0022] The heat transfer layer 57 is made of a thermal superconductor material, is disposed in the vacuum receiving space 56, and forms a superconductor lining on an inner wall surface 54 of the heat transfer body 55.

[0023] It is noted that the thermal superconductor material includes at least one compound selected from the group consisting of sodium peroxide, sodium oxide, beryllium oxide, manganese sesquioxide, aluminum dichromate, calcium dichromate, boron oxide, dichromate radical, and combinations thereof; at least one compound selected from the group consisting of cobaltous oxide, manganese sesquioxide, beryllium oxide, strontium chromate, strontium carbonate, rhodium oxide, cupric oxide, &bgr;-titanium, potassium dichromate, boron oxide, calcium dichromate, manganese dichromate, aluminum dichromate, dichromate radical, and combinations thereof; and at least one compound selected from the group consisting of denatured rhodium oxide, potassium dichromate, denatured radium oxide, sodium dichromate, silver dichromate, monocrystalline silicon, beryllium oxide, strontium chromate, boron oxide, sodium peroxide, &bgr;-titanium, a metal dichromate, and combinations thereof.

[0024] Referring again to FIG. 3, the heat collecting plate 6 is mounted on the flat bottom portion 51 externally of the vacuum receiving space 56. The heat collecting plate 6 has opposite surfaces, each of which is coated with the heat conducting paste 7. The heat collecting plate 6 is made of a thermal conductive metal, such as copper and aluminum.

[0025] In actual practice, the inner wall surface 54 of the heat transfer body 55 is passivated, washed and dried. The thermal superconductor material is then injected or filled into the hollow heat transfer body 55, which is then vacuumed and sealed so as to form the superconductor lining on the inner wall surface 54 of the heat transfer body 55.

[0026] In use, referring to FIGS. 6 and 7, the thermal superconducting body 5 of the preferred embodiment of the heat transfer device according the present invention is shown to be mounted on a portable computer 8 for transferring heat from the heat source 4 (such as CPU) of the portable computer 8.

[0027] The advantages of the heat transfer device of the present invention are as follows:

[0028] 1. Rapid and efficient transfer of heat can be achieved due to the high heat conducting coefficient of the thermal superconductor material used for the heat transfer layer of the heat transfer device of the present invention.

[0029] 2. The configuration of the heat transfer device of the present invention is more flexible than that of the aforesaid conventional heat pipe.

[0030] While the present invention has been described in connection with what is considered the most practical and preferred embodiment, it is understood that this invention is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.

Claims

1. A heat transfer device comprising:

a thermal superconducting body including
a hollow heat transfer body made of a heat conductive material and having a flat top portion and a flat bottom portion connected to said flat top portion and cooperating with said flat top portion to form a sealed vacuum receiving space therebetween; and
a heat transfer layer made of a thermal superconductor material, disposed in said vacuum receiving space, and forming a superconductor lining on an inner wall surface of said heat transfer body.

2. The heat transfer device as claimed in claim 1, wherein said flat top portion is formed with a plurality of recesses, each of which has a bottom that extends to and that is in contact with said flat bottom portion.

3. The heat transfer device as claimed in claim 1, further comprising a heat collecting plate mounted on said flat bottom portion externally of said vacuum receiving space.

4. The heat transfer device as claimed in claim 3, wherein said heat collecting plate has opposite surfaces, each of which is coated with heat conducting paste.

5. The heat transfer device as claimed in claim 4, wherein said heat collecting plate is made of thermal conductive metal selected from a group consisting of copper and aluminum.

6. The heat transfer device as claimed in claim 1, wherein said thermal superconductor material includes at least one compound selected from the group consisting of sodium peroxide, sodium oxide, beryllium oxide, manganese sesquioxide, aluminum dichromate, calcium dichromate, boron oxide, dichromate radical, and combinations thereof; at least one compound selected from the group consisting of cobaltous oxide, manganese sesquioxide, beryllium oxide, strontium chromate, strontium carbonate, rhodium oxide, cupric oxide, &bgr;-titanium, potassium dichromate, boron oxide, calcium dichromate, manganese dichromate, aluminum dichromate, dichromate radical, and combinations thereof; and at least one compound selected from the group consisting of denatured rhodium oxide, potassium dichromate, denatured radium oxide, sodium dichromate, silver dichromate, monocrystalline silicon, beryllium oxide, strontium chromate, boron oxide, sodium peroxide, &bgr;-titanium, a metal dichromate, and combinations thereof.

7. The heat transfer device as claimed in claim 1, wherein said heat conductive material for said hollow heat transfer body is selected from a group consisting of aluminum, copper, metal alloy, ceramics, glass, graphite, and thermal conductive plastic.

Patent History
Publication number: 20030217837
Type: Application
Filed: Jul 31, 2002
Publication Date: Nov 27, 2003
Inventor: Chin-Kuang Luo (Taichung City)
Application Number: 10210642
Classifications
Current U.S. Class: Utilizing Capillary Attraction (165/104.26); With Coated, Roughened Or Polished Surface (165/133)
International Classification: F28D015/00; F28F013/18; F28F019/02;