Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides
Presented are methods and compositions for targeted chromosomal genomic alterations with modified single-stranded oligonucleotides. The oligonucleotides of the invention have modified nuclease-resistant termini comprising LNA, phosphorothioate linkages or 2′-O-Me base analogues or combinations of such modifications.
[0001] The technical field of the invention is oligonucleotide-directed repair or alteration of plant genetic information using novel chemically modified oligonucleotides.
BACKGROUND OF THE INVENTION[0002] A number of methods have been developed specifically to alter the genomic information of plants. These methods generally include the use of vectors such as, for example, T-DNA, carrying nucleic acid sequences encoding partial or complete portions of a particular protein which is expressed in a cell or tissue to effect the alteration. The expression of the particular protein then results in the desired phenotype. See, for example, U.S. Pat. No. 4,459,355 which describes a method for transforming plants with a DNA vector and U.S. Pat. No. 5,188,642 which describes cloning or expression vectors containing a transgenic DNA sequence which when expressed in plants confers resistance to the herbicide glyphosate. The use of such transgene-containing vectors adds one or more exogenous copies of a gene in a usually random fashion at one or more integration sites of the plant's genome at some variable frequency. The introduced gene may be foreign or may be derived from the host plant. Any gene which was originally present in the genome, which may be, for example, a normal allelic variant, mutated, defective, and/or functional copy of the introduced gene, is retained in the genome of the host plant.
[0003] These methods of gene alteration are problematic in that complications which can compromise the vigor, productivity, yield, etc. of the plant may result. One such problem is that insertion of exogenous nucleic acid at random location(s) in the genome can have deleterious effects. The random nature of this insertion and/or the use of exogenous promoters can also cause the timing, location or strength of expression of the introduced transgene to be inappropriate or unpredictable. Another problem with such systems includes the addition of unnecessary and unwanted genetic material to the genome of the recipient, including, for example, T-DNA ends or other vector remnants, exogenous control sequences required to allow production of the transgene protein, which control sequences may be exogenous or native to the host plant and/or the transgene, and reporter genes or resistance markers. Such remnants and added sequences may have presently unrecognized consequences, for example, involving genetic rearrangements of the recipient genomes. In addition, concerns have been raised with consumption, especially by humans, of plants containing such exogenous genetic material.
[0004] More recently, simpler systems involving poly- or oligo-nucleotides have been described for use in the alteration of genomic DNA. These chimeric RNA-DNA oligonucleotides, requiring contiguous RNA and DNA bases in a double-stranded molecule folded by complementarity into a double hairpin conformation, have been shown to effect single basepair or frameshift alterations, for example, for mutation or repair of plant, animal or fungal genomes. See, for example, WO 99/07865 and U.S. Pat. No. 5,565,350. In the chimeric RNA-DNA oligonucleotide, an uninterrupted stretch of DNA bases within the molecule is required for sequence alteration of the targeted genome while the obligate RNA residues are involved in complex stability. Due to the length, backbone composition, and structural configuration of these chimeric RNA-DNA molecules, they are expensive to synthesize and difficult to purify. Moreover, if the RNA-containing strand of the chimeric RNA-DNA oligonucleotide is designed so as to direct gene alteration, a series of mutagenic reactions resulting in nonspecific base alteration can result. Such a result reduces the utility of such a molecule in methods designed for targeted gene alteration.
[0005] Alternatively, other oligo- or poly-nucleotides have been used which require a triplex forming, usually polypurine or polypyrimidine, structural domain which binds to a DNA helical duplex through Hoogsteen interactions between the major groove of the DNA duplex and the oligonucleotide. Such oligonucleotides may have an additional DNA reactive moiety, such as psoralen, covalently linked to the oligonucleotide. These reactive moieties function as effective intercalation agents, stabilize the formation of a triplex and can be mutagenic. Such agents may be required in order to stabilize the triplex forming domain of the oligonucleotide with the DNA double helix if the Hoogsteen interactions from the oligonucleotide/target base composition are insufficient. See, e.g., U.S. Pat. No. 5,422,251. The utility of these oligonucleotides for directing targeted gene alteration is compromised by a high frequency of nonspecific base changes.
[0006] In more recent work, the domain for altering a genome is linked or tethered to the triplex forming domain of the bi-functional oligonucleotide, adding an additional linking or tethering functional domain to the oligonucleotide. See, e.g., Culver et al., Nature Biotechnology 17: 989-93 (1999). Such chimeric or triplex forming molecules have distinct structural requirements for each of the different domains of the complete poly- or oligo-nucleotide in order to effect the desired genomic alteration in either episomal or chromosomal targets.
[0007] Other genes, e.g. CFTR, have been targeted by homologous recombination using duplex fragments having several hundred basepairs. See, e.g., Kunzelmann et al., Gene Ther. 3:859-867 (1996). Similar efforts to target genes by homologous recombination in plants using large fragments of DNA had some success. See Kempin et al., Nature 389:802-803 (1997). However, the efficiency and reproducibility of the published homologous recombination approach in plants has severely limited the widespread use of this method.
[0008] Earlier experiments to mutagenize an antibiotic resistance indicator gene by homologous recombination used an unmodified DNA oligonucleotide rather than larger fragments of DNA, wherein the oligonucleotide had no functional domains other than a region of complementary sequence to the target. See Campbell et al., New Biologist 1: 223-227 (1989). These experiments required large concentrations of the oligonucleotide, exhibited a very low frequency of episomal modification of a targeted exogenous plasmid gene not normally found in the cell and have not been reproduced. However, as shown in examples herein, we have observed that an unmodified DNA oligonucleotide can convert a base at low frequency which is detectable using the assay systems described herein.
[0009] Oligonucleotides designed for use in the targeted alteration of genetic information are significantly different from oligonucleotides designed for antisense approaches. For example, antisense oligonucleotides are perfectly complementary to and bind an mRNA strand in order to modify expression of a targeted mRNA and are used at high concentration. As a consequence, they are unable to produce a gene conversion event by either mutagenesis or repair of a defect in the chromosomal DNA of a host genome. Furthermore, the backbone chemical composition used in most oligonucleotides designed for use in antisense approaches renders them inactive as substrates for homologous pairing or mismatch repair enzymes and the high concentrations of oligonucleotide required for antisense applications can be toxic with some types of nucleotide modifications. In addition, antisense oligonucleotides must be complementary to the mRNA and therefore, may not be complementary to the other DNA strand or to genomic sequences that span the junction between intron sequence and exon sequence.
[0010] Artificial chromosomes can be useful for the screening purposes identified herein. These molecules are man-made linear or circular DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al., 1983). The essential elements are: (1) Autonomous Replication Sequences (ARS), (2) Centromeres, and (3) Telomeres.
[0011] Yeast artificial chromosomes (YACs) allow large segments of genomic DNA to be cloned and modified (Burke et al., Science 236:806; Peterson et al., Trends Genet. 13:61 (1997); Choi, et al., Nat. Genet., 4:117-223 (1993), Davies, et al., Biotechnology 11:911-914 (1993), Matsuura, et al., Hum. Mol. Genet., 5:451-459 (1996), Peterson et al., Proc. Natl. Acad. Sci., 93:6605-6609 (1996); and Schedl, et al., Cell, 86:71-82 (1996)). Other vectors also have been developed for the cloning of large segments of genomic DNA, including cosmids, and bacteriophage P1 (Sternberg et al., Proc. Natl. Acad. Sci. U.S.A., 87:103-107 (1990)). YACs have certain advantages over these alternative large capacity cloning vectors (Burke et al., Science, 236:806-812 (1987)). The maximum insert size is 35-30 kb for cosmids, and 100 kb for bacteriophage P1, both of which are much smaller than the maximal insert size for a YAC.
[0012] An alternative to YACs are cloning systems based on the E. coli fertility factor that have been developed to construct large genomic DNA insert libraries. They are bacterial artificial chromosomes (BACs) and P-1 derived artificial chromosomes (PACs) (Mejia et al., Genome Res. 7:179-186 (1997); Shizuya et al., Proc. Natl. Acad. Sci. 89:8794-8797 (1992); Ioannou et al., Nat. Genet., 6:84-89 (1994); Hosoda et al., Nucleic Acids Res. 18:3863 (1990)). BACs are based on the E. coli fertility plasmid (F factor); and PACs are based on the bacteriophage P1. These vectors propagate at a very low copy number (1-2 per cell) enabling genomic inserts up to 300 kb in size to be stably maintained in recombination deficient hosts. The PACs and BACs are circular DNA molecules that are readily isolated from the host genomic background by classical alkaline lysis (Birnboim et al., Nucleic Acids Res. 7:1513-1523 (1979)). In addition, BACs have been developed for transformation of plants with high-molecular weight DNA using the T-DNA system (Hamilton, Gene 24:107-116 (1997); Frary & Hamilton, Transgenic Res. 10: 121-132 (2001)).
[0013] A need exists for simple, inexpensive oligonucleotides capable of producing targeted alteration of genetic material such as those described herein as well as methods to identify optimal oligonucleotides that accurately and efficiently alter target DNA.
SUMMARY OF THE INVENTION[0014] Novel, modified single-stranded nucleic acid molecules that direct gene alteration in plants are identified and the efficiency of alteration is analyzed both in vitro using a cell-free extract assay and in vivo using a yeast system and a plant system. The alteration in an oligonucleotide of the invention may comprise an insertion, deletion, substitution, as well as any combination of these. Site specific alteration of DNA is not only useful for studying function of proteins in vivo, but it is also useful for creating plants with desired phenotypes, including, for example, environmental stress tolerance, improved nutritional value, herbicide resistance, disease resistance, modified oil production, modified starch production, and altered floral morphology including selective sterility. As described herein, oligonucleotides of the invention target directed specific gene alterations in genomic double-stranded DNA in cells. The target genomic DNA can be nuclear chromosomal DNA as well as plastid or mitochondrial chromosomal DNA. The target DNA can also be a transgene present in the plant cell, including, for example, a previously introduced T-DNA. For screening purposes, the target plant DNA can also be extrachromosomal DNA present in plant or non-plant cells in various forms including, e.g., mammalian artificial chromosomes (MACs), PACs from P-1 vectors, yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PLACs), as well as episomal DNA, including episomal DNA from an exogenous source such as a plasmid or recombinant vector. Many of these artificial chromosome constructs containing plant DNA can be obtained from a variety of sources, including, e.g., the Arabidopsis Biological Resource Center (ABRC) at the Ohio State University, and the Rice Genome Research Program at the MAFF DNA bank in Ibaraki, Japan. The target DNA may be transcriptionally silent or active. In a preferred embodiment, the target DNA to be altered is the non-transcribed strand of a genomic DNA duplex. In a more preferred embodiment, the target DNA to be altered is the non-transcribed strand of a transcribed gene of a genomic DNA duplex.
[0015] The low efficiency of targeted gene alteration obtained using unmodified DNA oligonucleotides is believed to be largely the result of degradation by nucleases present in the reaction mixture or the target cell. Although different modifications are known to have different effects on the nuclease resistance of oligonucleotides or stability of duplexes formed by such oligonucleotides (see, e.g., Koshkin et al., J. Am. Chem. Soc., 120:13252-3), we have found that it is not possible to predict which of any particular known modification would be most useful for any given alteration event, including for the construction of gene alteration oligonucleotides, because of the interaction of different as yet unidentified proteins during the gene alteration event. Herein, a variety of nucleic acid analogs have been developed that increase the nuclease resistance of oligonucleotides that contain them, including, e.g., nucleotides containing phosphorothioate linkages or 2′-O-methyl analogs. We recently discovered that single-stranded DNA oligonucleotides modified to contain 2′-O-methyl RNA nucleotides or phosphorothioate linkages can enable specific alteration of genetic information at a higher level than either unmodified single-stranded DNA or a chimeric RNA/DNA molecule. See, for example, copending applications U.S. application Ser. No. 60/208,538, U.S. application Ser. No. 60/244,989, U.S. application Ser. No. 09/818,875, international application no. PCT/US01/09761 and Gamper et al., Nucleic Acids Research 28: 4332-4339 (2000), the disclosures of which are incorporated herein in their entirety by reference. We also found that additional nucleic acid analogs which increase the nuclease resistance of oligonucleotides that contain them, including, e.g., “locked nucleic acids” or “LNAs”, xylo-LNAs and L-ribo-LNAs; see, for example, Wengel & Nielsen, WO 99/14226; Wengel, WO 00/56748; Wengel, WO 00/66604; and Jakobsen & Koshkin, WO 01/25478 also allow specific targeted alteration of genetic information.
[0016] The assay allows for determining the optimum length of the oligonucleotide, optimum sequence of the oligonucleotide, optimum position of the mismatched base or bases, optimum chemical modification or modifications, optimum strand targeted for identifying and selecting the most efficient oligonucleotide for a particular gene alteration event by comparing to a control oligonucleotide. Control oligonucleotides may include a chimeric RNA-DNA double hairpin oligonucleotide directing the same gene alteration event, an oligonucleotide that matches its target completely, an oligonucleotide in which all linkages are phosphorothiolated, an oligonucleotide fully substituted with 2′-O-methyl analogs or an RNA oligonucleotide. Such control oligonucleotides either fail to direct a targeted alteration or do so at a lower efficiency as compared to the oligonucleotides of the invention. The assay further allows for determining the optimum position of a gene alteration event within an oligonucleotide, optimum concentration of the selected oligonucleotide for maximum alteration efficiency by systematically testing a range of concentrations, as well as optimization of either the source of cell extract by testing different plants or strains, or testing cells derived from different plants or strains, or plant cell lines. Using a series of single-stranded oligonucleotides, comprising all RNA or DNA residues and various mixtures of the two, several new structures are identified as viable molecules in nucleotide conversion to direct or repair a genomic mutagenic event. When extracts from mammalian, plant and fungal cells are used and are analyzed using a genetic readout assay in bacteria, single-stranded oligonucleotides having one of several modifications are found to be more active than a control RNA-DNA double hairpin chimera structure when evaluated using an in vitro gene repair assay. Similar results are also observed in vivo using yeast, mammalian and plant cells. Molecules containing various lengths of modified bases were found to possess greater activity than unmodified single-stranded DNA molecules.
DETAILED DESCRIPTION OF THE INVENTION[0017] The present invention provides oligonucleotides having chemically modified, nuclease resistant residues, preferably at or near the termini of the oligonucleotides, and methods for their identification and use in targeted alteration of plant genetic material, including gene mutation, targeted gene repair and gene knockout. The oligonucleotides are preferably used for mismatch repair or alteration by changing at least one nucleic acid base, or for frameshift repair or alteration by addition or deletion of at least one nucleic acid base. The oligonucleotides of the invention direct any such alteration, including gene correction, gene repair or gene mutation and can be used, for example, to introduce a polymorphism or haplotype or to eliminate (“knockout”) a particular protein activity. For example, gene alterations that knockout a particular protein activity can be obtained using oligonucleotides designed to convert a codon in the coding region of the protein to a stop codon, thus prematurely terminating translation of the protein. Oligonucleotides that introduce stop codons in the open-reading-frame of the protein are one embodiment of the invention. Generally, oligonucleotides that introduce stop codons early in the open-reading-frame of the protein are preferred. If the open-reading-frame contains more than one methionine, oligonucleotides that introduce stop codons after the second methionine are preferred. Additionally, if the gene exhibits alternative splice sites, oligonucleotides that introduce stop codons in exons after the alternative splice site are preferred. The following table provides examples of codons that can be converted to stop codons by altering a single oligonucleotide. A skilled artisan could readily identify other codons that can be converted to stop codons by altering one, two or three of the base pairs in a given codon. Similarly, a skilled artisan could readily identify codons that can be converted to stop codons by a frameshift mutations that inserts or deletes one or two base pairs in the open-reading-frame. It is also understood that more than one stop codon can be generated in a single open-reading-frame and that these stop codons can be adjacent in the sequence or separated by intervening codons. Where more than one stop codon is introduced into a single open-reading-frame, such alterations can be generated by a single or multiple oligonucleotides and can be generated simultaneously or by sequential mutagenesis of the target nucleic acid. 1 Corresponding Original codons* stop codon GGA (glycine), AGA (arginine), CGA (arginine), TTA TGA (leucine), TCA (serine), TGT (cysteine), TGG (tryptophan), TGC (cysteine) AAG (lysine), GAG (glutamate), CAG (glutamine), TTG TAG (leucine), TCG (serine), TGG (tryptophan), TAT (cysteine), TAC (tyrosine) AAA (lysine), GAA (glutamate), CAA (glutamine), TTA TAA (leucine), TCA (serine), TAT (cysteine), TAC (tyrosine) *The amino acid encoded by the original codon is shown in parentheses and the base targeted for alteration to convert the codon to the corresponding stop codon is underlined and in bold
[0018] The oligonucleotides of the invention are designed as substrates for homologous pairing and repair enzymes and as such have a unique backbone composition that differs from chimeric RNA-DNA double hairpin oligonucleotides, antisense oligonucleotides, and/or other poly- or oligo-nucleotides used for altering genomic DNA, such as triplex forming oligonucleotides. The single-stranded oligo-nucleotides described herein are inexpensive to synthesize and easy to purify. In side-by-side comparisons, an optimized single-stranded oligonucleotide comprising modified residues as described herein is significantly more efficient than a chimeric RNA-DNA double hairpin oligonucleotide in directing a base substitution or frameshift mutation in a cell-free extract assay.
[0019] We have discovered that single-stranded oligonucleotides having a DNA domain surrounding the targeted base, with the domain preferably central to the poly- or oligo-nucleotide, and having at least one modified end, preferably at the 3′ terminal region, are able to alter a target genetic sequence and with an efficiency that is higher than chimeric RNA-DNA double hairpin oligonucleotides disclosed in U.S. Pat. No. 5,565,350. Preferred oligonucleotides of the invention have at least two modified bases on at least one of the termini, preferably the 3′ terminus of the oligonucleotide. Oligonucleotides of the invention can efficiently be used to introduce targeted alterations in a genetic sequence of DNA in the presence of human, animal, plant, fungal (including yeast) proteins and in cells of different types including, for example, plant cells, fungal cells including S. cerevisiae, Ustillago maydis, Candida albicans, and mammalian cells. Particularly preferred are cells and cell extracts derived from plants including, for example, experimental model plants such as Chiamydomonas reinhardtii, Physcomitrella patens, and Arabidopsis thaliana in addition to crop plants such as cauliflower (Brassica oleracea), artichoke (Cynara scolymus), fruits such as apples (Malus, e.g. domesticus), mangoes (Mangifera, e.g. indica), banana (Musa, e.g. acuminata), berries (such as currant, Ribes, e.g. rubrum), kiwifruit (Actinidia, e.g. chinensis), grapes (Vitis, e.g. vinifera), bell peppers (Capsicum, e.g. annuum), cherries (such as the sweet cherry, Prunus, e.g. avium), cucumber (Cucumis, e.g. sativus), melons (Cucumis, e.g. melo), nuts (such as walnut, Juglans, e.g. regia; peanut, Arachis hypogeae), orange (Citrus, e.g. maxima), peach (Prunus, e.g. persica), pear (Pyra, e.g. communis), plum (Prunus, e.g. domestica), strawberry (Fragaria, e.g. moschata or vesca), tomato (Lycopersicon, e.g. esculentum); leaves and forage, such as alfalfa (Medicago, e.g. sativa or truncatula), cabbage (e.g. Brassica oleracea), endive (Cichoreum, e.g. endivia), leek (Allium, e.g. porrum), lettuce (Lactuca, e.g. sativa), spinach (Spinacia, e.g. oleraceae), tobacco (Nicotiana, e.g. tabacum); roots, such as arrowroot (Maranta, e.g. arundinacea), beet (Beta, e.g. vulgaris), carrot (Daucus, e.g. carota), cassava (Manihot, e.g. esculenta), turnip (Brassica, e.g. rapa), radish (Raphanus, e.g. sativus), yam (Dioscorea, e.g. esculenta), sweet potato (Ipomoea batatas); seeds, including oilseeds, such as beans (Phaseolus, e.g. vulgaris), pea (Pisum, e.g. sativum), soybean (Glycine, e.g. max), cowpea (Vigna unguiculata), mothbean (Vigna aconitifolia), wheat (Triticum, e.g. aestivum), sorghum (Sorghum e.g. bicolor), barley (Hordeum, e.g. vulgare), corn (Zea, e.g. mays), rice (Oryza, e.g. sativa), rapeseed (Brassica napus), millet (Panicum sp.), sunflower (Helianthus annuus), oats (Avena sativa), chickpea (Cicer, e.g. arietinum); tubers, such as kohlrabi (Brassica, e.g. oleraceae), potato (Solanum, e.g. tuberosum) and the like; fiber and wood plants, such as flax (Linum e.g. usitatissimum), cotton (Gossypium e.g. hirsutum), pine (Pinus sp.), oak (Quercus sp.), eucalyptus (Eucalyptus sp.), and the like and ornamental plants such as turfgrass (Lolium, e.g. rigidum), petunia (Petunia, e.g. x hybrida), hyacinth (Hyacinthus orientalis), carnation (Dianthus e.g. caryophyllus), delphinium (Delphinium, e.g. ajacis), Job's tears (Coix lacryma-jobi), snapdragon (Antirrhinum majus), poppy (Papaver, e.g. nudicaule), lilac (Syringa, e.g. vulgaris), hydrangea (Hydrangea e.g. macrophylla), roses (including Gallicas, Albas, Damasks, Damask Perpetuals, Centifolias, Chinas, Teas and Hybrid Teas) and ornamental goldenrods (e.g. Solidago spp.). Such plant cells can then be used to regenerate whole plants according to methods described herein or any method known in the art. The DNA domain of the oligonucleotides is preferably fully complementary to one strand of the gene target, except for the mismatch base or bases responsible for the gene alteration event(s). On either side of the preferably central DNA domain, the contiguous bases may be either RNA bases or, preferably, are primarily DNA bases. The central DNA domain is generally at least 8 nucleotides in length. The base(s) targeted for alteration in the most preferred embodiments are at least about 8, 9 or 10 bases from one end of the oligonucleotide.
[0020] According to certain embodiments, one or both of the termini of the oligonucleotides of the present invention comprise phosphorothioate modifications, LNA backbone (including LNA derivatives and analogs) modifications, or 2′-O-methyl base analogs, or any combination of these modifications. Oligonucleotides comprising 2′-O-methyl or LNA analogs are a mixed DNA/RNA polymer. The oligonucleotides of the invention are, however, single-stranded and are not designed to form a stable internal duplex structure within the oligonucleotide. The efficiency of gene alteration is surprisingly increased with oligonucleotides having internal complementary sequence comprising phosphorothioate modified bases as compared to 2′-O-methyl modifications. This result indicates that specific chemical interactions are involved between the converting oligonucleotide and the proteins involved in the conversion. The effect of other such chemical interactions to produce nuclease resistant termini using modifications other than LNA (including LNA derivatives or analogs), phosphorothioate linkages, or 2′-O-methyl analog incorporation into an oligonucleotide can not yet be predicted because the proteins involved in the alteration process and their particular chemical interaction with the oligonucleotide substituents are not yet known and cannot be predicted.
[0021] In the examples, oligonucleotides of defined sequence are provided for alteration of genes in particular plants. Provided the teachings of the instant application, one of skill in the art could readily design oligonucleotides to introduce analogous alterations in homologous genes from any plant. Furthermore, in the tables of these examples, the oligonucleotides of the invention are not limited to the particular sequences disclosed. The oligonucleotides of the invention include extensions of the appropriate sequence of the longer 120 base oligonucleotides which can be added base by base to the smallest disclosed oligonucleotides of 17 bases. Thus the oligonucleotides of the invention include for each correcting change, oligonucleotides of length 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, or 120 with further single-nucleotide additions up to the longest sequence disclosed. In some embodiments, longer nucleic acids of up to 240 bases which comprise the sequences disclosed herein may be used. Moreover, the oligonucleotides of the invention do not require a symmetrical extension on either side of the central DNA domain. Similarly, the oligonucleotides of the invention as disclosed in the various tables for alteration of particular plant genes contain phosphorothioate linkages, 2′-O-methyl analog or LNA (including LNA derivatives and analogs) or any combination of these modifications just as the assay oligonucleotides do.
[0022] The present invention, however, is not limited to oligonucleotides that contain any particular nuclease resistant modification. Oligonucleotides of the invention may be altered with any combination of additional LNAs (including LNA derivatives and analogs), phosphorothioate linkages or 2′-O-methyl analogs to maximize conversion efficiency. For oligonucleotides of the invention that are longer than about 17 to about 25 bases in length, internal as well as terminal region segments of the backbone may be altered. Alternatively, simple fold-back structures at each end of a oligonucleotide or appended end groups may be used in addition to a modified backbone for conferring additional nuclease resistance.
[0023] The different oligonucleotides of the present invention preferably contain more than one of the aforementioned backbone modifications at each end. In some embodiments, the backbone modifications are adjacent to one another. However, the optimal number and placement of backbone modifications for any individual oligonucleotide will vary with the length of the oligonucleotide and the particular type of backbone modification(s) that are used. If constructs of identical sequence having phosphorothioate linkages are compared, 2, 3, 4, 5, or 6 phosphorothioate linkages at each end are preferred. If constructs of identical sequence having 2′-O-methyl base analogs are compared, 1, 2, 3 or 4 analogs are preferred. The optimal number and type of backbone modifications for any particular oligo-nucleotide useful for altering target DNA may be determined empirically by comparing the alteration efficiency of the oligonucleotide comprising any combination of the modifications to a control molecule of comparable sequence using any of the assays described herein. The optimal position(s) for oligonucleotide modifications for a maximally efficient altering oligonucleotide can be determined by testing the various modifications as compared to control molecule of comparable sequence in one of the assays disclosed herein. In such assays, a control molecule includes, e.g., a completely 2′-O-methyl substituted molecule, a completely complementary oligonucleotide, or a chimeric RNA-DNA double hairpin.
[0024] Increasing the number of phosphorothioate linkages, LNAs or 2′-O-methyl bases beyond the preferred number generally decreases the gene repair activity of a 25 nucleotide long oligonucleotide. Based on analysis of the concentration of oligonucleotide present in the extract after different time periods of incubation, it is believed that the terminal modifications impart nuclease resistance to the oligo-nucleotide thereby allowing it to survive within the cellular environment. However, this may not be the only possible mechanism by which such modifications confer greater efficiency of conversion. For example, as disclosed herein, certain modifications to oligonucleotides confer a greater improvement to the efficiency of conversion than other modifications.
[0025] Efficiency of conversion is defined herein as the percentage of recovered substrate molecules that have undergone a conversion event. Depending on the nature of the target genetic material, e.g. the genome of a cell, efficiency could be represented as the proportion of cells or clones containing an extrachromosomal element that exhibit a particular phenotype. Alternatively, representative samples of the target genetic material can be sequenced to determine the percentage that have acquired the desire change. The oligonucleotides of the invention in different embodiments can alter DNA two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold more than control oligonucleotides. Such control oligonucleotides are oligonucleotides with fully phosphorothiolated linkages, oligonucleotides that are fully substituted with 2′-O-methyl analogs, a perfectly matched oligonucleotide that is fully complementary to a target sequence or a chimeric DNA-RNA double hairpin oligonucleotide such as disclosed in U.S. Pat. No. 5,565,350.
[0026] In addition, for a given oligonucleotide length, additional modifications interfere with the ability of the oligonucleotide to act in concert with the cellular recombination or repair enzyme machinery which is necessary and required to mediate a targeted substitution, addition or deletion event in DNA. For example, fully phosphorothiolated or fully 2-O-methylated molecules are inefficient in targeted gene alteration.
[0027] The oligonucleotides of the invention as optimized for the purpose of targeted alteration of genetic material, including gene knockout or repair, are different in structure from antisense oligo-nucleotides that may possess a similar mixed chemical composition backbone. The oligonucleotides of the invention differ from such antisense oligonucleotides in chemical composition, structure, sequence, and in their ability to alter genomic DNA. Significantly, antisense oligonucleotides fail to direct targeted gene alteration. The oligonucleotides of the invention may target either strand of DNA and can include any component of the genome including, for example, intron and exon sequences. The preferred embodiment of the invention is a modified oligonucleotide that binds to the non-transcribed strand of a genomic DNA duplex. In other words, the preferred oligonucleotides of the invention target the sense strand of the DNA, i.e. the oligonucleotides of the invention are complementary to the non-transcribed strand of the target duplex DNA. The sequence of the non-transcribed strand of a DNA duplex is found in the mRNA produced from that duplex, given that mRNA uses uracil-containing nucleotides in place of thymine-containing nucleotides.
[0028] Moreover, the initial observation that single-stranded oligonucleotides comprising these modifications and lacking any particular triplex forming domain have reproducibly enhanced gene alteration activity in a variety of assay systems as compared to a chimeric RNA-DNA double-stranded hairpin control or single-stranded oligonucleotides comprising other backbone modifications was surprising. The single-stranded molecules of the invention totally lack the complementary RNA binding structure that stabilizes a normal chimeric double-stranded hairpin of the type disclosed in U.S. Pat. No. 5,565,350 yet is more effective in producing targeted base conversion as compared to such a chimeric RNA-DNA double-stranded hairpin. In addition, the molecules of the invention lack any particular triplex forming domain involved in Hoogsteen interactions with the DNA double helix and required by other known oligonucleotides in other oligonucleotide-dependant gene conversion systems. Although the lack of these functional domains was expected to decrease the efficiency of an alteration in a sequence, just the opposite occurs: the efficiency of sequence alteration using the modified oligonucleotides of the invention is higher than the efficiency of sequence alteration using a chimeric RNA-DNA hairpin targeting the same sequence alteration. Moreover, the efficiency of sequence alteration or gene conversion directed by an unmodified oligonucleotide is many times lower as compared to a control chimeric RNA-DNA molecule or the modified oligonucleotides of the invention targeting the same sequence alteration. Similarly, molecules containing at least 3 2′-O-methyl base analogs are about four to five fold less efficient as compared to an oligonucleotide having the same number of phosphorothioate linkages.
[0029] The oligonucleotides of the present invention for alteration of a single base are about 17 to about 121 nucleotides in length, preferably about 17 to about 74 nucleotides in length. Most preferably, however, the oligonucleotides of the present invention are at least about 25 bases in length, unless there are self-dimerization structures within the oligonucleotide. If the oligonucleotide has such an unfavorable structure, lengths longer than 35 bases are preferred. Oligonucleotides with modified ends both shorter and longer than certain of the exemplified, modified oligonucleotides herein function as gene repair or gene knockout agents and are within the scope of the present invention.
[0030] Once an oligomer is chosen, it can be tested for its tendency to self-dimerize, since self-dimerization may result in reduced efficiency of alteration of genetic information. Checking for self-dimerization tendency can be accomplished manually or, preferably, using a software program. One such program is Oligo Analyzer 2.0, available through Integrated DNA Technologies (Coralville, Iowa 52241) (http://www.idtdna.com); this program is available for use on the world wide web at http://www.idtdna.com/program/oligoanalyzer/oligoanalyzer.asp.
[0031] For each oligonucleotide sequence input into the program, Oligo Analyzer 2.0 reports possible self-dimerized duplex forms, which are usually only partially duplexed, along with the free energy change associated with such self-dimerization. Delta G-values that are negative and large in magnitude, indicating strong self-dimerization potential, are automatically flagged by the software as “bad”. Another software program that analyzes oligomers for pair dimer formation is Primer Select from DNASTAR, Inc., 1228 S. Park St., Madison, Wis. 53715, Phone: (608) 258-7420 (http://www.dnastar.com/products/PrimerSelect.html).
[0032] If the sequence is subject to significant self-dimerization, the addition of further sequence flanking the “repair” nucleotide can improve gene correction frequency.
[0033] Generally, the oligonucleotides of the present invention are identical in sequence to one strand of the target DNA, which can be either strand of the target DNA, with the exception of one or more targeted bases positioned within the DNA domain of the oligonucleotide, and preferably toward the middle between the modified terminal regions. Preferably, the difference in sequence of the oligonucleotide as compared to the targeted genomic DNA is located at about the middle of the oligo-nucleotide sequence. In a preferred embodiment, the oligonucleotides of the invention are complementary to the non-transcribed strand of a duplex. In other words, the preferred oligonucleotides target the sense strand of the DNA, i.e. the oligonucleotides of the invention are preferably complementary to the strand of the target DNA the sequence of which is found in the mRNA.
[0034] The oligonucleotides of the invention can include more than a single base change. In an oligonucleotide that is about a 70-mer, with at least one modified residue incorporated on the ends, as disclosed herein, multiple bases can be simultaneously targeted for change. The target bases may be up to 27 nucleotides apart and may not be changed together in all resultant plasmids in all cases. There is a frequency distribution such that the closer the target bases are to each other in the central DNA domain within the oligonucleotides of the invention, the higher the frequency of change in a given cell. Target bases only two nucleotides apart are changed together in every case that has been analyzed. The farther apart the two target bases are, the less frequent the simultaneous change. Thus, oligonucleotides of the invention may be used to repair or alter multiple bases rather than just one single base. For example, in a 74-mer oligonucleotide having a central base targeted for change, a base change event up to about 27 nucleotides away can also be effected. The positions of the altering bases within the oligonucleotide can be optimized using any one of the assays described herein. Preferably, the altering bases are at least about 8 nucleotides from one end of the oligonucleotide.
[0035] The oligonucleotides of the present invention can be introduced into cells by any suitable means. According to certain preferred embodiments, the modified oligonucleotides may be used alone. Suitable means, however, include the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, microinjection and other methods known in the art to facilitate cellular uptake. For plant cells, biolistic or particle bombardment methods are typically used. According to certain preferred embodiments of the present invention, isolated plant cells are treated in culture according to the methods of the invention, to mutate or repair a target gene. Alternatively, plant target DNA may be modified in vitro or in another cell type, including for example, yeast or bacterial cells and then introduced into a plant cell as, for example, a T-DNA. Plant cells thus modified may be used to regenerate the whole organism as, for example, in a plant having a desired targeted genomic change. In other instances, targeted genomic alteration, including repair or mutagenesis, may take place in vivo following direct administration of the modified, single-stranded oligonucleotides of the invention to a subject.
[0036] The single-stranded, modified oligonucleotides of the present invention have numerous applications as gene repair, gene modification, or gene knockout agents. Such oligonucleotides may be advantageously used, for example, to introduce or correct multiple point mutations. Each mutation leads to the addition, deletion or substitution of at least one base pair. The methods of the present invention offer distinct advantages over other methods of altering the genetic makeup of an organism, in that only the individually targeted bases are altered. No additional foreign DNA sequences are added to the genetic complement of the organism. Such agents may, for example, be used to develop plants with improved traits by rationally changing the sequence of selected genes in isolated cells and using these modified cells to regenerate whole plants having the altered gene. See, e.g., U.S. Pat. No. 6,046,380 and U.S. Pat. No. 5,905,185 incorporated herein by reference. Such plants produced using the compositions of the invention lack additional undesirable selectable markers or other foreign DNA sequences. Targeted base pair substitution or frameshift mutations introduced by an oligonucleotide in the presence of a cell-free extract also provides a way to modify the sequence of extrachromosomal elements, including, for example, plasmids, cosmids and artificial chromosomes. The oligonucleotides of the invention also simplify the production of plants having particular modified or inactivated genes. Altered plant model systems such as those produced using the methods and oligonucleotides of the invention are invaluable in determining the function of a gene and in evaluating drugs. The oligonucleotides and methods of the present invention may also be used to introduce molecular markers, including, for example, SNPs, RFLPs, AFLPs and CAPs.
[0037] The purified oligonucleotide compositions may be formulated in accordance with routine procedures depending on the target. For example, purified oligonucleotide can be used directly in a standard reaction mixture to introduce alterations into targeted DNA in vitro or where cells are the target as a composition adapted for bathing cells in culture or for microinjection into cells in culture. The purified oligonucleotide compositions may also be provided on coated microbeads for biolistic delivery into plant cells. Where necessary, the composition may also include a solubilizing agent. Generally, the ingredients will be supplied either separately or mixed together in single-use form, for example, as a dry, lyophilized powder or water-free concentrate. In general, dosage required for efficient targeted gene alteration will range from about 0.001 to 50,000 &mgr;g/kg target tissue, preferably between 1 to 250 &mgr;g/kg, and most preferably at a concentration of between 30 and 60 micromolar.
[0038] For cell administration, direct injection into the nucleus, biolistic bombardment, electroporation, liposome transfer and calcium phosphate precipitation may be used. In yeast, lithium acetate or spheroplast transformation may also be used. In a preferred method, the administration is performed with a liposomal transfer compound, e.g., DOTAP (Boehringer-Mannheim) or an equivalent such as lipofectin. The amount of the oligonucleotide used is about 500 nanograms in 3 micrograms of DOTAP per 100,000 cells. For electroporation, between 20 and 2000 nanograms of oligonucleotide per million cells to be electroporated is an appropriate range of dosages which can be increased to improve efficiency of genetic alteration upon review of the appropriate sequence according to the methods described herein. For biolistic delivery, microbeads are generally coated with resuspended oligonucleotides, which range of oligonucleotide to microbead concentration can be similarly adjusted to improve efficiency as determined using one of the assay methods described herein, starting with about 0.05 to 1 microgram of oligonucleotide to 25 microgram of 1.0 micrometer gold beads or similar microcarrier.
[0039] Another aspect of the invention is a kit comprising at least one oligonucleotide of the invention. The kit may comprise an additional reagent or article of manufacture. The additional reagent or article of manufacture may comprise a delivery mechanism, cell extract, a cell, or a plasmid, such as one of those disclosed in the Figures herein, for use in an assay of the invention. Alternatively, the invention includes a kit comprising an isogenic set of cells in which each cell in the kit comprises a different altered amino acid for a target protein encoded by a targeted altered gene within the cell produced according to the methods of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS[0040] FIG. 1. Flow diagram for the generation of modified single-stranded oligonucleotides. The upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligonucleotides that contain (A) 2′-O-methyl RNA nucleotides or (B) phosphorothioate linkages. Fold changes in repair activity for correction of kans in the HUH7 cell-free extract are presented in parenthesis. HUH7 cells are described in Nakabayashi et al., Cancer Research 42: 3858-3863 (1982). Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kans gene. The numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the molecule. Hence oligo 12S/25G contains an all phosphorothioate backbone, displayed as a dotted line. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G). FIG. 1(C) provides a schematic plasmid indicating the sequence of the kan chimeric double-stranded hairpin oligonucleotide (left; SEQ ID NO: 2673) and the sequence the tet chimeric double-stranded hairpin oligonucleotide used in other experiments (right; SEQ ID NO: 2674). FIG. 1(D) provides a flow chart of a kan experiment in which a chimeric double-stranded hairpin oligonucleotide (SEQ ID NO: 2673) is used. In FIG. 1(D), the Kan mutant sequence corresponds to SEQ ID NO: 2675 and SEQ ID NO: 2676; the Kan converted sequence corresponds to SEQ ID NO: 2677 and SEQ ID NO: 2678; the mutant sequence in the sequence trace corresponds to SEQ ID NO: 2679 and the converted sequences in the sequence trace correspond to SEQ ID NO: 2680.
[0041] FIG. 2. Genetic readout system for correction of a point mutation in plasmid pKsm4021. A mutant kanamycin gene harbored in plasmid pKsm4021 is the target for correction by oligonucleotides. The mutant G is converted to a C by the action of the oligo. Corrected plasmids confer resistance to kanamycin in E.coli (DH10B) after electroporation leading to the genetic readout and colony counts. The wild type sequence corresponds to SEQ ID NO: 2681.
[0042] FIG. 3: Target plasmid and sequence correction of a frameshift mutation by chimeric and single-stranded oligonucleotides. (A) Plasmid pTs&Dgr;208 contains a single base deletion mutation at position 208 rendering it unable to confer tet resistance. The target sequence presented below indicates the insertion of a T directed by the oligonucleotides to re-establish the resistant phenotype. (B) DNA sequence confirming base insertion directed by Tet 3S/25G; the yellow highlight indicates the position of frameshift repair. The wild type sequence corresponds to SEQ ID NO: 2682, the mutant sequence corresponds to SEQ ID NO: 2683 and the converted sequence corresponds to SEQ ID NO: 2684. The control sequence in the sequence trace corresponds to SEQ ID NO: 2685 and the 3S/25A sequence in the sequence trace corresponds to SEQ ID NO: 2686.
[0043] FIG. 4. DNA sequences of representative kanr colonies. Confirmation of sequence alteration directed by the indicated molecule is presented along with a table outlining codon distribution. Note that 10S/25G and 12S/25G elicit both mixed and unfaithful gene repair. The number of clones sequenced is listed in parentheses next to the designation for the single-stranded oligonucleotide. A plus (+) symbol indicates the codon identified while a figure after the (+) symbol indicates the number of colonies with a particular sequence. TAC/TAG indicates a mixed peak. Representative DNA sequences are presented below the table with yellow highlighting altered residues. The sequences in the sequence traces have been assigned numbers as follows: 3S/25G, 6S/25G and 8S/25G correspond to SEQ ID NO: 2687, 10S/25G corresponds to SEQ ID NO: 2688, 25S/25G on the lower left corresponds to SEQ ID NO: 2689 and 25S/25G on the lower right corresponds to SEQ ID NO: 2690.
[0044] FIG. 5. Gene correction in HeLa cells. Representative oligonucleotides of the invention are co-transfected with the pCMVneo(−)FIAsH plasmid (shown in FIG. 9) into HeLa cells. Ligand is diffused into cells after co-transfection of plasmid and oligonucleotides. Green fluorescence indicates gene correction of the mutation in the antibiotic resistance gene. Correction of the mutation results in the expression of a fusion protein that carries a marker ligand binding site and when the fusion protein binds the ligand, a green fluorescence is emitted. The ligand is produced by Aurora Biosciences and can readily diffuse into cells enabling a measurement of corrected protein function; the protein must bind the ligand directly to induce fluorescence. Hence cells bearing the corrected plasmid gene appear green while “uncorrected” cells remain colorless.
[0045] FIG. 6. Z-series imaging of corrected cells. Serial cross-sections of the HeLa cell represented in FIG. 5 are produced by Zeiss 510 LSM confocal microscope revealing that the fusion protein is contained within the cell.
[0046] FIG. 7. Hygromycin-eGFP target plasmids. (A) Plasmid pAURHYG(ins)GFP contains a single base insertion mutation between nucleotides 136 and 137, at codon 46, of the Hygromycin B coding sequence (cds) which is transcribed from the constitutive ADH1 promoter. The target sequence presented below indicates the deletion of an A and the substitution of a C for a T directed by the oligonucleotides to re-establish the resistant phenotype. In FIG. 7A, the sequence of the normal allele corresponds to SEQ ID NO: 2691, the sequence of the targe/existing mutation corresponds to SEQ ID NO: 2692 and the sequence of the desired alteration corresponds to SEQ ID NO: 2693. (B) Plasmid pAURHYG(rep)GFP contains a base substitution mutation introducing a G at nucleotide 137, at codon 46, of the Hygromycin B coding sequence (cds). The target sequence presented below the diagram indicates the amino acid conservative replacement of G with C, restoring gene function. In FIG. 7B, the sequence of the normal allele correspond to SEQ ID NO: 2691, the sequence of the targe/existing mutation corresponds to SEQ ID NO: 2694 and the sequence of the desired alteration corresponds to SEQ ID NO: 2693.
[0047] FIG. 8. Oligonucleotides for correction of hygromycin resistance gene. The sequence of the oligonucleotides used in experiments to assay correction of a hygromycin resistance gene are shown. DNA residues are shown in capital letters, RNA residues are shown in lowercase and nucleotides with a phosphorothioate backbone are capitalized and underlined. In FIG. 8, the sequence of HygE3T/25 corresponds to SEQ ID NO: 2695, the sequence of HygE3T/74 corresponds to SEQ ID NO: 2696, the sequence of HygE3T/74a corresponds to SEQ ID NO: 2697, the sequence of HygGG/Rev corresponds to SEQ ID NO: 2698 and the sequence of Kan70T corresponds to SEQ ID NO: 2699.
[0048] FIG. 9. pAURNeo(−)FIAsH plasmid. This figure describes the plasmid structure, target sequence, oligonucleotides, and the basis for detection of the gene alteration event by fluorescence. In FIG. 9, the sequence of the Neo/kan target mutant corresponds to SEQ ID NO: 2675 and SEQ ID NO: 2676, the converted sequence corresponds to SEQ ID NO: 2677 and SEQ ID NO: 2678 and the FIAsH peptide sequence corresponds to SEQ ID NO: 2700.
[0049] FIG. 10. pYESHyg(x)eGFP plasmid. This plasmid is a construct similar to the pAURHyg(x)eGFP construct shown in FIG. 7, except the promoter is the inducible GAL1 promoter. This promoter is inducible with galactose, leaky in the presence of raffinose, and repressed in the presence of dextrose.
[0050] FIG. 11. pBI-HygeGFP plasmid. This plasmid is a construct based on the plasmids pBI101, pBI 101.2, pBI101.3 or pBI 121 available from Clontech in which HygeGFP replaces the beta-glucuronidase gene of the Clontech plasmids. The different Clontech plasmids vary by a reading frame shift relative to the polylinker, or the presence of the Cauliflower mosaic virus promoter.
[0051] The following examples are provided by way of illustration only, and are not intended to limit the scope of the invention disclosed herein.
EXAMPLE 1 Assay Method for Base Alteration and Preferred Oligonucleotide Selection[0052] In this example, single-stranded and double-hairpin oligonucleotides with chimeric backbones (see FIG. 1 for structures (A and B) and sequences (C and D) of assay oligonucleotides) are used to correct a point mutation in the kanamycin gene of pKsm4021 (FIG. 2) or the tetracycline gene of pTs&Dgr;208 (FIG. 3). All kan oligonucleotides share the same 25 base sequence surrounding the target base identified for change, just as all tet oligonucleotides do. The sequence is given in FIG. 1C and FIG. 1D. Each plasmid contains a functional ampicillin gene. Kanamycin gene function is restored when a G at position 4021 is converted to a C (via a substitution mutation); tetracycline gene function is restored when a deletion at position 208 is replaced by a C (via frameshift mutation). A separate plasmid, pAURNeo(−)FIAsH (FIG. 9), bearing the kans gene is used in the cell culture experiments. This plasmid was constructed by inserting a synthetic expression cassette containing a neomycin phosphotransferasea (kanamycin resistance) gene and an extended reading frame that encodes a receptor for the FIAsH ligand into the pAUR123 shuttle vector (Panvera Corp., Madison, Wis.). The resulting construct replicates in S. cerevisiae at low copy number, confers resistance to aureobasidinA and constitutively expresses either the Neo+/FIAsH fusion product (after alteration) or the truncated Neo−/FIAsH product (before alteration) from the ADH1 promoter. By extending the reading frame of this gene to code for a unique peptide sequence capable of binding a small ligand to form a fluorescent complex, restoration of expression by correction of the stop codon can be detected in real time using confocal microscopy.
[0053] Additional constructs can be made to test additional gene alteration events or for specific use in different expression systems. For example, alternative comparable plant plasmids or integration vectors such as, e.g. those based on T-DNA, can be constructed for stable expression in plant cells according to the disclosures herein. Such constructs would use a plant specific promoter such as, e.g., cauliflower mosaic virus 35S promoter, to replace the promoters directing expression of the neo, hyg or aureobasidinA resistance gene disclosed herein, including for example, in FIGS. 7B, 9 and 10 herein. Moreover, the green fluorescent protein (GFP) sequence used herein may be modified to increase expression in plant cells such as Arabidopsis and the other plants disclosed herein as described in Haseloff et al., Proc. Natl.Acad. Sci. 94(6): 2122-7 (1997), Rouwendal et al. Plant Mol. Biol. 33(6): 989-99 (1997) and Hu et al. FEBS Lett. 369(2-3): 331-4 (1995). Codon usage for optimal expression of GFP in plants results from increasing the frequency of codons with a C or a G in the third position from 32 to about 60%. Specific constructs are disclosed and can be used as follows with such plant specific alterations.
[0054] We also construct three mammalian expression vectors, pHyg(rep)eGFP, pHyg(&Dgr;)eGFP, pHyg(ins)eGFP, that contain a substitution mutation at nucleotide 137 of the hygromycin-B coding sequence. (rep) indicates a T1374→G replacement, (&Dgr;) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. All point mutations create a nonsense termination codon at residue 46. We use pHYGeGFP plasmid (Invitrogen, CA) DNA as a template to introduce the mutations into the hygromycin-eGFP fusion gene by a two step site-directed mutagenesis PCR protocol. First, we generate overlapping 5′ and a 3′ amplicons surrounding the mutation site by PCR for each of the point mutation sites. A 215 bp 5′ amplicon for the (rep), (&Dgr;) or (ins) was generated by polymerization from oligonucleotide primer HygEGFPf (5′-AATACGACTCACTATAGG-3′; SEQ ID NO: 2701) to primer Hygrepr (5′GACCTATCCACGCCCTCC-3′; SEQ ID NO: 2702), Hyg&Dgr;r (5′-GACTATCCACGCCCTCC-3′; SEQ ID NO: 2703), or Hyginsr (5′-GACATTATCCACGCCCTCC-3′; SEQ ID NO: 2704), respectively. We generate a 300 bp 3′ amplicon for the (rep), (&Dgr;) or (ins) by polymerization from oligonucleotide primers Hygrepf (5′-CTGGGATAGGTCCTGCGG-3′; SEQ ID NO: 2705), Hyg&Dgr;f (5′-CGTGGATAGTCCTGCGG-3′; SEQ ID NO: 2706), Hyginsf (5′-CGTGGATAATGTCCTGCGG-3′; SEQ ID NO: 2707), respectively to primer HygEGFPr (5′-AAATCACGCCATGTAGTG-3′; SEQ ID NO: 2708). We mix 20 ng of each of the resultant 5′ and 3′ overlapping amplicon mutation sets and use the mixture as a template to amplify a 523 bp fragment of the Hygromycin gene spanning the KpnI and RsrII restriction endonuclease sites. We use the Expand PCR system (Roche) to generate all amplicons with 25 cycles of denaturing at 94° C. for 10 seconds, annealing at 55° C. for 20 seconds and elongation at 68° C. for 1 minute. We digest 10 &mgr;g of vector pHYGeGFP and 5 &mgr;g of the resulting fragments for each mutation with KpnI and RsrII (NEB) and gel purify the fragment for enzymatic ligation. We ligate each mutated insert into pHYGeGFP vector at 3:1 molar ratio using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm the mutation by Sanger dideoxy chain termination sequencing and purify the plasmid using a Qiagen maxiprep kit.
[0055] Oligonucleotide synthesis and cells. Chimeric oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) are synthesized using available phosphoramidites on controlled pore glass supports. After deprotection and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in Gamper et al., Biochem. 39, 5808-5816 (2000) and the concentrations determined spectrophotometrically (33 or 40 &mgr;g/ml per A260 unit of single-stranded or hairpin oligomer). HUH7 cells are grown in DMEM, 10% FBS, 2 mM glutamine, 0.5% pen/strep. The E.coli strain, DH10B, is obtained from Life Technologies (Gaithersburg, Md.); DH10B cells contain a mutation in the RECA gene (recA).
[0056] Cell-free extracts. Although this portion of this example is directed to mammalian systems, similar extracts from plants can be prepared as disclosed elsewhere in this application and used as disclosed in this example. We prepare cell-free extracts from HUH7 cells or other mammalian cells, as follows. We employ this protocol with essentially any mammalian cell including, for example, H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C127I (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and HeLa (human cervical carcinoma). We harvest approximately 2×108 cells. We then wash the cells immediately in cold hypotonic buffer (20 mM HEPES, pH7.5; 5 mM KCl; 1.5 mM MgCl2; 1 mM DTT) with 250 mM sucrose. We then resuspend the cells in cold hypotonic buffer without sucrose and after 15 minutes we lyse the cells with 25 strokes of a Dounce homogenizer using a tight fitting pestle. We incubate the lysed cells for 60 minutes on ice and centrifuge the sample for 15 minutes at 12000×g. The cytoplasmic fraction is enriched with nuclear proteins due to the extended co-incubation of the fractions following cell breakage. We then immediately aliquote and freeze the supernatant at −80° C. We determine the protein concentration in the extract by the Bradford assay.
[0057] We also perform these experiments with cell-free extracts obtained from fungal cells, including, for example, S. cerevisiae (yeast), Ustilago maydis, and Candida albicans. For example, we grow yeast cells into log phase in 2L YPD medium for 3 days at 30° C. We then centrifuge the cultures at 5000×g, resuspend the pellets in a 10% sucrose, 50 mM Tris, 1 mM EDTA lysis solution and freeze them on dry ice. After thawing, we add KCl, spermidine and lyticase to final concentrations of 0.25 mM, 5 mM and 0.1 mg/ml, respectively. We incubate the suspension on ice for 60 minutes, add PMSF and Triton X100 to final concentrations of 0.1 mM and 0.1% and continue to incubate on ice for 20 minutes. We centrifuge the lysate at 3000×g for 10 minutes to remove larger debris. We then remove the supernatant and clarify it by centrifuging at 30000×g for 15 minutes. We then add glycerol to the clarified extract to a concentration of 10% (v/v) and freeze aliquots at −80° C. We determine the protein concentration of the extract by the Bradford assay.
[0058] Reaction mixtures of 50 &mgr;l are used, consisting of 10-30 &mgr;g protein of cell-free extract, which can be optionally substituted with purified proteins or enriched fractions, about 1.5 &mgr;g chimeric double-hairpin oligonucleotide or 0.55 &mgr;g single-stranded molecule (3S/25G or 6S/25G, see FIG. 1), and 1 &mgr;g of plasmid DNA (see FIGS. 2 and 3) in a reaction buffer of 20 mM Tris, pH 7.4, 15 mM MgCl2, 0.4 mM DTT, and 1.0 mM ATP. Reactions are initiated with extract and incubated at 30° C. for 45 min. The reaction is stopped by placing the tubes on ice and then immediately deproteinized by two phenol/chloroform (1:1) extractions. Samples are then ethanol precipitated. The nucleic acid is pelleted at 15,000 r.p.m. at 4° C. for 30 min., is washed with 70% ethanol, resuspended in 50 &mgr;l H2O, and is stored at −20° C. 5 &mgr;l of plasmid from the resuspension (˜100 ng) was transfected in 20 &mgr;l of DH10B cells by electroporation (400 V, 300 &mgr;F, 4 k&OHgr;) in a Cell-Porator apparatus (Life Technologies). After electroporation, cells are transferred to a 14 ml Falcon snap-cap tube with 2 ml SOC and shaken at 37° C. for 1 h. Enhancement of final kan colony counts is achieved by then adding 3 ml SOC with 10 &mgr;g/ml kanamycin and the cell suspension is shaken for a further 2 h at 37° C. Cells are then spun down at 3750×g and the pellet is resuspended in 500 &mgr;l SOC. 200 &mgr;l is added undiluted to each of two kanamycin (50 &mgr;g/ml) agar plates and 200 &mgr;l of a 105 dilution is added to an ampicillin (100 &mgr;g/ml) plate. After overnight 37° C. incubation, bacterial colonies are counted using an Accucount 1000 (Biologics). Gene conversion effectiveness is measured as the ratio of the average of the kan colonies on both plates per amp colonies multiplied by 10−5 to correct for the amp dilution.
[0059] The following procedure can also be used. 5 &mgr;l of resuspended reaction mixtures (total volume 50 &mgr;l) are used to transform 20 &mgr;l aliquots of electro-competent DH10B bacteria using a Cell-Porator apparatus (Life Technologies). The mixtures are allowed to recover in 1 ml SOC at 37° C. for 1 hour at which time 50 &mgr;g/ml kanamycin or 12 &mgr;g/ml tetracycline is added for an additional 3 hours. Prior to plating, the bacteria are pelleted and resuspended in 200 &mgr;l of SOC. 100 &mgr;l aliquots are plated onto kan or tet agar plates and 100 &mgr;l of a 1031 4 dilution of the cultures are concurrently plated on agar plates containing 100 &mgr;g/ml of ampicillin. Plating is performed in triplicate using sterile Pyrex beads. Colony counts are determined by an Accu-count 1000 plate reader (Biologics). Each plate contains 200-500 ampicillin resistant colonies or 0-500 tetracycline or kanamycin resistant colonies. Resistant colonies are selected for plasmid extraction and DNA sequencing using an ABI Prism kit on an ABI 310 capillary sequencer (PE Biosystems).
[0060] Chimeric single-stranded oligonucleotides. In FIG. 1 the upper strands of chimeric oligonucleotides I and II are separated into pathways resulting in the generation of single-stranded oligo-nucleotides that contain (FIG. 1A) 2′-O-methyl RNA nucleotides or (FIG. 1B) phosphorothioate linkages. Fold changes in repair activity for correction of kans in the HUH7 cell-free extract are presented in parenthesis. Each single-stranded oligonucleotide is 25 bases in length and contains a G residue mismatched to the complementary sequence of the kans gene.
[0061] Molecules bearing 3, 6, 8, 10 and 12 phosphorothioate linkages in the terminal regions at each end of a backbone with a total of 24 linkages (25 bases) are tested in the kans system. Alternatively, molecules bearing 2, 4, 5, 7, 9 and 11 in the terminal regions at each end are tested. The results of one such experiment, presented in Table 1 and FIG. 1B, illustrate an enhancement of correction activity directed by some of these modified structures. In this illustrative example, the most efficient molecules contained 3 or 6 phosphorothioate linkages at each end of the 25-mer; the activities are approximately equal (molecules IX and X with results of 3.09 and 3.7 respectively). A reduction in alteration activity may be observed as the number of modified linkages in the molecule is further increased. Interestingly, a single-strand molecule containing 24 phosphorothioate linkages is minimally active suggesting that this backbone modification when used throughout the molecule supports only a low level of targeted gene repair or alteration. Such a non-altering, completely modified molecule can provide a baseline control for determining efficiency of correction for a specific oligonucleotide molecule of known sequence in defining the optimum oligonucleotide for a particular alteration event.
[0062] The efficiency of gene repair directed by phosphorothioate-modified, single-stranded molecules, in a length dependent fashion, led us to examine the length of the RNA modification used in the original chimera as it relates to correction. Construct III represents the “RNA-containing” strand of chimera I and, as shown in Table 1 and FIG. 2A, it promotes inefficient gene repair. But, as shown in the same figure, reducing the RNA residues on each end from 10 to 3 increases the frequency of repair. At equal levels of modification, however, 25-mers with 2′-O-methyl ribonucleotides were less effective gene repair agents than the same oligomers with phosphorothioate linkages. These results reinforce the fact that an RNA containing oligonucleotide is not as effective in promoting gene repair or alteration as a modified DNA oligonucleotide.
[0063] Repair of the kanamycin mutation requires a G→C exchange. To confirm that the specific desired correction alteration was obtained, colonies selected at random from multiple experiments are processed and the isolated plasmid DNA is sequenced. As seen in FIG. 4, colonies generated through the action of the single-stranded molecules 3S/25G (IX), 6S/25G (X) and 8S/25G (XI) respectively contained plasmid molecules harboring the targeted base correction. While a few colonies appeared on plates derived from reaction mixtures containing 25-mers with 10 or 12 thioate linkages on both ends, the sequences of the plasmid molecules from these colonies contain nonspecific base changes. In these illustrative examples, the second base of the codon is changed (see FIG. 3). These results show that modified single-strands can direct gene repair, but that efficiency and specificity are reduced when the 25-mers contain 10 or more phosphorothioate linkages at each end.
[0064] In FIG. 1, the numbers 3, 6, 8, 10, 12 and 12.5 respectively indicate how many phosphorothioate linkages (S) or 2′-O-methyl RNA nucleotides (R) are at each end of the examplified molecule although other molecules with 2, 4, 5, 7, 9 and 11 modifications at each end can also be tested. Hence oligo 12S/25G represents a 25-mer oligonucleotide which contains 12 phosphorothioate linkages on each side of the central G target mismatch base producing a fully phosphorothioate linked backbone, displayed as a dotted line. The dots are merely representative of a linkage in the figure and do not depict the actual number of linkages of the oligonucleotide. Smooth lines indicate DNA residues, wavy lines indicate 2′-O-methyl RNA residues and the carat indicates the mismatched base site (G).
[0065] Correction of a mutant kanamycin gene in cultured mammalian cells. Although this portion of this example is directed to cultured mammalian cells, comparable methods may be used using cultured plant cells or protoplasts of those cells from the plant species disclosed herein. The experiments are performed using different eukaryotic cells including plant and mammalian cells, including, for example, 293 cells (transformed human primary kidney cells), HeLa cells (human cervical carcinoma), and H1299 (human epithelial carcinoma, non-small cell lung cancer). HeLa cells are grown at 37° C. and 5% CO2 in a humidified incubator to a density of 2×105 cells/ml in an 8 chamber slide (Lab-Tek). After replacing the regular DMEM with Optimem, the cells are co-transfected with 10 &mgr;g of plasmid pAURNeo(−) FIAsH and 5 &mgr;g of modified single-stranded oligonucleotide (3S/25G) that is previously complexed with 10 &mgr;g lipofectamine, according to the manufacturer's directions (Life Technologies). The cells are treated with the liposome-DNA-oligo mix for 6 hrs at 37° C. Treated cells are washed with PBS and fresh DMEM is added. After a 16-18 hr recovery period, the culture is assayed for gene repair. The same oligonucleotide used in the cell-free extract experiments is used to target transfected plasmid bearing the kans gene. Correction of the point mutation in this gene eliminates a stop codon and restores full expression. This expression can be detected by adding a small non-fluorescent ligand that bound to a C-C-R-E-C-C sequence (SEQ ID NO: 2717) in the genetically modified carboxy terminus of the kan protein, to produce a highly fluorescent complex (FIAsH system, Aurora Biosciences Corporation). Following a 60 min incubation at room temperature with the ligand (FIAsH-EDT2), cells expressing full length kan product acquire an intense green fluorescence detectable by fluorescence microscopy using a fluorescein filter set. Similar experiments are performed using the HygeGFP target as described in Example 2 with a variety of mammalian cells, including, for example, COS-1 and COS-7 cells (African green monkey), and CHO-K1 cells (Chinese hamster ovary). The experiments are also performed with PG12 cells (rat pheochromocytoma) and ES cells (human embryonic stem cells).
[0066] Summary of experimental results. Tables 1, 2 and 3 respectively provide data on the efficiency of gene repair directed by single-stranded oligonucleotides. Table 1 presents data using a cell-free extract from human liver cells (HUH7) to catalyze repair of the point mutation in plasmid pkansm4021 (see FIG. 1). Table 2 illustrates that the oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity. Table 3 illustrates data from the repair of a frameshift mutation (FIG. 3) in the tet gene contained in plasmid pTet&Dgr;208. Table 4 illustrates data from repair of the pkansm4021 point mutation catalyzed by plant cell extracts prepared from canola and musa (banana). Colony numbers are presented as kanr or tetr and fold increases (single strand versus double hairpin) are presented for kanr in Table 1.
[0067] FIG. 5A is a confocal picture of HeLa cells expressing the corrected fusion protein from an episomal target. Gene repair is accomplished by the action of a modified single-stranded oligonucleotide containing 3 phosphorothioate linkages at each end (3S/25G). FIG. 5B represents a “Z-series” of HeLa cells bearing the corrected fusion gene. This series sections the cells from bottom to top and illustrates that the fluorescent signal is “inside the cells”.
[0068] Results. In summary, we have designed a novel class of single-stranded oligonucleotides with backbone modifications at the termini and demonstrate gene repair/conversion activity in mammalian and plant cell-free extracts. We confirm that the all DNA strand of the RNA-DNA double-stranded double hairpin chimera is the active component in the process of gene repair. In some cases, the relative frequency of repair by the novel oligonucleotides of the invention is elevated approximately 3-4-fold in certain embodiments when compared to frequencies directed by chimeric RNA-DNA double hairpin oligonucleotides.
[0069] This strategy centers around the use of extracts from various sources to correct a mutation in a plasmid using a modified single-stranded or a chimeric RNA-DNA double hairpin oligonucleotide. A mutation is placed inside the coding region of a gene conferring antibiotic resistance in bacteria, here kanamycin or tetracycline. The appearance of resistance is measured by genetic readout in E.coli grown in the presence of the specified antibiotic. The importance of this system is that both phenotypic alteration and genetic inheritance can be measured. Plasmid pKsm4021 contains a mutation (T→G) at residue 4021 rendering it unable to confer antibiotic resistance in E.coli. This point mutation is targeted for repair by oligonucleotides designed to restore kanamycin resistance. To avoid concerns of plasmid contamination skewing the colony counts, the directed correction is from G→C rather than G→T (wild-type). After isolation, the plasmid is electroporated into the DH10B strain of E.coli, which contains inactive RecA protein. The number of kanamycin colonies is counted and normalized by ascertaining the number of ampicillin colonies, a process that controls for the influence of electroporation. The number of colonies generated from three to five independent reactions was averaged and is presented for each experiment. A fold increase number is recorded to aid in comparison.
[0070] The original RNA-DNA double hairpin chimera design, e.g., as disclosed in U.S. Pat. No. 5,565,350, consists of two hybridized regions of a single-stranded oligonucleotide folded into a double hairpin configuration. The double-stranded targeting region is made up of a 5 base pair DNA/DNA segment bracketed by 10 base pair RNA/DNA segments. The central base pair is mismatched to the corresponding base pair in the target gene. When a molecule of this design is used to correct the kans mutation, gene repair is observed (I in FIG. 1A). Chimera II (FIG. 1B) differs partly from chimera I in that only the DNA strand of the double hairpin is mismatched to the target sequence. When this chimera was used to correct the kans mutation, it was twice as active. In the same study, repair function could be further increased by making the targeting region of the chimera a continuous RNA/DNA hybrid.
[0071] Frame shift mutations are repaired. By using plasmid pTs&Dgr;208, described in FIG. 1(C) and FIG. 3, the capacity of the modified single-stranded molecules that showed activity in correcting a point mutation, can be tested for repair of a frameshift. To determine efficiency of correction of the mutation, a chimeric oligonucleotide (Tet I), which is designed to insert a T residue at position 208, is used. A modified single-stranded oligonucleotide (Tet IX) directs the insertion of a T residue at this same site. FIG. 3 illustrates the plasmid and target bases designated for change in the experiments. When all reaction components are present (extract, plasmid, oligomer), tetracycline resistant colonies appear. The colony count increases with the amount of oligonucleotide used up to a point beyond which the count falls off (Table 3). No colonies above background are observed in the absence of either extract or oligonucleotide, nor when a modified single-stranded molecule bearing perfect complementarity is used. FIG. 3 represents the sequence surrounding the target site and shows that a T residue is inserted at the correct site. We have isolated plasmids from fifteen colonies obtained in three independent experiments and each analyzed sequence revealed the same precise nucleotide insertion. These data suggest that the single-stranded molecules used initially for point mutation correction can also repair nucleotide deletions.
[0072] Comparison of phosphorothioate oligonucleotides to 2′-O-methyl substituted oligonucleotides. From a comparison of molecules VII and XI, it is apparent that gene repair is more subject to inhibition by RNA residues than by phosphorothioate linkages. Thus, even though both of these oligonucleotides contain an equal number of modifications to impart nuclease resistance, XI (with 16 phosphorothioate linkages) has good gene repair activity while VII (with 16 2′-O-methyl RNA residues) is inactive. Hence, the original chimeric double hairpin oligonucleotide enabled correction directed, in large part, by the strand containing a large region of contiguous DNA residues.
[0073] Oligonucleotides can target multiple nucleotide alterations within the same template. The ability of individual single-stranded oligonucleotides to correct multiple mutations in a single target template is tested using the plasmid pKsm4021 and the following single-stranded oligonucleotides modified with 3 phosphorothioate linkages at each end (indicated as underlined nucleotides): Oligo1 is a 25-mer with the sequence TTCGATAAGCCTATGCTGACCCGTG (SEQ ID NO: 2709) corrects the original mutation present in the kanamycin resistance gene of pKsm4021 as well as directing another alteration 2 basepairs away in the target sequence (both indicated in boldface); Oligo2 is a 70-mer with the 5′-end sequence TTCGGCTACGACTGGGCACAACAGACAATTGGC (SEQ ID NO: 2710) with the remaining nucleotides being completely complementary to the kanamycin resistance gene and also ending in 3 phosphorothioate linkages at the 3′ end. Oigo2 directs correction of the mutation in pKsm4021 as well as directing another alteration 21 basepairs away in the target sequence (both indicated in boldface).
[0074] We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pKsM4021 plasmid. These include, for example, a second 25-mer that alters two nucleotides that are three nucleotides apart with the sequence 5′-TTGTGCCCAGTCGTATCCGAATAGC-3′ (SEQ ID NO: 2711); a 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-CATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGA-3′ (SEQ ID NO: 2712); and another 70-mer that alters two nucleotides that are 21 nucleotides apart with the sequence 5′-GCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCAATTGTCTGTTGTGCCCAGTCGTAGCCGMTAGCCT-3′ (SEQ ID NO: 2713). The nucleotides in the oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same way as the other oligonucleotides of the invention.
[0075] We assay correction of the original mutation in pKsm4021 by monitoring kanamycin resistance (the second alterations which are directed by Oligo2 and Oligo3 are silent with respect to the kanamycin resistance phenotype). In addition, in experiments with Oligo2, we also monitor cleavage of the resulting plasmids using the restriction enzyme Tsp5091 which cuts at a specific site present only when the second alteration has occurred (at ATT in Oligo2). We then sequence these clones to determine whether the additional, silent alteration has also been introduced. The results of an analysis are presented below: 2 Oligo 1 (25-mer) Oligo 2 (70-mer) Clones with both sites changed 9 7 Clones with a single site changed 0 2 Clones that were not changed 4 1
[0076] Nuclease sensitivity of unmodified DNA oligonucleotide. Electrophoretic analysis of nucleic acid recovered from the cell-free extract reactions conducted here confirm that the unmodified single-stranded 25-mer did not survive incubation whereas greater than 90% of the terminally modified oligos did survive (as judged by photo-image analyses of agarose gels).
[0077] Plant extracts direct repair. The modified single-stranded constructs can be tested in plant cell extracts. We have observed gene alteration using extracts from multiple plant sources, including, for example, Arabidopsis, tobacco, banana, maize, soybean, canola, wheat, spinach as well as spinach chloroplast extract or extracts made from other plant cells disclosed herein. We prepare the extracts by grinding plant tissue or cultured cells under liquid nitrogen with a mortar and pestle. We extract 3 ml of the ground plant tissue with 1.5 ml of extraction buffer (20 mM HEPES, pH7.5; 5 mM KCl; 1.5 mM MgCl2; 10 mM DTT; and 10% [v/v] glycerol). Some plant cell-free extracts also include about 1% (w/v) PVP. We then homogenize the samples with 15 strokes of a Dounce homogenizer. Following homogenization, we incubate the samples on ice for 1 hour and centrifuge at 3000×g for 5 minutes to remove plant cell debris. We then determine the protein concentration in the supernatants (extracts) by Bradford assay. We dispense 100 &mgr;g (protein) aliquots of the extracts which we freeze in a dry ice-ethanol bath and store at −80° C.
[0078] We describe experiments using two sources here: a dicot (canola) and a monocot (banana, Musa acuminata cv. Rasthali). Each vector directs gene repair of the kanamycin mutation (Table 4); however, the level of correction is elevated 2-3 fold relative to the frequency observed with the chimeric oligonucleotide. These results are similar to those observed in the mammalian system wherein a significant improvement in gene repair occurred when modified single-stranded molecules were used.
[0079] Tables are attached hereto. 3 TABLE I Gene repair activity is directed by single-stranded oligonucleotides. Oligonucleotide Plasmid Extract (ug) kanr colonies Fold increase I pKSm4021 10 300 I ↓ 20 418 1.0 × II ↓ 10 537 II ↓ 20 748 1.78 × III ↓ 10 3 III ↓ 20 5 0.01 × IV ↓ 10 112 IV ↓ 20 96 0.22 × V ↓ 10 217 V ↓ 20 342 0.81 × VI ↓ 10 6 VI ↓ 20 39 0.093 × VII ↓ 10 0 VII ↓ 20 0 0 × VIII ↓ 10 3 VIII ↓ 20 5 0.01 × IX ↓ 10 936 IX ↓ 20 1295 3.09 × X ↓ 10 1140 X ↓ 20 1588 3.7 × XI ↓ 10 480 XI ↓ 20 681 1.6 × XII ↓ 10 18 XII ↓ 20 25 0.059 × XIII ↓ 10 0 XIII ↓ 20 4 0.009 × — ↓ 20 0 I ↓ — 0
[0080] Plasmid pKSm4021 (1 &mgr;g), the indicated oligonucleotide (1.5 &mgr;g chimeric oligonucleotide or 0.55 &mgr;g single-stranded oligonucleotide; molar ratio of oligo to plasmid of 360 to 1) and either 10 or 20 &mgr;g of HUH7 cell-free extract were incubated 45 min at 37° C. Isolated plasmid DNA was electroporated into E. coli (strain DH10B) and the number of kanr colonies counted. The data represent the number of kanamycin resistant colonies per 106 ampicillin resistant colonies generated from the same reaction and is the average of three experiments (standard deviation usually less than +/−15%). Fold increase is defined relative to 418 kanr colonies (second reaction) and in all reactions was calculated using the 20 &mgr;g sample. 4 TABLE II Modified single-stranded oligomers are not dependent on MSH2 or MSH3 for optimal gene repair activity. A. Oligonucleotide Plasmid Extract kanr colonies IX (3S/25G) ↓ HUH7 637 X (6S/25G) ↓ HUH7 836 IX ↓ MEF2−/− 781 X ↓ MEF2−/− 676 IX ↓ MEF3−/− 582 X ↓ MEF3−/− 530 IX ↓ MEF+/+ 332 X ↓ MEF+/+ 497 — ↓ MEF2−/− 10 — ↓ MEF3−/− 5 — ↓ MEF+/+ 14
[0081] Chimeric oligonucleotide (1.5 &mgr;g) or modified single-stranded oligonucleotide (0.55 &mgr;g) was incubated with 1 &mgr;g of plasmid pKSm4021 and 20 &mgr;g of the indicated extracts. MEF represents mouse embryonic fibroblasts with either MSH2 (2−/−) or MSH3 (3−/−) deleted. MEF+/+ indicates wild-type mouse embryonic fibroblasts. The other reaction components were then added and processed through the bacterial readout system. The data represent the number of kanamycin resistant colonies per 106 ampicillin resistant colonies. 5 TABLE III Frameshift mutation repair is directed by single-stranded oligonucleotides Oligonucleotide Plasmid Extract tetr colonies Tet IX (3S/25A; 0.5 &mgr;g) pTS&Dgr;208 (1 &mgr;g) — 0 — ↓ 20 &mgr;g 0 Tet IX (0.5 &mgr;g) ↓ ↓ 48 Tet IX (1.5 &mgr;g) ↓ ↓ 130 Tet IX (2.0 &mgr;g) ↓ ↓ 68 Tet I (chimera; 1.5 &mgr;g) ↓ ↓ 48
[0082] Each reaction mixture contained the indicated amounts of plasmid and oligonucleotide. The extract used for these experiments came from HUH7 cells. The data represent the number of tetracycline resistant colonies per 106 ampicillin resistant colonies generated from the same reaction and is the average of 3 independent experiments. Tet I is a chimeric oligonucleotide and Tet IX is a modified single-stranded oligonucleotide that are designed to insert a T residue at position 208 of pTs&Dgr;208. The oligonucleotides are equivalent to structures I and IX in FIG. 2. 6 TABLE IV Plant cell-free extracts support gene repair by single-stranded oligonucleotides Oligonucleotide Plasmid Extract kanr colonies II (chimera) pKSm402l 30 &mgr;g Canola 337 IX (3S/25G) ↓ Canola 763 X (6S/25G) ↓ Canola 882 II ↓ Musa 203 IX ↓ Musa 343 X ↓ Musa 746 — ↓ Canola 0 — ↓ Musa 0 IX ↓ — Canola 0 X ↓ — Musa 0
[0083] Canola or Musa cell-free extracts were tested for gene repair activity on the kanamycin-sensitive gene as previously described in (18). Chimeric oligonucleotide II (1.5 &mgr;g) and modified single-stranded oligonucleotides IX and X (0.55 &mgr;g) were used to correct pKSm4021. Total number of kanr colonies are present per 107 ampicillin resistant colonies and represent an average of four independent experiments. 7 TABLE V Gene repair activity in cell-free extracts prepared from yeast (Saccharomyces cerevisiae) Cell-type Plasmid Chimeric Oligo SS Oligo kanr/ampr × 106 Wild type pKansm4021 1 &mgr;g 0.36 Wild type ↓ 1 &mgr;g 0.81 &Dgr;RAD52 ↓ 1 &mgr;g 10.72 &Dgr;RAD52 ↓ 1 &mgr;g 17.41 &Dgr;PMS1 ↓ 1 &mgr;g 2.02 &Dgr;PMS1 ↓ 1 &mgr;g 3.23 In this experiment, the kans gene in pKans4021 is corrected by either a chimeric double-hairpin oligonucleotide or a single-stranded oligonucleotide containing three thioate linkages at each end (3S/25G).
EXAMPLE 2 Yeast Cell Targeting Assay Method for Base Alteration and Preferred Oligonucleotide Selection[0084] In this example, single-stranded oligonucleotides with modified backbones and double-hairpin oligonucleotides with chimeric, RNA-DNA backbones are used to measure gene repair using two episomal targets with a fusion between a hygromycin resistance gene and eGFP as a target for gene repair. These plasmids are pAURHYG(rep)GFP, which contains a point mutation in the hygromycin resistance gene (FIG. 7), pAURHYG(ins)GFP, which contains a single-base insertion in the hygromycin resistance gene (FIG. 7) and pAURHYG(&Dgr;)GFP which has a single base deletion. We also use the plasmid containing a wild-type copy of the hygromycin-eGFP fusion gene, designated pAURHYG(wt)GFP, as a control. These plasmids also contain an aureobasidinA resistance gene. In pAURHYG(rep)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, at codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region. In pAURHYG(ins)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when an A inserted between nucleotide positions 136 and 137, at codon 46 of the hygromycin B coding sequence, is deleted and a C is substituted for the T at position 137, thus correcting a frameshift mutation and restoring the reading frame of the hygromycin-eGFP fusion gene.
[0085] We synthesize the set of three yeast expression constructs pAURHYG(rep)eGFP, pAURHYG(&Dgr;)eGFP, pAURHYG(ins)eGFP, that contain a point mutation at nucleotide 137 of the hygromycin-B coding sequence as follows. (rep) indicates a T137→G replacement, (&Dgr;) represents a deletion of the G137 and (ins) represents an A insertion between nucleotides 136 and 137. We construct this set of plasmids by excising the respective expression cassettes by restriction digest from pHyg(x)EGFP and ligation into pAUR123 (Panvera, Calif.). We digest 10 &mgr;g pAUR123 vector DNA, as well as, 10 &mgr;g of each pHyg(x)EGFP construct with KpnI and SaII (NEB). We gel purify each of the DNA fragments and prepare them for enzymatic ligation. We ligate each mutated insert into pHygEGFP vector at 3:1 molar ratio using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm by Sanger dideoxy chain termination sequencing and purify using a Qiagen maxiprep kit.
[0086] We use this system to assay the ability of five oligonucleotides (shown in FIG. 8) to support correction under a variety of conditions. The oligonucleotides which direct correction of the mutation in pAURHYG(rep)GFP can also direct correction of the mutation in pAURHYG(ins)GFP. Three of the four oligonucleotides (HygE3T/25, HygE3T/74 and HygGG/Rev) share the same 25-base sequence surrounding the base targeted for alteration. HygGG/Rev is an RNA-DNA chimeric double hairpin oligonucleotide of the type described in the prior art. One of these oligonucleotides, HygE3T/74, is a 74-base oligonucleotide with the 25-base sequence centrally positioned. The fourth oligonucleotide, designated HygE3T/74&agr;, is the reverse complement of HygE3T/74. The fifth oligonucleotide, designated Kan70T, is a non-specific, control oligonucleotide which is not complementary to the target sequence. Alternatively, an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely thioate modified oligonucleotide or a completely 2-O-methylated modified oligonucleotide may be used as a control. Alternatively, oligonucleotides containing one, two, three, four, five, six, eight, ten or more LNA modifications on at least one of the two termini (and preferrably the 3′ terminus) may be used in different embodiments.
[0087] Oligonucleotide synthesis and cells. We synthesized and purified the chimeric, double-hairpin oligonucleotides and single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 1. Plasmids used for assay were maintained stably in yeast (Saccharomyces cerevisiae) strain LSY678 MAT &agr; at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30° C. We then add 30 ml of fresh YPD media to the overnight cultures and continue shaking at 30° C. until the OD600 was between 0.5 and 1.0 (3-5 hours). We then wash the cells by centrifuging at 4° C. at 3000 rpm for 5 minutes and twice resuspending the cells in 25 ml ice-cold distilled water. We then centrifuge at 4° C. at 3000 rpm for 5 minutes and resuspend in 1 ml ice-cold 1M sorbitol and then finally centrifuge the cells at 4° C. at 5000 rpm for 5 minutes and resuspend the cells in 120 &mgr;l 1M sorbitol. To transform electrocompetent cells with plasmids or oligonucleotides, we mix 40 &mgr;l of cells with 5 &mgr;g of nucleic acid, unless otherwise stated, and incubate on ice for 5 minutes. We then transfer the mixture to a 0.2 cm electroporation cuvette and electroporate with a BIO-RAD Gene Pulser apparatus at 1.5 kV, 25 &mgr;F, 200 &OHgr; for one five-second pulse. We then immediately resuspend the cells in 1 ml YPD supplemented with 1M sorbitol and incubate the cultures at 30° C. with shaking at 300 rpm for 6 hours. We then spread 200 &mgr;l of this culture on selective plates containing 300 &mgr;g/ml hygromycin and spread 200 &mgr;l of a 105 dilution of this culture on selective plates containing 500 ng/ml aureobasidinA and/or and incubate at 30° C. for 3 days to allow individual yeast colonies to grow. We then count the colonies on the plates and calculate the gene conversion efficiency by determining the number of hygromycin resistance colonies per 105 aureobasidinA resistant colonies.
[0088] Frameshift mutations are repaired in yeast cells. We test the ability of the oligonucleotides shown in FIG. 8 to correct a frameshift mutation in vivo using LSY678 yeast cells containing the plasmid pAURHYG(ins)GFP. These experiments, presented in Table 6, indicate that these oligonucleotides can support gene correction in yeast cells. These data reinforce the results described in Example 1 indicating that oligonucleotides comprising phosphorothioate linkages facilitate gene correction much more efficiently than control duplex, chimeric RNA-DNA oligonucleotides. This gene correction activity is also specific as transformation of cells with the control oligonucleotide Kan70T produced no hygromycin resistant colonies above background and thus Kan70T did not support gene correction in this system. In addition, we observe that the 74-base oligonucleotide (HygE3T/74) corrects the mutation in pAURHYG(ins)GFP approximately five-fold more efficiently than the 25-base oligonucleotide (HygE3T/25). We also perform control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)GFP. With this strain we observed that even without added oligonucleotides, there are too many hygromycin resistant colonies to count.
[0089] We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAURHYG(x)eGFP plasmid. These include, for example, one that alters two basepairs that are 3 nucleotides apart is a 74-mer with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGGTACGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTAC-3′ (SEQ ID NO: 2714); a 74-mer that alters two basepairs that are 15 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAACAGCTGCGCCGATGGTTTCTAC-3′ (SEQ ID NO: 2715); and a 74-mer that alters two basepairs that are 27 nucleotides apart with the sequence 5′-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAATAGCTGCGCCGACGGTTTCTAC (SEQ ID NO: 2716). The nucleotides in these oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same ways as the other oligonucleotides of the invention.
[0090] Oligonucleotides targeting the sense strand direct gene correction more efficiently. We compare the ability of single-stranded oligonucleotides to target each of the two strands of the target sequence of both pAURHYG(ins)GFP and pAURHYG(rep)GFP. These experiments, presented in Tables 7 and 8, indicate that an oligonucleotide, HygE3T/74&agr;, with sequence complementary to the sense strand (i.e. the strand of the target sequence that is identical to the mRNA) of the target sequence facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the non-transcribed strand which serves as the template for the synthesis of RNA. As indicated in Table 7, this effect was observed over a range of oligonucleotide concentrations from 0-3.6 &mgr;g, although we did observe some variability in the difference between the two oligonucleotides (indicated in Table 7 as a fold difference between HygE3T/74&agr; and HygE3T/74). Furthermore, as shown in Table 8, we observe increased efficiency of correction by HygE3T/74&agr; relative to HygE3T/74 regardless of whether the oligonucleotides were used to correct the base substitution mutation in pAURHYG(rep)GFP or the insertion mutation in pAURHYG(ins)GFP. The data presented in Table 8 further indicate that the single-stranded oligonucleotides correct a base substitution mutation more efficiently than an insertion mutation. However, this last effect was much less pronounced and the oligonucleotides of the invention are clearly able efficiently to correct both types of mutations in yeast cells. In addition, the role of transcription is investigated using plasmids with inducible promoters such as that described in FIG. 10.
[0091] Optimization of oligonucleotide concentration. To determine the optimal concentration of oligonucleotide for the purpose of gene alteration, we test the ability of increasing concentrations of Hyg3T/74&agr; to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678. We chose this assay system because our previous experiments indicated that it supports the highest level of correction. However, this same approach could be used to determine the optimal concentration of any given oligonucleotide. We test the ability of Hyg3T/74&agr; to correct the mutation in pAURHYG(rep)GFP contained in yeast LSY678 over a range of oligonucleotide concentrations from 0-10.0 &mgr;g. As shown in Table 9, we observe that the correction efficiency initially increases with increasing oligonucleotide concentration, but then declines at the highest concentration tested.
[0092] Tables are attached hereto. 8 TABLE 6 Correction of an insertion mutation in pAURHYG(ins)GFP by HygGG/Rev, HygE3T/25 and HygE3T/74 Colonies on Colonies on Correction Oligonucleotide Tested Hygromycin Aureobasidin (/105) Efficiency HygGG/Rev 3 157 0.02 HygE3T/25 64 147 0.44 HygE3T/74 280 174 1.61 Kan70T 0 — —
[0093] 9 TABLE 7 An oligonucleotide targeting the sense strand of the target sequence corrects more efficiently. Colonies per hygromycin plate Amount of Oligonucleotide (&mgr;g) HygE3T/74 HygE3T/74&agr; 0 0 0 0.6 24 128 (8.4x)* 1.2 69 140 (7.5x)* 2.4 62 167 (3.8x)* 3.6 29 367 (15x)* *The numbers in parentheses represent the fold increase in efficiency for targeting the non-transcribed strand as compared to the other strand of a DNA duplex that encodes a protein.
[0094] 10 TABLE 8 Correction of a base substitution mutation is more efficient than correction of a frame shift mutation. Oligonucleotide Plasmid tested (contained in LSY678) Tested (5 &mgr;g) pAURHYG(ins)GFP pAURHYG(rep)GFP HygE3T/74 72 277 HygE3T/74&agr; 1464 2248 Kan70T 0 0
[0095] 11 TABLE 9 Optimization of oligonucleotide concentration in electroporated yeast cells. Colonies on Colonies on Correction Amount (&mgr;g) hygromycin aureobasidin (/105) efficiency 0 0 67 0 1.0 5 64 0.08 2.5 47 30 1.57 5.0 199 33 6.08 7.5 383 39 9.79 10.0 191 33 5.79
EXAMPLE 3 Cultured Cell Manipulation[0096] Although disclosure in this example is directed to use of stem cells or human blood cells and microinjection, the microinjection procedures may also be used with cultured plant cells or protoplasts using any plant species, including those disclosed herein. Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Hypaque (Pharmacia Biotech, Uppsala, Sweden) density centrifugation. CD34+ cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, Calif.). Lin−CD38− cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, Calif.). Cells used for microinjection are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to microinjection. S Medium contains Iscoves' Modified Dulbecc's Medium without phenol red (IMDM) with 100 &mgr;g/ml glutamine/penicillin/streptomycin, 50 mg/ml bovine serum albumin, 50 &mgr;g/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM; Stem Cell Technologies), 40 &mgr;g/ml low-density lipoprotein (LDL; Sigma, St. Louis, Mo.), 50 mM HEPEs buffer and 50 &mgr;M 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, flt-3 ligand, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, N.J.). After microinjection, cells are detached and transferred in bulk into wells of 48 well plates for culturing.
[0097] 35 mm dishes are coated overnight at 4° C. with 50 &mgr;g/ml Fibronectin (FN) fragment CH-296 (Retronectin; TaKaRa Biomedicals, Panvera, Madison, Wis.) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37° C. prior to microinjection. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjection. Pulled injection needles with a range of 0.22 &mgr;m to 0.3 &mgr;m outer tip diameter are used. Cells are visualized with a microscope equipped with a temperature controlled stage set at 37° C. and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are flourescently labeled allow determination of the amount of oligonucleotide delivered to the cells.
[0098] For in vitro erythropoiesis from Lin−CD38− cells, the procedure of Malik, 1998 can be used. Cells are cultured in ME Medium for 4 days and then cultured in E Medium for 3 weeks. Erythropoiesis is evident by glycophorin A expression as well as the presence of red color representing the presence of hemoglobin in the cultured cells. The injected cells are able to retain their proliferative capacity and the ability to generate myeloid and erythoid progeny. CD34+ cells can convert a normal A (&bgr;A) to sickle T (&bgr;S) mutation in the &bgr;-globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene. Alternatively, stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.
[0099] Alternatively, non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, calcium phosphate precipitation, or any other method known in the art.
[0100] Biolistic delivery of oligonucleotide into plant cells may be accomplished according to the following method. One milliliter of packed cell volume of plant cell suspensions are subcultured onto plates containing solid medium [with Murashige and Skoog salts from Gibco/BRL, 500 mg/liter Mes, 1 mg/liter thiamin, 100 mg/liter myo-inositol, 180 mg/liter KH2PO4, 2.21 mg/liter 2,4-dichlorophenoxyacetic acid (2,4-D), and 30 g/liter sucrose (pH 5.7) and having 8 g/liter agar-agar from Sigma added before autoclaving]. By using a helium-driven particle gun such as that from BioRad and following manufacturers directions, oligonucleotides may be introduced to cells after precipitation onto 1 micrometer or comparable gold microcarriers (Bio-Rad). To precipitate onto microcarriers, 35 microliters of a particle suspension (60 mg of microcarriers per ml of 100% ethanol) is transferred to a 1.5 ml microcentrifuge tube, which is agitated on a vortex mixer. Then 40 microliter of resuspended oligonucleotide (60 ng/microliter water) is added; then 75 microliter of ice-cold 2.5 M CaCl2 is added; then 75 microliter of ice-cold 0.1 M spermidine is added. The tube is mixed vigorously or a vortex mixer for 10 min at room temperature. The particles are allowed to settle for 10 min and are centrifuged at 11,750 g for 30 sec. The supernatant is removed and the particles are resuspended in 50 microliter of 100% ethanol. An aliquot of 10 microliter of the resuspended particles are applied to each macro-projectile which is used to bombard each plate once at 900 psi (1 psi=6.89 kPa) with a gap distance (distance from power source to macroprojectile) of 1 cm and a target distance (distance from microprojectile launch site to target material) of 10 cm.
[0101] An alternative method of delivery can be used as follows. Cultured cells are suspended in liquid N6 medium and then plated on a VWR Scientific glass fiber filter. About 0.4 microgram of oligonucleotide are precipitated with 15 microliter of 2.5 mM CaCl2 and 5 microliter of 0.1 M spermidine onto 25 microgram of 1.0 micrometer gold particles. Microprojectile bombardment is performed by using a Bio-Rad PDS-1000 He particle delivery system or comparable machine following manufacturers instructions. Alterations in oligonucleotide concentrations can be employed to determine the optimum concentration of oligonucleotide according to the procedures described herein for any particular oligonucleotide of the invention.
[0102] Alternatively, the oligonucleotide of the invention may be delivered to a plant cell by electroporation of a protoplast derived from a plant part. The protoplasts may be formed by enzymatic treatment of a plant part, particularly a leaf, according to techniques such as those in Gallois et al., Methods in Molecular Biology 55: 89-107 by Humana Press. Such conditions for electroporation use about 3×105 protoplasts in a total volume of about 0.3 ml with a concentration of oligonucleotide of between 0.6 to 4 microgram per ml.
EXAMPLE 4 Plant Cells[0103] The oligonucleotides of the invention can also be used to repair or direct a mutagenic event in plants and animal cells. Although little information is available on plant mutations amongst natural cultivars, the oligonucleotides of the invention can be used to produce “knock out” mutations by modification of specific amino acid codons to produce stop codons (e.g., a CAA codon specifying Gln can be modified at a specific site to TAA; a AAG codon specifying Lys can be modified to UAG at a specific site; and a CGA codon for Arg can be modified to a UGA codon at a specific site). Such base pair changes will terminate the reading frame and produce a defective truncated protein, shortened at the site of the stop codon.
[0104] Alternatively, frameshift additions or deletions can be directed into the genome at a specific sequence to interrupt the reading frame and produce a garbled downstream protein. Such stop or frameshift mutations can be introduced to determine the effect of knocking out the protein in either plant or animal cells.
[0105] For introduction of a T-DNA, including the T-DNA in the plasmid of FIG. 11, into a plant cell, Agrobacterium tumefaciens is used. These techniques are routine standard techniques known in the art. For example, one method follows. We transform A. tumefaciens is transformed by electroporation (using a BioRad Gene Pulser™). Competent A. tumefaciens is prepared using a method similar to that of preparing competent E. coli by suspending a freshly grown culture three times in ice-cold water and a final resuspension in 10% glycerol. Electroporation conditions are a 0.2 cm gap cuvette at a setting of 25 &mgr;F,200 &OHgr; and2.5 kV.
[0106] A. tumefaciens containing a plasmid with a T-DNA is then used to introduce the T-DNA into a plant cell using routine standard techniques known in the art. For example, we transform Arabidopsis by vacuum infiltration or by dipping flowers in an Agrobacterium solution containing a surfactant, e.g. L-77. Seeds are then collected, grown and screened for presence of the T-DNA. Alternatively, Agrobacterium can be used to transform callus tissue and the callus tissue can then be used to regenerate transformed plants.
[0107] All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
[0108] Notes on the Tables Presented Below:
[0109] Each of the following tables presents, for the specified gene, a plurality of mutations that are known to confer a relevant phenotype and, for each mutation, the oligonucleotides that can be used to correct the respective mutation site-specifically in the genome according to the present invention.
[0110] The left-most column identifies each alteration or mutation and the phenotype that the alteration/mutation confers.
[0111] For most entries, the mutation/alteration is identified at both the nucleic acid and protein level. At the amino acid level, mutations are presented according to the following standard nomenclature. The centered number identifies the position of the mutated codon in the protein sequence; to the left of the number is the wild type residue and to the right of the number is the mutant codon. Terminator codons are shown as “TERM”. At the nucleic acid level, the entire triplet of the wild type and mutated codons is shown.
[0112] The middle column presents, for each mutation, four oligonucleotides capable of repairing the mutation site-specifically in the genome or in cloned DNA including DNA in artificial chromosomes, episomes, plasmids, or other types of vectors. The oligonucleotides of the invention, however, may include any of the oligonucleotides sharing portions of the sequence of the 121 base sequence. Thus, oligonucleotides of the invention for each of the depicted targets may be 18, 19, 20 up to about 121 nucleotides in length. Sequence may be added non-symmetrically.
[0113] All oligonucleotides are presented, per convention, in the 5′ to 3′ orientation. The nucleotide that effects the change in the genome is underlined and presented in bold.
[0114] The first of the four oligonucleotides for each mutation is a 121 nt oligonucleotide centered about the repair/altering nucleotide. The second oligonucleotide, its reverse complement, targets the opposite strand of the DNA duplex for repair/alteration. The third oligonucleotide is the minimal 17 nt domain of the first oligonucleotide, also centered about the repair/alteration nucleotide. The fourth oligonucleotide is the reverse complement of the third, and thus represents the minimal 17 nt domain of the second.
[0115] The third column of each table presents the SEQ ID NO: of the respective repair oligonucleotide.
EXAMPLE 5 Engineering Herbicide Resistant Plants[0116] Chemical weed control is an important tool of modern agriculture and many herbicides have been developed for this purpose. Their use has resulted in substantial increases in the yields of many crops, including, for example, maize, soybeans, and cotton. Thus while the use of fertilizers and new high-yielding crop varieties have contributed greatly to the “green revolution,” chemical weed control has also been at the forefront of technological achievement.
[0117] Herbicides having broad-spectrum activity are particularly useful because they obviate the need for multiple herbicides targeting different classes of weeds. The problem with such herbicides is that they typically also affect crops which are exposed to the herbicide. One way to overcome this is to generate plants which are resistant to one or more broad-spectrum herbicides. Such herbicide-tolerant plants may reduce the need for tillage to control weeds, thereby effectively reducing soil erosion and can reduce the quantity and number of different herbicides applied in the field.
[0118] Common herbicides used, for example, include those that inhibit the enzyme 5-enolpyruvyl-3-phosphoshikimic acid synthase (EPSPS), for example N-phosphonomethyl-glycine (e.g. glyphosate), those that inhibit acetolactate synthase (ALS) activity, for example the sulfonylureas and related herbicides, and those that inhibit dihydropteroate synthase, for example methyl[(4-amino-phenyl)sulfonyl]carbamate (e.g. Asulam). Herbicide-tolerant plants can be produced by several methods, including, for example, introducing into the genome of the plant the ability to degrade the herbicide, the capacity to produce a higher level of the targeted enzyme, and/or expressing an herbicide-tolerant allele of the enzyme.
[0119] The attached tables disclose exemplary oligonucleotides base sequences which can be used to generate site-specific mutations in plant genes that confer herbicide resistance. 12 TABLE 10 Genome-Altering Oligos Conferring Glyphosate Resistance Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Glyphosate Resistance AAGCGTCGGAGATTGTACTTCAACCCATTTAGAGAAATCTCCGGTC 1 EPSPS TTATTAAGCTTCCTGCCTCCAAGTCTCTATCAAATCGGATCCTGC Arabidopsis thaliana TTCTCGCTGCTCTGTCTGAGGTATATATCAC Gly97Ala GTGATATATACCTCAGACAGAGCAGCGAGAAGCAGGATCCGATT 2 GGC-GCC TGATAGAGACTTGGAGGCAGGAAGCTTAATAAGACCGGAGATTT CTCTAATGGGTTGAAGTACAATCTCCGACGCTT GCTTCCTGCCTCCAAGT 3 ACTTGGAGGCAGGAAGC 4 Glyphosate Resistance AAGCTTCAGAGATTGTGCTTCAACCAATCAGAGAAATCTCGGGTC 5 EPSPS TCATTAAGCTACCCGCATCCAAATCTCTCTCCAATCGGATCCTCC Brassica napus TTCTTGCCGCTCTATCTGAGGTACATATACT Gly93AIa AGTATATGTACCTCAGATAGAGCGGCAAGAAGGAGGATCCGATT 6 GGA-GCA GGAGAGAGATTTGGATGCGGGTAGCTTAATGAGACCCGAGATTT CTCTGATTGGTTGAAGCACAATCTCTGAAGCTT GCTACCCGCATCCAAAT 7 ATTIGGATGCGGGTAGC 8 Glyphosate Resistance AGCCCAACGAGATTGTGCTGCAACCCATCAAAGATATATCAGGC 9 EPSPS 1 ACTGTTAAATTGCCTGCTTCTAAATCCCTTTCCAATCGTATTCTCC Nicotiana tabacum TTCTTGCTGCCCTTTCTAAGGGAAGGACTGT Gly95Ala ACAGTCCTTCCCTTAGAAAGGGCAGCAAGAAGGAGAATACGATT 10 GGT-GCT GGAAAGGGATTTAGAAGCAGGCAATTTAACAGTGCCTGATATATC TTTGATGGGTTGCAGCACAATCTCGTIGGGCT ATTGCCTGCTTCTAAAT 11 ATTTAGAAGCAGGCAAT 12 Glyphosate Resistance ATTGTTTCCTTGGTACGAAATGTCCTCCTGTTCGAATTGTCAGCA 13 EPSPS 2 AGGGAGGCCTTCCCGCAGGGAAGGTAAAGCTCTCTGGATCAATT Nicotiana tabacum AGCAGCCAGTACTTGACTGCTCTGCTTATGGC Gly62Ala GCCATAAGCAGAGCAGTCAAGTACTGGCTGCTAATTGATCCAGA 14 GGA-GCA GAGCTTTACCTTCCCTGCGGGAAGGCCTCCCTTGCTGACAATTC GAACAGGAGGACATTTCGTACCAAGGAAACAAT CCTTCCCGCAGGGAAGG 15 CCTTCCCGCGGGAAGG 16 Glyphosate Resistance ATTGTTTCCTTGGCACTGACTGGCCACCTGTTCGTGTCAATGGAA 17 EPSPS TCGGAGGGCTACCTGCTGGCAAGGTCAAGCTGTCTGGCTCCATC Zea mays AGCAGTCAGTACTTGAGTGCCTTGCTGATGGC Gly168Ala GCCATCAGCAAGGCACTCAAGTACTGACTGCTGATGGAGCCAGA 18 GGT-GCT CAGCTTGACCTTGCCAGCAGGTAGCCCTCCGATTCCATTGACAC GAACAGGTGGGCAGTCAGTGCCAAGGAAACAAT GCTACCTGCTGGCAAGG 19 CCTTGCCAGCAGGTAGC 20 Glyphosate Resistance ACTGTTTCCTTGGCACTGAATGCCCACCTGTTCGTGTCAAGGGA 21 EPSPS ATTGGAGGACTTCCTGCTGGCAAGGTTAAGCTCTCTGGTTCCAT Cryza sativa CAGCAGTCAGTACTTGAGTGCCTTGCTGATGGC Gly115Ala GCCATCAGCAAGGCACTCAAGTACTGACTGCTGATGGAACCAGA 22 GGT-GCT GAGCTTAACCTTGCCAGCAGGAAGTCCTCCAATTCCCTTGACAC GAACAGGTGGGCATTCAGTGCCAAGGAAACAGT ACTTCCTGCTGGCAAGG 23 CCTTGCCAGCAGGAAGT 24 Glyphosate Resistance AGCCTTCTGAGATAGTGTTGCAACCCATTAAAGAGATTTCAGGCA 25 EPSPS CTGTTAAATTGCCTGCCTCTAAATCATTATCTAATAGAATTCTCCT Petunia x hybrida TCTTGCTGCCTTATCTGAAGGMCAACTGT Gly93Ala ACAGTTGTTCCTTCAGATAAGGCAGCAAGAAGGAGAATTCTATTA 26 GGC-GCC GATAATGATTTAGAGGCAGGCAATTTAACAGTGCCTGAAATCTCT TTAATGGGTTGCAACACTATCTCAGAAGGCT ATTGCCTGCCTCTAAAT 27 ATTTAGAGGCAGGCAAT 28 Glyphosate Resistance AACCCCATGAGATTGTGCTAGNACCCATCAAAGATATATCTGGTA 29 EPSPS CTGTTAAATTACCCGCTTCGAAATCCCTTTCCAATCGTATTCTCCT Lycopersicon TCTTGCTGCCCTTTCTGAGGGAAGGACTGT esculentum ACAGTCCTTCCCTCAGAAAGGGCAGCAAGAAGGAGAATACGATT 30 Gly97Ala GGAAAGGGATTTCGAAGCGGGTAATTTAACAGTACCAGATATATC GGT-GCT TTTGATGGGTNCTAGCACAATCTGATGGGGTT ATTACCCGCTTCGAAAT 31 ATTTCGAAGCGGGTAAT 32 Glyphosate Resistance ATTGTTTCCTTGGCACTGACTGCCCACCTGTTCGKATCAACGGGA 33 EPSPS TTGGAGGGCTACCTGCTGGCAAGGTTAAGCTGTCTGGTTCCAIT Lolium rigidum AGCAGCCAATACTTGAGTTCCTTGCTGATGGC Gly107Ala GCCATCAGCAAGGAACTCAAGTATTGGCTGCTGATGGAACCAGA 34 GGT-GCT CAGCTTAACCTTGCCAGCAGGTAGCCCTCCAATGCCGTTGATCG AACAGGTGGGCAGTCAGTGCCAAGGAAACAAT GCTACCTGCTGGCAAGG 35 CCTTGCCAGCAGGTAGC 36
[0120] 13 TABLE 11 Genome-Altering Oligos Conferring Imidazolinone and Sulfonylurea Herbicide Resistance Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Sulfonylurea AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA 37 Resistance ATCACAGGACAAGTCTCTCGTCGTATGATTGGTACAGATGCGTTT ALS CAAGAGACTCCGATTGTTGAGGTAACGCGTT Arabidopsis thaliana AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC 38 Pro197Ser CAATCATACGACGAGAGACTTGTCCTGTGATTGCTACAAGAGGAA CCT-TCT CACTATCTAACAACGCATCGGCTAATCCGCT GACAAGTCTCTCGTCGT 39 ACGACGAGAGACTTGTC 40 Sulfonylurea AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA 41 Resistance ATCACAGGACAAGTCCAGCGTCGTATGATTGGTACAGATGCGTTT ALS CAAGAGACTCCGATTGTTGAGGTAACGCGTT Arabidopsis thaliana AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC 42 Pro197GLN CAATCATACGACGCTGGACTTGTCCTGTGATTGCTACAAGAGGAA CCT-CAG CACTATCTAACAACGCATCGGCTAATCCGCT ACAAGTCCAGCGTCGTC 43 TACGACGCTGGACTTGT 44 Sulfonylurea AGCGGATTAGCCGATGCGTTGTTAGATAGTGTTCCTCTTGTAGCA 45 Resistance ATCACAGGACAAGTCCAACGTCGTATGATTGGTACAGATGCGTTT ALS CAAGAGACTCCGATTGTTGAGGTAACGCGTT Arabidopsis thaliana AACGCGTTACCTCAACAATCGGAGTCTCTTGAAACGCATCTGTAC 46 Pro197GLN CAATCATACGACGTTGGACTTGTCCTGTGATTGCTACAAGAGGAA CCT-CAA CACTATCTAACAACGCATCGGCTAATCCGCT ACAAGTCCAACGTCGTA 47 TACGACGTTGGACTTGT 48 Imidazolinone GACCTTACCTGTTGGATGTGATTTGTCCGCACCAAGAACATGTGT 49 Resistance TGCCGATGATCCCGAACGGTGGCACTTTCAACGATGTCATAACGG ALS AAGGAGATGGCCGGATTAAATACTGAGAGAT Arabidopsis thaliana ATCTCTCAGTATTTAATCCGGCCATCTCCTTCCGTTATGACATCGT 50 Ser653Asn TGAAAGTGCCACCGTTCGGGATCATCGGCAACACATGTTCTTGGT AGT-AAC GCGGACAAATCACATCCAACAGGTAAGGTC GATCCCGAACGGTGGCA 51 TGCCACCGTTCGGGATC 52 Imidazolinone GACCTTACCTGTTGGATGTGATTTGTCCGCACCAAGAACATGTGT 53 Resistance TGCCGATGATCCCGAATGGTGGCACTTTCAACGATGTCATAACGG ALS AAGGAGATGGCCGGATTAAATACTGAGAGAT Arabidopsis thaliana ATCTCTCAGTATTTAATCCGGCCATCTCCTTCCGTTATGACATCGT 54 Ser653Asn TGAAAGTGCCACCATTCGGGATCATCGGCAACACATGTTCTTGGT AGT-AAT GCGGACAAATCACATCCAACAGGTAAGGTC GATCCCGAATGGTGGCA 55 TGCCACCATTCGGGATC 56 Sulfonylurea TCCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGC 57 Resistance CATCACGGGCCAGGTCTCCCGCCGCATGATCGGCACCGACGCCT ALS TCCAGGAGACGCCCATAGTCGAGGTCACCCGCT Oryza saliva AGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGTG 58 Pro171Ser CCGATCATGCGGCGGGAGACCTGGCCCGTGATGGCGACCATCG CCC-TCC GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGGA GCCAGGTCTCCCGCCGC 59 GCGGCGGGAGACCTGGC 60 Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC 61 Resistance ATCACGGGCCAGGTCCAACGCCGCATGATCGGCACCGACGCCTT ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC Oryza saliva GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT 62 Pro171Gln GCCGATCATGCGGCGTTGGACCTGGCCCGTGATGGCGACCATCG CCC-CAA GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG CCAGGTCCAACGCCGCA 63 TGCGGCGTTGGACCTGG 64 Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC 65 Resistance ATCACGGGCCAGGTCCAGCGCCGCATGATCGGCACCGACGCCTT ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC Oryza saliva GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT 66 Pro171Gln GCCGATCATGCGGCGCTGGACCTGGCCCGTGATGGCGACCATCG CCC-CAG GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG CCAGGTCCAGCGCCGCA 67 TGCGGCGCTGGACCTGG 68 Imidazolinone GGCCATACTTGTTGGATATCATCGTCCCGCACCAGGAGCATGTGC 69 Resistance TGCCTATGATCCCAAATGGGGGCGCATTCAAGGACATGATCCTGG ALS ATGGTGATGGCAGGACTGTGTATTAATCTAT Oryza saliva ATAGATTAATACACAGTCCTGCGATCACCATCCAGGATCATGTCCT 70 Ilee627Asn TGAATGCGCCCCCATTTGGGATCATAGGCAGCACATGCTCCTGGT ATT-AAT GCGGGACGATGATATCCAACAAGTATGGCC GATCCCAAATGGGGGCG 71 CGCCCCCATTTGGGATC 72 Sulfonylurea TCCGCGCTCGCCGACGCGCTGCTCGATTCCGTCCCCATGGTCGC 73 Resistance CATCACGGGACAGGTGTCGCGACGCATGATTGGCACCGACGCCT ALS TCCAGGAGACGCCCATCGTCGAGGTCACCCGCT Zea mays AGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCGGT 74 Pro165Ser GCCAATCATGCGTCGCGACACCTGTCCCGTGATGGCGACCATGG CCG-TCG GGACGGAATCGAGCAGCGCGTCGGCGAGCGCGGA GACAGGTGTCGCGACGC 75 GCGTCGCGACACCTGTC 76 Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGATTCCGTCCCCATGGTCGCC 77 Resistance ATCACGGGACAGGTGCAGCGACGCATGATTGGCACCGACGCCTT ALS CCAGGAGACGCCCATCGTCGAGGTCACCCGCTC Zea mays GAGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCGG 78 Pro165Gln TGCCAATCATGCGTCGCTGCACCTGTCCCGTGATGGCGACCATG CCG-CAG GGGACGGAATCGAGCAGCGCGTCGGCGAGCGCGG ACAGGTGCAGCGACGCA 79 TGCGTCGCTGCACCTGT 80 Imidazolinone GGCCGTACCTCTTGGATATAATCGTCCCACACCAGGAGCATGTGT 81 Resistance TGCCTATGATCCCTAATGGTGGGGCTTTCAAGGATATGATCCTGG ALS ATGGTGATGGCAGGACTGTGTACTGATCTAA Zea mays TTAGATCAGTACACAGTCCTGCCATCACCATCCAGGATCATATCCT 82 Ser621Asn TGAAAGCCCCACCATTAGGGATCATAGGCAACACATGCTCCTGGT AGT-AAT GTGGGACGATTATATCCAAGAGGTACGGCC GATCCCTAATGGTGGGG 83 CCCCACCATTAGGGATC 84 Imidazolinone GGCCGTACCTCTTGGATATAATCGTCCCACACCAGGAGCATGTGT 85 Resistance TGCCTATGATCCCTAACGGTGGGGCTTTCAAGGATATGATCCTGG ALS ATGGTGATGGCAGGACTGTGTACTGATCTAA Zea mays TTAGATCAGTACACAGTCCTGCCATCACCATCCAGGATCATATCCT 86 Ser621Asn TGAAAGCCCCACCGTTAGGGATCATAGGCAACACATGCTCCTGGT AGT-AAC GTGGGACGATTATATCCAAGAGGTACGGCC GATCCCTAACGGTGGGG 87 CCCCACCGTTAGGGATC 88 Sulfonylurea TCCGCGCTCGCCGACGCCGTCCTCGACTCCATCCCCATGGTGGC 89 Resistance CATCACGGGGCAGGTCTCGCGCCGCATGATCGGCACGGACGCCT ALS TCCAGGAGACGCCCATCGTCGAGGTCACCCGCT Lolium multiflorum AGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCCGTG 90 Pro167Ser CCGATCATGCGGCGCGAGACCTGCCCCGTGATGGCCACCATGG CCG-TCC GGATGGAGTVGAGGAGGGCCTCGGCGACCCCCCA GGCAGGTCTCGCGCCGC 91 GCGGCGCGAGACCTGCC 92 Sulfonylurea CCGCGCTCGCCGACGCCCTCCTCGACTCCATCCCCATGGTGGCC 93 Resistance ATCACGGGGCAGGTCCAGCGCCGCATGATCGGCACGGACGCCTT ALS CCAGGAGACGCCCATCGTCGAGGTCACCCGCTC Lolium multiflorum GAGCGGGTGACCTCGACGATGGGCGTCTCCTGGAAGGCGTCCGT 94 Pro167Gln GCCGATCATGCGGCGCTGGACCTGCCCCGTGATGGCCACCATGG CCG-CAG GGATGGAGTCGAGGAGGGCGTCGGCGAGCGCGG GCAGGTCCAGCGCCGCA 95 TGCGGCGCTGGACCTGC 96 Imidazolinone CTGGGCCATACTTGTTGGATATCATCGTCCCTCACCAGGAGCATG 97 Resistance TGCTGCCTATGATCCCTAACGGTGGTGCTTTCAAGGACATTATCA ALS TGGAAGGTGATGGCAGGATTTCGTATTAAAC Lolium multiflorum GTTTAATACGAAATCCTGCCATCACCTTCCATGATAATGTCGTTGA 98 Ser623Asn AAGCACCACCGTTAGGGATCATAGGCAGCACATGCTCCTGGTGA AGC-AAC GGGACGATGATATCCAACAAGTATGGCCCAG GATCCCTAACGGTGGTG 99 CACCACCGTTAGGGATC 100 Sulfonylurea TCCGCGCTCGCCGACGGTCTCCTCGACTCCATCGCCATGGTCGC 101 Resistance CATCACGGGCCAGGTCTCACGCCGCATGATCGGCACGGACGCGT ALS TCCAGGAGACGCCCATAGTGGAGGTCACGCGCT Hordeum vulgare AGCGCGTGACCTCCACTATGGGCGTCTCCTGGAACGCGTCCGTG 102 Pro68Ser CGGATCATGCGGCGTGAGACCTGGCCCGTGATGGCGACCATGG CCA-TCA GGATGGAGTCGAGGAGAGCGTCGGCGAGCGCGGA GCCAGGTCTCACGCCGC 103 GCGGCGTGAGACCTGGC 104 Sulfonyurea CCGCGCTCGCCGACGCTCTCCTCGACTCCATCCCCATGGTCGCC 105 Resistance ATCACGGGCCAGGTCCAACGCCGCATGATCGGCACGGACGCGTT ALS CCAGGAGACGCCCATAGTGGAGGTCACGCGCTC Hordeum vulgare GAGCGCGTGACCTCCACTATGGGCGTCTCCTGGAACGCGTCCGT 106 Pro68Gln GCCGATCATGCGGCGTTGGACCTGGCCCGTGATGGCGACCATGG CCA-CAA GGATGGAGTCGAGGAGAGCGTCGGCGAGCGCGG CCAGGTCCAACGCCGCA 107 TGCGGCGTTGGACCTGG 108 Imidazolinone CCCAGGGCCGTACCTGCTGGATATCATTGTCCCGCATCAGGAGC 109 Resistance ACGTGCTGCCTATGATCCCAAACGGTGGTGCTTTCAAGGACATGA ALS TCATGGAGGGTGATGGCAGGACCTCGTACTGA Hordeum vulgare TCAGTACGAGGTCCTGCCATTCACCCTCCATGATCATGTCCTTGAA 110 Ser524Asn AGCACCACCGTTTGGGATCATAGGCAGCACGTGCTCCTGATGCG AGC-AAC GGACAATGATATCCAGCAGGTACGGCCCTGGG GATCCCAAACGGTGGTG 111 CACCACCGTTTGGGATC 112 Sulfonylurea AGTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCG 113 Resistance ATCACTGGTCAAGTCTCTCGTCGGATGATCGGTACCGATGCTTTC ALS CAGGAAACTCCAATTGTTGAGGTAACAAGGT Gossypium hirsutum ACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTAC 114 Pro186Ser CGATCATCCGACGAGAGACTTGACCAGTGATCGCCACGAGAGGG CCT-TCT ATACTATCGAGCATTGCATCAGCGAGACCACT GTCAAGTCTCTCGTCGG 115 CCGACGAGAGACTTGAC 116 Sulfonylurea GTGGTCTCGCTGATGCAATGGTCGATAGTATCCCTCTCGTGGCGA 117 Resistance TCACTGGTCAAGTCCAACGTCGGATGATCGGTACCGATGCTTTCC ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC Gossypium hirsutum GACCTTGTTACCTCAACAATTGGAGTTICCTGGAAAGCATCGGTA 118 Pro186Gln CCGATCATCCGACGTTGGACTTGACCAGTGATCGCCACGAGAGG CCT-CAA GATACTATCGAGCATTGCATCAGCGAGACCAC TCAAGTCCAACGTCGGA 119 TCCGACGTTGGACTTGA 120 Sulfonylurea GTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCGA 121 Resistance TCACIGGTCAAGTCCAGCGTCGGATGATCGGTACCGATGCTTTCC ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC Gossypium hirsutum GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA 122 Pro186Gln CCGATCATCCGACGCTGGACTTGACCAGTGATCGCCACGAGAGG CCT-CAG GATACTATCGAGCATTGCATCAGCGAGACCAC TCAAGTCCAGCGTCGGA 123 TCCGACGCTGGACTTGA 124 Imidazolinone GACCTTACTTGTTGGATGTGATTGTCCCACATCAAGAACATGTCCT 125 Resistance GCCTATGATCCCCAATGGAGGCGCTTTCAAAGATGTGATCACAGA ALS GGGTGATGGAAGAACACAATATTGACCTCA Gossypium hirsutum TGAGGTCAATATTGTGTTCTTCCATCACCCTCTGTGATCACATCTT 126 Ser642Asn TGAAAGCGCCTCCATTGGGGATCATAGGCAGGACATGTTCTTGAT AGT-AAT GTGGGACAATCACATCCAACAAGTAAGGTC GATCCCCAATGGAGGCG 127 CGCCTCCATTGGGGATC 128 Sulfonylurea TCTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCA 129 Resistance TTACTGGGCAAGTTTCCCGGCGTATGATTGGTACTGATGCTTTTCA ALS AGAGACTCCAATTGTTGAGGTAACTCGAT Amaranthus ATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTACC 130 retroflexus AATCATACGCCGGGAAACTTGCCCAGTAATGGCGACAAGAGGGA Pro192Ser CTGAGTCAAGAAGTGCATCAGCAAGACCAGA CCC-TCC GGCAAGTTTCCCGGCGT 131 ACGCCGGGAAAGTTGCC 132 Sulfonylurea CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCAT 133 Resistance TACTGGGCAAGTTCAACGGCGTATGATTGGTACTGATGCTTTTCA ALS AGAGACTCCAATTGTTGAGGTAACTCGATC Amaranthus GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC 134 retroflexus CAATCATACGCCGTTGAACTTGCCCAGTAATGGCGACAAGAGGGA Pro192Gln CTGAGTCAAGAAGTGCATCAGCAAGACCAG CCC-CAA GCAAGTTCAACGGCGTA 135 TACGCCGTTGAACTTGC 136 Sulfonylurea CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCAT 137 Resistance TACTGGGCAAGtTCAGCGGCGTATGATTGGTACTGATGCTTTTCA ALS AGAGACTCCAATTGTTGAGGTAACTCGATC Amaranthus GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC 138 retroflexus CAATCATACGCCGCTGAACTTGCCCAGTAATGGCGACAAGAGGG Pro192Gln ACTGAGTCAAGAAGTGCATCAGCAAGACCAG CCC-CAG GCAAGTTCAGCGGCGTA 139 TACGCCGCTGAACTTGC 140 Imidazolinone GACCGTATCTTGCTGGATGTTAATCGTACCACATCAGGAGCATGTGC 141 Resistance TGCCTAIGATCCCTAACGGTGCCGCCTTCAAGGACACCATAACAG ALS AGGGTGATGGAAGAAGGGGTTATTAGTTGGT Amaranthus ACCAACTAATAAGCCCTTCTTCCATTCACCCTCTGTTATGGTGTCCT 142 retroflexus TGAAGGCGGCACCGTTAGGGATCATAGGCAGCACATGCTCCTGA Ser652Asn TGTGGTACGATTACATCCAGCAGATACGGTC AGC-AAC GATCCCTAACGGTGCCG 143 CGGCACCGTTAGGGATC 144 Sulfonylurea AGCGGCCTCGCTGACGCGCTACTGGATAGCGTCCCCATTGTTGC 145 Resistance TATAACAGGTCAAGTGTCACGTAGGATGATAGGTACTGATGCTTTT ALS 1 CAGGAAACTCCTATTGTITGAGGTAACTAGAT Nicotiana tabacum ATCTAGTTACCTCAACAATAGGAGTTTCCTGAAAAGCATCAGTACC 146 Pro194Ser TATCATCCTACGTGACACTTGACCTGTTATAGCAACAATGGGGAC CCA-TCA GCTATCCAGTAGCGCGTCAGCGAGGCCGCT GTCAAGTGTCACGTAGG 147 CCTACGTGACACTTGAC 148 Sulfonylurea GCGGCCTCGCTGACGCGCTACTGGATAGCGTCCCCATTGTTGCT 149 Resistance ATAACAGGTCAAGTGCAACGTAGGATGATAGGTACTGATGCTTTT ALS 1 CAGGAAACTCCTATTGTTGAGGTAACTAGATC Nicotiana tabacum GATCTAGTTACCTCAACAATAGGAGTTTCCTGAAAAGCATCAGTAC 150 Pro194Gln CTATCATCCTACGTTGCACTTGACCTGTTATAGCAACAATGGGGA CCA-CAA CGCTATCCAGTAGCGCGTCAGCGAGGCCGC TCAAGTGCAACGTAGGA 151 TCCTACGTTGCACTTGA 152 Imidazolinone GGCCATACTTGTTGGATGTGATTGTACCTCATCAGGAACATGTTTT 153 Resistance ACCTATGATTCCCAATGGCGGAGCTTTCAAAGATGTGATCACAGA ALS 1 GGGTGACGGGAGAAGTTCCTATTGAGTTTG Nicotiana tabacum CAAACTGAATAGGAACTTCTCCCGTCACCCTCTGTGATCACATCTT 154 Ser650Asn TGAAAGCTCCGCCATTGGGAATCATAGGTAAAACATGTTCCTGAT AGT-AAT GAGGTACAATCACATCCAACAAGTATGGCC GATTCCCAATGGCGGAG 155 CTCCGCCATTGGGAATC 156 Sulfonylurea AGTGGCCTCGCGGACGCCCTACTGGATAGCGTCCCCATTGTTGC 157 Resistance TATAACCGGTCAAGTGTCACGTAGGATGATCGGTACTGATGCTTT ALS 2 TCAGGAAACTCCGATTGTTGAGGTAACTAGAT Nicotiana tabacum ATCTAGTTACCTCAACAATCGGAGTTTCCTGAAAAGCATCAGTACC 158 Pro191Ser GATCATCCTACGTGACACTTGACCGGTTATAGCAACAATGGGGAC CCA-TCA GCTATCCAGTAGGGCGTCCGCGAGGCCACT GICAAGTGTCACGTAGG 159 CCTACGTGACACTTGAC 160 Sulfonylurea GTGGCCTCGCGGACGCCCTACTGGATAGCGTCCCCATTGTTGCT 161 Resistance ATAACCGGTCAAGTGCAACGTAGGATGATCGGTACTGATGCTTTT ALS 2 CAGGAAACTCCGATTGTTGAGGTAACTAGATC Nicotiana tabacum GATCTAGTTACCTCAACAATCGGAGTTTCCTGAAAAGCATCAGTAC 162 Pro191Gln CGATCATCCTACGTTGCACTTGACCGGTTATAGCAACAATGGGGA CCA-CAA CGCTATCCAGTAGGGCGTCCGCGAGGCCAC TCAAGTGCAACGTAGGA 163 TCCTACGTTGCACTTGA 164 Imidazolinone GGCCATACTTGTTGGATGTGATTGTACCTCATCAGGAACATGTTCT 165 Resistance ACCTATGATTCCCAATGGCGGGGCTTTCAAAGATGTGATCACAGA ALS 2 GGGTGACGGGAGAAGTTCCTATTGACTTTG Nicotiana tabacum CAAAGTCAATAGGAACTTCTCCCGTCACCCTCTGTGATCACATCTT 166 Ser647Asn TGAAAGCCCCGCCATTGGGAATCATAGGTAGAACATGTTCCTGAT AGT-AAT GAGGTACAATCACATCCAACAAGTATGGCC GATTCCCAATGGCGGGG 167 CCCCGCCATTGGGAATC 168 Sulfonylurea AGTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTA 169 Resistance TTACTGGTCAAGTTTCCAGGAGAATGATTGGAACAGATGCGTTTC ALS AAGAAACCCCTATTGTTGAGGTAACACGTT Xanthium spp. AACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTCC 170 Pro175Ser AATCATTCTCCTGGAAACTTGACCAGTAATAGCAACCATTGGAACA CCC-TCC CTGTCTAATAAAGCATCAGCAAGACCACT GTCAAGTTTCCAGGAGA 171 TCTCCTGGAAACTTGAC 172 Sulfonylurea GTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTAT 173 Resistance TACTGGTCAAGTTCAAAGGAGAATGATTGGAACAGATGCGTTTCA ALS AGAAACCCCTATTGTTGAGGTAACACGTTC Xanthium spp. GAACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTC 174 Pro175Gln CAATCATTCTCCTTTGAACTTGACCAGTAATAGCAACCATTGGAAC CCC-CAA ACTGTCTAATAAAGCATCAGCAAGACCAC TCAAGTTCAAAGGAGAA 175 TTCTCCTTTGAACTTGA 176 Sulfonylurea GTGGTCTTGCTGATGCTTTATTAGACAGTGTTCCAATGGTTGCTAT 177 Resistance TACTGGTCAAGTTCAGAGGAGAATGATTGGAACAGATGCGTTTCA ALS AGAAACCCCTATTGTTGAGGTAACACGTTC Xanthium spp. GAACGTGTTACCTCAACAATAGGGGTTTCTTGAAACGCATCTGTTC 178 Pro175Gln CAATCATTCTCCTCTGAACTTGACCAGTAATAGCAACCATTGGAAC CCC-CAG ACTGTCTAATAAAGCATCAGCAAGACCAC TCAAGTTCAGAGGAGAA 179 TTCTCCTCTGAACTTGA 180 Imidazolinone GGGCCTTACTTGTTGGATGTGATCGTGCCCCATCAAGAACATGTG 181 Resistance TTGCCCATGATCCCGAATGGTGGAGGTTTCATGGATGTGATCACC ALS GAAGGCGACGGCAGAATGAAATATTGAGCTT Xanthium spp. AAGCTCAATATTTCATTCTGCCGTCGCCTTCGGTGATCACATCCAT 182 Ala631Asn GAAACCTCCACCATTCGGGATCATGGGCAACACATGTTCTTGATG GCT-AAT GGGCACGATCACATCCAACAAGTAAGGCCC TGATCCCGAATGGTGGA 183 TCCACCATTCGGGATCA 184 Sulfonylurea TCCGGGTTTGCTGATGCTTTGCTCGATTCCGTTCCACTGGTGGCG 185 Resistance ATCACGGGGCAGGTGTCGCGGCGAATGATTGGGACGGATGCTTT ALS TCAGGAGACTCCTATTGTTGAGGTAACACGGT Bassia scoparia ACCGTGTTACCTCAACAATAGGAGTCTCCTGAAAAGCATCCGTCC 186 Pro189Ser CAATCATTCGCCGCGACACCTGCCCCGTGATCGCCACCAGTGGA CCG-TCG ACGGAATCGAGCAAAGCATCAGCAAACCCGGA GGCAGGTGTCGCGGCGA 187 TCGCCGCGACACCTGCC 188 Sulfonylurea CCGGGTTTGGTGATGCTTTGCTCGATTCCGTTCCACTGGTGGCGA 189 Resistance TCACGGGGCAGGTGCAGCGGCGAATGATTGGGACGGATGCTTTT ALS CAGGAGACTCCTATTGTTGAGGTAACACGGTC Bassia scoparia GACCGTGTTACCTCAACAATAGGAGTCTCCTGAAAAGCATCCGTC 190 Pro189Gln CCAATCATTCGCCGCTGCACCTGCCCCGTGATCGCCACCAGTGG CCG-CAG AACGGAATCGAGCAAAGCATCAGCAAACCCGG GCAGGTGCAGCGGCGAA 191 TTCGCCGCTGCAGCTGC 192 Imidazolinone GACCTTACCTGCTTGATGTGATTGTACCTCATCAGGAGCATGTGC 193 Resistance TGCCTATGATTCCTAATGGTGCAGCCTTCAAGGATATCATTAACGA ALS AGGTGATGGAAGAACAAGTTATTGATGTTC Bassia scoparia GAACATCAATAACTTGTTCTTCCATCACCTTCGTTAATGATATCCTT 194 Ser649Asn GAAGGCTGCACCATTAGGAATCATAGGCAGCACATGCTCCTGATG AGT-AAT AGGTACAATCACATCAAGCAGGTAAGGTC GATTCGTAATGGTGCAG 195 CTGCACCATTAGGAATC 196 Sulfonylurea AGCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCC 197 Resistance ATTACAGGACAGGTCTCTCGCCGGATGATCGGTACTGACGCCTTC ALS 1 CAAGAGACACCAATCGTTGAGGTAACGAGGT Brassica napus ACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTAC 198 Pro182Ser CGATCATCCGGCGAGAGACCTGTCCTGTAATGGCGACAAGAGGA CCT-TCT ACACTGTCAAGCATCGCGTCTGCTAACCCGCT GACAGGTCTCTCGCCGG 199 CCGGCGAGAGACCTGTC 200 Sulfonylurea GCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCCA 201 Resistance TTACAGGACAGGTCCAACGCCGGATGATCGGTACTGACGCCTTC ALS 1 CAAGAGACACCAATCGTTGAGGTAACGAGGTC Brassica napus GACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTA 202 Pro182Gln CCGATCATCCGGCGTTGGACCTGTCCTGTAATGGCGACAAGAGG CCT-CAA AACACTGTCAAGCATCGCGTCTGCTAACCCGC ACAGGTCCAACGCCGGA 203 TCCGGCGTTGGACCTGT 204 Sulfonylurea GCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCCA 205 Resistance TTACAGGACAGGTCCAGCGCCGGATGATCGGTACTGACGCCTTC ALS 1 CAAGAGACACCAATCGTTGAGGTAACGAGGTC Brassica napus GACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTA 206 Pro182Gln CCGATCATCCGGCGCTGGACCTGTCCTGTAATGGCGACAAGAGG CCT-CAG AACACTGTCAAGCATCGCGTCTGCTAACCCGC ACAGGTCCAGCGCCGGA 207 TCCGGCGCTGGACCTGT 208 Imidazolinone GACCATACCTGTTGGATGTGATATGTCCGCACCAAGAACATGTGT 209 Resistance TACCGATGATCCCAAATGGTGGCACTTTCAAAGATGTAATAACAG ALS 1 AAGGGGATGGTCGCACTAAGTACTGAGAGAT Brassica napus ATCTCTCAGTACTTAGTGCGACCATCCCCTTCTGTTATTACATCTTT 210 Ser638Asn GAAAGTGCCACCATTTGGGATCATCGGTAACACATGTTCTTGGTG AGT-AAT CGGACATATCACATCCAACAGGTATGGTC GATCCCAAATGGTGGCA 211 TGCCACCATTTGGGATC 212 Sulfonylurea CAGCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGC 213 Resistance CATTACAGGACAGGTTCCTCGCCGGATGATCGGTACTGACGCCTT ALS 2 CCAAGAGACACCAATCGTTGAGGTAACGAGG Brassica napus CCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTACC 214 Pro126Ser GATCATCCGGCGAGGAACCTGTCCTGTAATGGCGACAAGAGGAA CCC-TCC CACTGTCAAGCATCGCGTCTGCTAACCCGCTG GGACAGGTTCCTCGCCG 215 CGGCGAGGAACCTGTCC 216 Sulfonylurea AGCGGGTTAGCAGACGCGATGCTTGACAGTGTTCCTCTTGTCGCC 217 Resistance ATTACAGGACAGGTCACTCGCCGGATGATCGGTACTGACGCCTTC ALS 2 CAAGAGACACCAATCGTTGAGGTAACGAGGT Brassica napus ACCTCGTTACCTCAACGATTGGTGTCTCTTGGAAGGCGTCAGTAC 218 Pro126Gln CGATCATCCGGCGAGTGACCTGTCCTGTAATGGCGACAAGAGGA CCC-CAG ACACTGTCAAGCATCGCGTCTGCTAACCCGCT GACAGGTCACTCGCCGG 219 CCGGCGAGTGACCTGTC 220 Imidazolinone GACCATACCTGTTGGATGTGATATGTCCGCACCAAGAACATGTGT 221 Resistance TACCGATGATCCCAAATGGTGGCACTTTCAAAGATGTAATAACAG ALS 2 AAGGGGATGGTCGCACTAAGTACTGAGAGAT Brassica napus ATCTCTCAGTACTTAGTGCGACCATCCCCTTCTGTTATTACATCTTT 222 Ser582Asn GAAAGTGCCACCATTTGGGATCATCGGTAACACATGTTCTTGGTG AGT-AAT CGGACATATCACATCCAACAGGTATGGTC GATCCCAAATGGTGGCA 223 TGCCACCATTTGGGATC 224 Sulfonylurea AGCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGC 225 Resistance CATCACAGGACAGGTCTCTCGCCGGATGATCGGTACTGACGCGT ALS 3 TCCAAGAGACGCCAATCGTTGAGGTAACGAGGT Brassica napus ACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTAC 226 Pro179Ser CGATCATCCGGCGAGAGACCTGTCCTGTGATGGCGACGAGAGGA CCT-TCT ACACTGTCAAGCATCGCGTCGGCTAACCCGCT GACAGGTCTCTCGCCGG 227 CCGGCGAGAGACCTGTC 228 Sulfonylurea GCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGCC 229 Resistance ATCACAGGACAGGTCCAACGCCGGATGATCGGTACTGACGCGTT ALS 3 CCAAGAGACGCCAATCGTTGAGGTAACGAGGTC Brassica napus GACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTA 230 Pro179Gln CCGATCATCCGGCGTTGGACCTGTCCTGTGATGGCGACGAGAGG CCT-CAA AACACTGTCAAGCATCGCGTCGGCTAACCCGC ACAGGTCCAAee CGCCGGA 231 TCCGGCGTTGGACCTGT 232 Sulfonylurea GCGGGTTAGCCGACGCGATGCTTGACAGTGTTCCTCTCGTCGCC 233 Resistance ATCACAGGACAGGTCCAGCGCCGGATGATCGGTACTGACGCGTT ALS 3 CCAAGAGACGCCAATCGTTGAGGTAACGAGGTC Brassica napus GACCTCGTTACCTCAACGATTGGCGTCTCTTGGAACGCGTCAGTA 234 Pro179Gln CCGATCATCCGGCGCTGGACCTGTCCTGTGATGGCGACGAGAGG CCT-CAG AACACTGTCAAGCATCGCGTCGGCTAACCCGC ACAGGTCCAGCGCCGGA 235 TCCGGCGCTGGACCTGT 236 Imidazolinone GACCGTACCTGTTGGATGTCATCTGTCCGCACCAAGAACATGTGT 237 Resistance TACOGATGATCCCAAATGGTGGCACTTTCAAAGATGTAATAACCG ALS 3 AAGGGGATGGTCGCACTAAGTACTGAGAGAT Brassica napus ATCTCTCAGTACTTAGTGCGACCATCCCCTTCGGTTATTACATCTT 238 Ser635Asn TGAAAGTGCCACCATTTGGGATCATCGGTAACACATGTTCTTGGT AGT-AAT GCGGACAGATGACATCCAACAGGTACGGTC GATCCCAAATGGTGGCA 239 TGCCACCATTTGGGATC 240 Sultonylurea TCCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGC 241 Resistance CATCACGGGCCAGGTCTCCCGCCGCATGATCGGCACCGACGCCT ALS TCCAGGAGACGCCCATAGTCGAGGTCACCCGCT Oryza sativa AGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGTG 242 Prol7l Ser CCGATCATGCGGCGGGAGACCTGGCCCGTGATGGCGACCATCG CCC-TCC GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGGA GCCAGGTCTCCCGCCGC 243 GCGGCGGGAGACCTGGC 244 Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC 245 Resistance ATCACGGGCCAGGTCCAACGCCGCATGATCGGCACCGACGCCTT ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC Oryza sativa GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT 246 Pro171Gln GCCGATCATGCGGCGTee TGGACCTGGCCCGTGATGGCGACCATCG CCC-CAA GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG CCAGGTCCAACGCCGCA 247 TGCGGCGTTGGACCTGG 248 Sulfonylurea CCGCGCTCGCCGACGCGCTGCTCGACTCCGTCCCGATGGTCGCC 249 Resistance ATCACGGGCCAGGTCCAGCGCCGCATGATCGGCACCGACGCCTT ALS CCAGGAGACGCCCATAGTCGAGGTCACCCGCTC Oryza sativa GAGCGGGTGACCTCGACTATGGGCGTCTCCTGGAAGGCGTCGGT 250 Pro171Gln GCCGATCATGCGGCGCTGGACCTGGCCCGTGATGGGGACCATCG CCC-CAG GGACGGAGTCGAGCAGCGCGTCGGCGAGCGCGG CCAGGTCCAGCGCCGCA 251 TGCGGCGCTGGACCTGG 252 Imidazolinone GGCCATACTTGTTGGATATCATCGTCCCGCACCAGGAGCATGTGC 253 Resistance TGCCTATGATCCCAAATGGGGGCGCATTCAAGGACATGATCCTGG ALS ATGGTGATGGCAGGACTGTGTATTAATCTAT Oryza sativa ATAGATTAATACACAGTCCTGCCATCACCATCCAGGATCATGTCCT 254 Ser627Asn TGAATGCGCCCCCATTTGGGATCATAGGCAGCACATGCICCTGGI AGT-AAT GCGGGACGATGATATCCAACAAGTATGGCC GATCCCAAATGGGGGCG 255 CGCCCCGATTTGGGATC 256 Sulfonylurea TCTGCGCTCGCAGACGCGTTGCTCGACTCCGTCCCCATGGTCGC 257 Resistance CATCACGGGACAGGTGTCGCGACGCATGATTGGCACCGACGCCT ALS TTCAGGAGACGCCCATCGTCGAGGTCACCCGCT Zea mays AGCGGGTGACCTCGACGATGGGCGTCTCCTGAAAGGCGTCGGTG 258 Pro165Ser CCAATCATGCGTCGCGACACCTGTCCCGTGATGGCGACCATGGG CCG-TCG GACGGAGTCGAGCAACGCGTCTGCGAGCGCAGA GACAGGTGTCGCGACGC 259 GCGTCGCGACACCTGTC 260 Sulfonylurea CTGCGCTCGCAGACGCGTTGCTCGACTCCGTCCCCATGGTCGCC 261 Resistance ATCACGGGACAGGTGCAGCGACGCATGATTGGCACCGACGCCTT ALS TCAGGAGACGCCCATCGTCGAGGTCACCCGCTC Zea mays GAGCGGGTGACCTCGACGATGGGCGTCTCCTGAAAGGCGTCGGT 262 Pro165Gln GCCAATCATGCGTCGCTGCACCTGTCCCGTGATGGCGACCATGG CCG-CAG GGACGGAGTCGAGCAACGCGTCTGCGAGCGCAG ACAGGTGCAGCGACGCA 263 TGCGTCGCTGCACCTGT 264 Imidazolinone GGCCGTACCTCTTGGATATAATCGTCCCGCACCAGGAGCATGTGT 265 Resistance TGCCTATGATCCCTAATGGTGGGGCTTTCAAGGATATGATCCTGG ALS ATGGTGATGGCAGGACTGTGTATTGATCCGT Zea mays ACGGATCAATACACAGTCCTGCCATCACCATCCAGGATCATATCC 266 Ser621Asn TTGAAAGCCCCACCATTAGGGATCATAGGCAACACATGCTCCTGG AGT-AAT TGCGGGACGATTATATCCAAGAGGTACGGCC GATCCCTAATGGTGGGG 267 CCCCACCATTAGGGATC 268 Sulfonylurea AGTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCG 269 Resistance ATCACTGGICAAGTCTCTCGTCGGATGATCGGTACCGATGCTTTC ALS CAGGAAACTCCAATTGTTGAGGTAACAAGGT Gossypium hirsutum ACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTAC 270 Pro186Ser CGATCATCCGACGAGAGACTTGACCAGTGATCGCCACGAGAGGG CCT-TCT ATACTATGGAGCATTGCATCAGCGAGACCACT GTCAAGTCTCTCGTCGG 271 CCGACGAGAGACTTGAC 272 Sulfonylurea GTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGGCGA 273 Resistance TCACTGGTCAAGTCCAACGTCGGATGATCGGTACCGATGCTTTCC ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC Gossypium hirsutum GACCTTGTTACCTTAACAATTGGAGTTTCCTGGAAAGCATCGGTA 274 Pro186Gln CCGATCATCCGACGTTGGACTTGACCAGTGATCGCCACGAGAGG CCT-CAA GATACTATCGAGCATTGCATCAGCGAGACCAC TCAAGTCCAACGTCGGA 275 TTCCGACGTTGGACTTGA 276 Sulfonylurea GTGGTCTCGCTGATGCAATGCTCGATAGTATCCCTCTCGTGCCGA 277 Resistance TCACTGGTCAAGTCCAGCGTCGGATGATCGGTACCGATGCTTTCC ALS AGGAAACTCCAATTGTTGAGGTAACAAGGTC Gossypium hirsutum GACCTTGTTACCTCAACAATTGGAGTTTCCTGGAAAGCATCGGTA 278 Pro186Gln CCGATCATCCGACGCTGGACTTGACCAGTGATCGCCACGAGAGG CCT-CAG GATACTATCGAGCATTGCATCAGCGAGACCAC TCAAGTCCAGCGTCGGA 279 TCCGACGCTGGACTTGA 280 Imidazolinone GACCTTACTTGTTGGATGTGATTGTCCCACATCAAGAACATGTCCT 281 Resistance GCCTATGATCCCCAATGGAGGGGCTTTCAAAGATGTGATCACAGA ALS GGGTGATGGAAGAACACAATATTGACCTCA Gossypium hirsutum TGAGGTCAATATTGTGTTCTTCCATCACCCTCTGTGATCACATCTT 282 Ser642Asn TGAAAGCCCCTCCATTGGGGATCATAGGCAGGACATGTTCTTGAT AGT-AAT GTGGGACAATCACATCCAACAAGTAAGGTC GATCCCCAATGGAGGGG 283 CCCCTCCATee TGGGGATC 284 Sulfonylurea TCTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCA 285 Resistance TTACTGGGCAAGTTTCCCGGCGTATGATTGGTACTGATGCTTTTCA ALS AGAGACTCCAATTGTTGAGGTAACTCGAT Amaranthus powellii ATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTACC 286 Pro192Ser AATCATACGCCGGGAAACTTGCCCAGTAATGGCGACAAGAGGGA CCC-TCC CTGAGTCAAGAAGTGCATCAGCAAGACCAGA GGCAAGTTTCCCGGCGT 287 ACGCCGGGAAACTTGCC 288 Sulfonymurea CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCAT 289 Resistance TACTGGGCAAGTTCAACGGCGTATGATTGGTACTGATGCTTTTCA ALS AGAGACTCCAATTGTTGAGGTAACTCGATC Amaranthus powellii GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC 290 Pro192Gln CAATCATACGCCGTTGAACTTGCCCAGTAATGGCGACAAGAGGGA CCC-CAA CTGAGTCAAGAAGTGCATCAGCAAGACCAG GCAAGTTCAACGGCGTA 291 TACGCCGTTGAACTTGC 292 Sulfonylurea CTGGTCTTGCTGATGCACTTCTTGACTCAGTCCCTCTTGTCGCCAT 293 Resistance TACTGGGCAAGTTCAGCGGCGTATGATTGGTACTGATGCTTTTCA ALS AGAGACTCCAATTGTTGAGGTAACTCGATC Amaranthus powellii GATCGAGTTACCTCAACAATTGGAGTCTCTTGAAAAGCATCAGTAC 294 Pro192Gln CAATCATACGCCGCTGAACTTGCCCAGTAATGGCGACAAGAGGG CCC-CAG ACTGAGTCAAGAAGTGCATCAGCAAGACCAG GCAAGTTCAGCGGCGTA 295 TACGCCGCTGAACTTGC 296 Imidazolinone GACCGTATCTGCTGGATGTAATCGTACCACATCAGGAGCATGTGC 297 Resistance TGCCTATGATCCCTAACGGTGCCGCCTTCAAGGACACCATAACAG ALS AGGGTGATGGAAGAAGGGCTTATTAGTTGGT Amaranthus powellii ACCAACTAATAAGCCCTTCTTCCATCACCCTCTGTTATGGIGTCCT 298 Ser652Asn TGAAGGCGGCACCGTTAGGGATCATAGGCAGCACATGCTCCTGA AGC-AAC TGTGGTACGATTACATCCAGCAGATACGGTG GATCCCTAACGGTGCCG 299 CGGCACCGTTAGGGATC 300
[0121] 14 TABLE 12 Genome-Altering Oligos Conferring Porphyric Herbicide Resistance Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Porphyric Herbicide TCTTGCGCCCTCTTTCTGAATCTGCTGCAAATGCACTCTCAAAACT 301 Resistant ATATTACCCACCAATGGCAGCAGTATCTATCTCGTACCCGAAAGA PPO AGCAATCCGAACAGAATGTTTGATAGATGG Arabidopsis thaliana CCATCTATCAAACATTCTGTTCGGATTGCTTCTTTCGGGTACGAGA 302 Val365Met TAGATACTGCTGCCATTGGTGGGTAATATAGTTTTGAGAGTGCATT GTT-ATG TGCAGCAGATTCAGAAAGAGGGCGCAAGA CCCACCAATGGCAGCAG 303 CTGCTGCCATTGGTGGG 304 Porphyric Herbicide TATTACGTCCTCTTTCGGTTGCCGCAGCAGATGCACTTTCAAATTT 305 Resistant CTACTAICCCCCAATGGGAGCAGTCACAATTTCATATCCTCAAGAA PPO GCTATTCGTGATGAGCGTCTGGTTGATGG Nicotiana tabacum CCATCAACCAGACGCTCATCACGAATAGCTTCTTGAGGATATGAA 306 Val376Met ATTGTGACTGCTCCCATTGGGGGATAGTAGAAATTTGAAAGTGCA GTT-ATG TCTGCTGCGGCAACCGAAAGAGGACGTAATA TCCCCCAATGGGAGCAG 307 CTGCTCCCATTGGGGGA 308 Porphyric Herbicide TGTTGCGTCCGCTTTCGTTGGGTGCAGCAGATGCATTGTCAAAAT 309 Resistant TTTATTATCCTCCGATGGCAGCTGTATCAATTTCATATCCAAAAGA PPO CGGAATTCGTGCTGACCGGCTGATTGATGG Cichorium intybus CCATCAATCAGCCGGTCAGCACGAATTGCGTCTTTTGGATATGAA 310 Val383Met ATTGATACAGCTGCCATCGGAGGATAATAAAATTTTGACAATGCAT GTT-ATG CTGCTGCACCCAACGAAAGCGGACGCAACA TCCTCCGATGGCAGCTG 311 CAGCTGCCATCGGAGGA 312 Porphyric Herbicide TCCTTCGTCCACTTTCAGATGTCGCCGCAGAATCTCTTTCAAAATT 313 Resistant TCATTATCCACCAATGGCAGCTGTGTCACTTTCCTATCCTAAAGAA PPO GCAATTAGATCAGAGTGCTTGATTGACGG Spinacia oleracea CCGTCAATCAAGCACTCTGATCTAATTGCTTCTTTAGGATAGGAAA 314 Val390Met GTGACACAGCTGCCATTGGTGGATAATGAAATTTTGAAAGAGATT GTT-ATG CTGCGGCGACATCTGAAAGTGGACGAAGGA TCCACCAATGGCAGCTG 315 CAGCTGCCATTGGTGGA 316 Porphyric Herbicide TTTTGCGTCCACTTTCAAGCGATGCTGCAGATGCTCTATCAAGATT 317 Resistant CTATTATCCACCGATGGCTGCIGTAACTGTTTCGTATCCAAAGGAA PPO GCAATTAGAAAAGAATGCTTAATTGATGG Zea mays CGATCAATTAAGCATTCTTTTCTAATTGCTTCCTTTGGATACGAAAC 318 Val363Met AGTTACAGCAGCCATCGGTGGATAATAGAATCTTGATAGAGCATC GTT-ATG TGCAGCATCGCTTGAAAGTGGACGCAAAA TCCACCGATGGCTGCTG 319 CAGCAGCCATCGGTGGA 320 Porphyric Herbicide TCTTGCGGCCACTTTCAAGTGATGGAGCAGATGCTCTGTCAATATT 321 Resistant CTATTATCCACCAATGGCTGCTGTAACTGTTTCATATCCAAAAGAA PPO GCAATTAGAAAAGAATGCTTAATTGACGG Oryza sativa CCGTCAATTAAGCATTCTTTTCTAATTGCTTCTTTTGGATATGAAAC 322 Val364Met AGTTACAGCAGCCATTGGTGGATAATAGAATATTGACAGAGCATC GTT-ATG TGCTGCATCACTTGAAAGTGGCCGCAAGA TCCACCAATGGCTGCTG 323 CAGCAGCCATTGGTGGA 324 Porphyric Herbicide CTGGTCAAGGAGCAGGCGCCCGCCGCCGCCGAGGCCCTGGGCT 325 Resistant CCTTCGACTACCCGCCGATGGGCGCCGTGACGCTGTCGTACCCG PPO CTGAGCGCCGTGCGGGAGGAGCGCAAGGCCTCGG Chlamydomonas CCGAGGCCTTGCGCTCCTCCCGCACGGCGCTCAGCGGGTACGAC 326 reinhardtii AGCGTCACGGCGCCCATCGGCGGGTAGTCGAAGGAGCCCAGGG Val389Met CCTCGGCGGCGGCGGGCGCCTGCTCCTTGACCAG GTG-ATG ACCCGCCGATGGGCGCC 327 GGCGCCCATCGGGGGGT 328
[0122] 15 TABLE 13 Genome-Altering Oligos Conferring Triazine Resistance Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 329 D1 Protein TTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCTT Arabidopsis thaliana AGCGGCTTGGCCGGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 330 AGT-ACT CGAGAATIGTTGAAAGTAGCATATTGGAAAATCAATCGGCCAAAAT AACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCTACTTTCAACA 331 TGTTGAAAGTAGCATAT 332 Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 333 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC Nicotiana tabacum TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 334 AGT-ACT CGAGAGtTGTIGAAAGTAGCATATTGGAAGATCAAtCGGCCAAAA TAACCATGAGCGGCTACGATGTTATAAGTTT ATATGCTACTTTCAACA 335 TGTTGAAAGTAGCATAT 336 Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 337 D1Protein CTTCCAATATGCTACTTTTAACAACTCTCGCTCTTTACATTTCTTCT Populus deltoides TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAG 338 AGT-ACT CGAGAGTTGTTAAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCGGCTACGATATTATAAGTTT ATATGCTACTTTTAACA 339 TGTTAAAAGTAGCATAT 340 Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 341 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC Petunia x hybrida TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 342 AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCGGCTACGATATTATAAGTTT ATATGCTACTTTCAACA 343 TGTTGAAAGTAGCATAT 344 Triazine Resistant AAACTTATAAIATCGTAGCTGCTCATGGTTATTTTGGCCGATTGAT 345 D1Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCC Magnolia pyramidata TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 346 AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCAGCTACGATATTATAAGTTT ATATGCTACTTTCAACA 347 TGTTGAAAGTAGCATAT 348 Triazine Resistant AAACCTATAATATTGTAGCAGCTCATGGTTATTTTGGCCGATTGAT 349 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACATTTCTTCC Medicago sativa TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 350 AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAAGCATGAGCTGCTACAATATTATAGGTTT ATATGCTACTTTCAACA 351 TGTTGAAA+E,us GTAGCATAT 1352 Triazine Resistant AAACCTATAATATTGTAGCTGCTCATGGTTATTTGGCCGATTGAT 353 D1Protein CTTCCAATATGCAACTTTCAACAATTCTCGTTCTTTACATTTCTTCT Glycine max TAGCTGCTTGGCCTGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAA 354 AGT-ACT CGAGAATTGTTGAAAGTTGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCAGCTACAATATTATAGGTTT ATATGCAACTTTCAACA 355 TGTTGAAAGTTGCATAT 356 Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 357 D1Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCT Brassica napus TAGCGGCTTGGCCGGTAGTAGGTATTTG Gly264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 358 GGT-ACT CGAGAAITGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCTACTTTCAACA 359 TGTTGAAAGTAGCATAT 360 Triazine Resistant AAACTTATAATATTGTGGCCGCTCATGGTTATTTTGGCCGATTAAT 361 D1Protein CTTCCAATATGCTACTTTTAACAACTCTCGTTCTTTACACTTCTTCT Oryza sativa TGGCTGCTTGGCCTGTAGTAGGGATTTG Ser264Thr CAAATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 362 AGT-ACT CGAGAGTTGTTAAAAGTAGCATATTGGAAGATTAATCGGCCAAAAT AACCATGAGCGGCCACAATATTATAAGTTT ATATGCTACTTTTAACA 363 TGTTAAAAGTAGCATAT 364 Triazine Resistant AGACTTATAATATTGTGGCTGCTCACGGTTATTTTGGTCGATTAAT 365 D1Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACACTTCTTCT Zea mays TGGCTGCTtGGCCTGTAGTAGGGATCtG Ser264Thr CAGATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 366 AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATTAATCGACCAAAAT AACCGTGAGCAGCCACAATATTATAAGTCT ATATGCTACTTTCAACA 367 TGTTGAAAGTAGCATAT 368 Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 369 D1Protein TTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCTT Arabidopsis thaliana AGCGGCTTGGCCGGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 370 AGT-ACT CGAGAATTGITGAAAGTAGCATATTGGAAAATCAATCGGCCAAAAT AACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCTACTTTCAACA 371 TGTTGAAAGTAGCATAT 372 Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 373 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC Nicotiana tabacum TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 374 AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCGGCTACGATGTTATAAGTTT ATATGCTACTTTCAACA 375 TGTTGAAAGTAGCATAT 376 Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 377 D1Protein CTTCCAATATGCTACTTTTAACAACTCTCGCTCTTTACATTTCTTCT Papulus deltoides TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGGTAAGAAGAAATGTAAAGAG 378 AGT-AGT CGAGAGTTGTTAAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCGGCTACGATATTATAAGTTT ATATGCTACTTTTAACA 379 TGTTAAAAGTAGCATAT 380 Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 381 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC Petunia x hybrida TAGCTGGTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 382 AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCGGCTACGATATTATAAGTTT ATATGCTACTTTCAACA 383 TGTTGAAAGTAGCATAT 384 Triazine Resistant AAACTTATAATATCGTAGCTGCTCATGGTTATTTTGGCCGATTGAT 385 D1Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCC Magnolia pyramidata TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 386 AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCAGCTACGATATTATAAGTTT ATATGCTACTTTCAACA 387 TGTTGAAAGTAGCATAT 388 Triazine Resistant AAACCTATAATATTGTAGCAGCTCATGGTTATTTTGGCCGATTGAT 389 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACATTTGTTCC Medicago sativa TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 390 AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCTGCTACAATATTATAGGTTT ATATGCTACTTTCAACA 391 TGTTGAAAGTAGCATAT 392 Triazine Resistant AAACCTATAATATTGTAGCTGCTCATGGTTATTTTGGCCGATTGAT 393 D1Protein CTTCCAATATGCAACTTTCAACAATTCTCGTTCTTTACATTTCTTCT Glycine max TAGCTGCTTGGCCTGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAATGTAAAGAA 394 AGT-ACT CGAGAATTGTTGAAAGTTGCATATTGGAAGATCAATCGGGCAAAA TAACCATGAGCAGCTACAATATTATAGGTTT ATATGCAACTTTCAACA 395 TGTTGAAAGTTGCATAT 396 Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 397 D1Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCT Brassica napus TAGCGGCTTGGCCGGTAGTAGGTATTTG Gly264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 398 GGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCTACTTTCAACA 399 TGTTGAAAGTAGCATAT 400 Triazine Resistant AAACTTATAATATTGTGGCCGCTCATGGTTATTTTGGCCGATTAAT 401 D1Protein CTTCCAATATGCTACTTTTAACAACTCTCGTTCTTTACACTTCTTCT Oryza sativa TGGCTGCTTGGCCTGTAGTAGGGATTTG Ser264Ihr CAAATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 402 AGT-ACT CGAGAGTTGTTAAAAGTAGCATATTGGAAGATTAATCGGCCAAAAT AACCATGAGCGGCCACAATATTATAAGTTT ATATGCTACTTTTAACA 403 TGTTAAAAGTAGCATAT 404 Triazine Resistant AGACTTATAATATTGTGGCTGCTCACGGTTATTTTGGTCGATTAAT 405 D1Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACACTTCTTCT Zea mays TGGCTGCTTGGCCTGTAGTAGGGATCTG Ser264Thr CAGATCCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 406 AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATTAATCGACCAAAAT AACCGTGAGCAGCCACAATATTATAAGTCT ATATGCTACTTTCAACA 407 TGTTGAAAGTAGCATAT 408 Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 409 D1Protein TTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCTT Arabidopsis thaliana AGCGGCTTGGCCGGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 410 AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAAATCAATCGGCCAAAAT AACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCTACTTTCAACA 411 TGTTGAAAGTAGCATAT 412 Triazine Resistant AAACCTACAATATTGTGGCTGCTCACGGTTATTTCGGCCGATTGAT 413 D1Protein CTTCCAGTATGCTACTTTCAACAACTCCCGTTCTTTACATTTCTTCT Picea abies TAGCTGCTTGGCCCGTAGCAGGTATCTG Ser264Thr CAGATACCTGCTACGGGCCAAGCAGCTAAGAAGAAATGTAAAGAA 414 AGT-ACT CGGGAGTTGTTGAAAGTAGCATACTGGAAGATCAATCGGCCGAAA TAACCGTGAGCAGCCACAATATTGTAGGTTT GTATGCTACTTTCAACA 415 TGTTGAAAGTAGCATAC 416 Triazine Resistant AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 417 D1Protein CTTCCAATATGCTACTTTCAACAATTCTCGCTCTTTACATTTCTTCC Vicia faba TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAG 418 AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCGTGAGCAGCTACAATATTATAGGTTT ATATGCTACTTTCAACA 419 TGTTGAAAGTAGCATAT 420 Triazine Resistant AGACTTATAATATTGTGGCTGCTCATGGTTATTTTGGCCGATTAAT 421 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACACTTCTTCT Hordeum vulgare TGGCTGCTTGGCCTGTAGTAGGAATCTG Ser264Thr CAGATTCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAA 422 AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATTAATCGGCCAAAA TAACCATGAGCAGCCACAATATTATAAGTCT ATATGCTACTTTCAACA 423 TGTTGAAAGTAGCATAT 424 Triazine Resistant AAACTTATAATATTGTGGCTGCTCATGGTTATTTTGGCCGATTAAT 425 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACACTTCTTCT Triticum aestivum TGGCTGCTTGGCCTGTAGTAGGAATCTG Ser264Thr CAGATTCCTACTACAGGCCMGCAGCCAAGAAGAAGTGTAAAGAA 426 AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATTAATCGGCCAAAA TAACCATGAGCAGCCACAATATTATAAGTTT ATATGCTACTTTCAACA 427 TGTTGAAAG+E TAGCATAT 428 Triazine Resistant AAACTTATAATATTGTAGCTGCTCATGGTTATTTTGGCCGATTAATC 429 D1Protein TTCCAATATGCAACTTTCMCAATTCTCGTTCTTTACATTTCTTCCT Vigna unguiculata AGCTGCTTGGCCTGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAGGAAGAAATGTAAAGAA 430 AGT-ACT CGAGAATTGTTGAAAGTTGCATATTGGAAGATTAATCGGCCAAAAT AACCATGAGCAGCTACAATATTATAAGTTT ATATGCAACTTTCAACA 431 TGTTGAAAGTTGCATAT 432 Triazine Resistant AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 433 D1Protein CTTCCAATATGCAACTTTCAACAACTCTCGTTCTTTACACTTCTTCT Lotus japonicus TAGCTGCTTGGCCTGTTGTAGGTATCTG Ser264Thr CAGATACCTACAACAGGCCAAGCAGCTAAGAAGAAGTGTAAAGAA 434 AGT-ACT CGAGAGTTGTTGAAAGTTGCATATTGGAAGATCAATCGGCCAAAA TAACCGTGAGCAGCTACAATATTATAGGTTT ATATGCAACTTTCAACA 435 TGTTGAAAGTTGCATAT 436 Triazine Resistant AAACTTACAACATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 437 D1Protein CTTCCAATATGCTACTTTCAACAATTCTCGTTCTTTACATTTCTTCT Sinapis alba TAGCGGCTTGGCCGGTAGTAGGTATTTG Ser264Thr CAAATACCTACTACCGGCCAAGCCGCTAAGAAGAAATGTAAAGAA 438 AGT-ACT CGAGAATTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCGTGAGCAGCTACAATGTTGTAAGTTT ATATGCTACTTTCAACA 439 TGTTGAAAGTAGCATAT 440 Triazine Resistant AAACCTATAATATTGTAGCTGCTCACGGTTATTTTGGCCGATTGAT 441 D1Protein CTTCCAATATGCTACTTTCAACAATTCTCGCTCTTTACATTTCTTCC Pisum sativum TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTIAGGAAGAAATGTAAAGAG 442 AGt-ACT CGAGAATTGTTGAAAGTAGCAtATTGGAAGATCAATCGGCCAAAA TAACCGTGAGCAGCTACAATATTATAGGTTT ATATGCTACTTTCAACA 443 TGTTGAAAGTAGCATAT 444 Triazine Resistant AAACTTATAATATCGTAGGTGCTCATGGTTATTTTGGTCGATTGAT 445 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCTTTACACTTCTTCT Spinacia oleracea TAGCTGCTTGGCCTGIAGTAGGTATTTG Ser264Thr CAAATACCTACTACAGGCCAAGCAGCTAAGAAGAAGTGTAAAGAA 446 AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGACCAAAA TAACCATGAGCAGGTACGATATTATAAGTTT ATATGCTACTTTCAACA 447 TGTTGAAAGTAGCATAT 448 Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 449 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC Nicotiana debneyi TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGAtACCtACTACAGGCGAAGCAGCtAGGAAGAAGTGTAACGAA 450 AGT-ACT CGAGAGtTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCGGCTACGATGTTATAAGTTT ATATGCTACTTTCAACA 451 TGTTGAAAGTAGCATAT 452 Triazine Resistant AAACTTATAATATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 453 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTTCGTTACACTTCTTCC Solanum nigrum TAGCTGCTTGGCCTGTAGTAGGTATCTG Ser264Thr CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 454 AGT-ACT CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA TAACCATGAGCGGCTACGATATTATAAGTTT ATATGCTACTTTCAACA 455 TGTTGAAAGTAGCATAT 456 Triazine Resistant AAACTTATAACATCGTAGCCGCTCATGGTTATTTTGGCCGATTGAT 457 D1Protein CTTCCAATATGCTACTTTCAACAACTCTCGTICGTTACACTTCTTCC Nicotiana TAGCTGCTTGGCCTGTAGTAGGTATCTG plumbaginifolia CAGATACCTACTACAGGCCAAGCAGCTAGGAAGAAGTGTAACGAA 458 Ser264Thr CGAGAGTTGTTGAAAGTAGCATATTGGAAGATCAATCGGCCAAAA AGT-ACT TAACCATGAGCGGCTACGATGTTATAAGTTT ATATGCTACTTTCAACA 459 TGTTGAAAGTAGCATAT 460
EXAMPLE 6 Engineering Male- or Female-Sterile Plants[0123] Flower development in distantly related dicot plant species is increasingly better understood and appears to be regulated by a family of genes which encode regulatory proteins. These genes include, for example, AGAMOUS (AG), APETALA1 (AP1), and APETALA3 (AP3) and PISTILLATA (PI) in Arabidopsis thaliana, and DEFICIENS A (DEFA), GLOBOSA (GLO), SQUAMOSA (SQUA), and PLENA (PLE) in Antirrhinum majus. Genetic studies have shown that the DEFA, GLO and AP3 genes are essential for petal and stamen development. Sequence analysis of these genes revealed that the gene products contain a conserved MADS box region, a DNA-binding domain. Using these clones as probes, MADS box genes have also been isolated from other species including tomato, tobacco, petunia, Brassica napus, and maize.
[0124] Altering the expression of these genes results in altered floral morphology. For example, mutations in AP3 and PI result in male-sterile flowers because petals develop in place of stamens.
[0125] The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that confer altered floral structures in plants. 16 TABLE 14 Oligonucleotides to produce male-sterile plants Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Male-sterile TTGTCCTCTCCACCAAATCTCTTCAACAAAAAGATTAAACAAAGAG 461 AP3 AGAAGAATATGGCGTGAGGGAAGATCCAGATCAAGAGGATAGAGA Arabidopsis thaliana ACCAGACAAACAGACAAGTGACGTATTCAA Arg3Term TTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCTATCCTCTTGATC 462 AGA-TGA TGGATCTTCCCTCACGCCATATTCTTCTCTCTTIGTTTAATCTTTTT GTTGAAGAGATTTGGTGGAGAGGACAA ATATGGCGTGAGGGAAG 463 CTTCCCTCACGCCATAT 464 Male-sterile TCTCCACCAAATCTCTTCAACAAAAAGATTAAACAAAGAGAGAAGA 465 AP3 ATATGGCGAGAGGGTAGATCCAGATCAAGAGGATAGAGAACCAGA Arabidopsis thaliana CAAACAGACAAGTGACGTATTCAAAGAGAA Lys5Term TTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCTATCCTC 466 AAG-TAG TTGATCTGGATCTACCCTCTCGCCATATTCTTCTCTCTTTGTTTAAT CTTTTTGTTGAAGAGATTTGGTGGAGA CGAGAGGGTAGATCCAG 467 CTGGATCTACCGTCTCG 468 Male-sterile CCAAATCTCTTCAACAAAAAGATTAAACAAAGAGAGAAGAATATGG 469 AP3 CGAGAGGGAAGATCTAGATCAAGAGGATAGAGAAGCAGACAAACA Arabidopsis thaliana GACAAGTGACGTATTCAAAGAGAAGGAATG Gln7Term CATTCCTTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGGTTCTCT 470 CAG-TAG ATCCTCTTGATCTAGATCTTCCCTCTCGCCATATTCTTCTCTCTTTG TTTAATCTTTTTGTTGAAGAGATTTGG GGAAGATCTAGATCAAG 471 CTTGATCTAGATCTTCC 472 Male-sterile CTCTTCAACAAAAAGATTAAACAAAGAGAGAAGAATATGGCGAGAG 473 AP3 GGAAGATCCAGATCTAGAGGATAGAGAACCAGACAAACAGAGAAG Arabidopsis thaliana TGACGTATTCAAAGAGAAGGAATGGTTTAT Lys9Term ATAAACCATTCGTTCTCTTTGAATACGTCACTTGTCTGTTTGTCTGG 474 AAG-TAG TTCTCTATCCTCTAGATCTGGATCTTCCCTCTCGCCATATTCTTCTC TCTTTGTTTAATCTTTTTGTTGAAGAG TCCAGATCTAGAGGATA 475 TATCCTCTAGATCTGGA 476 Male-sterile AGAGGGAAGATCGAGATGAAGAGGATAGAGAACGAGAGGAACCG 477 AP3 ACAAGTGACGTATTCTTAGAGAAGAAATGGTTTGTTCAAGAAAGCT Brassica oleracea CACGAGCTTACAGTTTTATGTGATGCTAGGG Lys23Term CCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTTGAACAA 478 AAG-TAG ACCATTTCTTCTCTAAGAATACGTCACTTGTCGGTTGGTCTGGTTC TCTATCCTCTTGATCTGGATCTTCCCTCT CGTATTCTTAGAGAAGA 479 TCTTCTCTAAGAATACG 480 Male-sterile GGGAAGATCCAGATCAAGAGGATAGAGAACCAGACCAACCGACAA 481 AP3 GTGACGTATTCTAAGTGAAGAAATGGTTTGTTCAAGAAAGCTCACG Brassica oleracea AGCTTACAGTTTTATGTGATGCTAGGGTTT Arg24Term AAACCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTTGAA 482 AGA-TGA CAAACCATTTCTTCACTTAGAATACGTCACTTGTGGGTTGGTCTGG TTCTCTATCCTCTTGATCTGGATCTTCCC ATTCTAAGTGAAGAAAT 483 ATTTCTTCACTTAGAAT 484 Male-sterile AAGATCCAGATCAAGAGGATAGAGAACCAGACCAACCGACAAGTG 485 AP3 ACGTATTCTAAGAGATGAAATGGTTTGTTCAAGAAAGCTCACGAGC Brassica oleracea TTACAGTTTTATGTGATGCTAGGGTTTCGA Arg25Term TCGAAACCCTAGCATCACATAAAACTGTAAGCTCGTGAGCTTTCTT 486 AGA-TGA GAACAAACCATTTCATCTCTTAGAATACGTCACTTGTCGGTTGGTC TGGTTCTCTATGCTCTTGATCTGGATCTT CTAAGAGATGAAATGGT 487 ACCATTTCATCTCTTAG 488 Male-sterile TCAAGAGGATAGAGAACCAGACCAACCGACAAGTGACGTATTCTA 489 AP3 AGAGAAGAAATGGTTAGTTCAAGAAAGCTCACGAGCTTACAGTTTT Brassica oleracea ATGTGATGCTAGGGTTTCGATTATCATGTT Leu28Term AACATGATAATCGAAACCCTAGCATCACATAAAACTGTAAGCTCGT 490 TTG-TAG GAGCTTTCTTGAACTAACCATTTCTTCTCTTAGAATACGTCACTTGT CGGTTGGTCTGGTTCTCTATCCTCTTGA AAATGGTTAGTTCAAGA 491 TCTTGAACTAACCATTT 492 Male-sterile GGCTCGAGGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAAA 493 AP3 CAGGCAGGTCACCTAGTCCAAGAGAAGAAATGGTTTGTTCAAGAA Brassica napus AGCACACGAGCTCTCTGTTCTCTGTGATGCT Tyr21Term AGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAACAAACC 494 TAC-TAG ATTTCTTCTCTTGGACTAGGTGACCTGCCTGTTTGTTTGGTTCTCTA TCCTCTTAATCTGGATCTTCCCTCGAGCC GTCACCTAGTCCAAGAG 495 CTCTTGGACTAGGTGAC 496 Male-sterile CGAGGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAAACAGG 497 AP3 CAGGTCACCTACTCCTAGAGAAGAAATGGTTTGTTCAAGAAAGCAC Brassica napus ACGAGCTCTCTGTTCTCTGTGATGCTAAAG Lys23Term CTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAACAA 498 AAG-TAG ACCATTTCTTCTCTAGGAGTAGGTGACCTGCCTGTTTGTTTGGTTC TCTATCCTCTTAATCTGGATCTTCCCTCG CCTACTCCTAGAGAAGA 499 TCTTCTCTAGGAGTAGG 500 Male-sterile GGGAAGATCCAGATTAAGAGGATAGAGAACCAAACAAACAGGCAG 501 AP3 GTCACCTACTCCAAGTGAAGAAATGGTTTGTTCAAGAAAGCACACG Brassica napus AGCTCTCTGTTCTCTGTGATGCTAAAGTTT Arg24Term AAACTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTTGAA 502 AGA-TGA CAAACCATTTGTTCACTTGGAGTAGGTGACCTGCCTGTTTGTTTGG TTCTCTATCCTCTTAATCTGGATCTTCCC ACTCCAAGTGAAGAAAT 503 ATTTCTTCACTTGGAGT 504 Male-sterile AAGATCCAGATTAAGAGGATAGAGAACCAAACAAACAGGCAGGTC 505 AP3 ACCTACTCCAAGAGATGAAATGGTTTGTTCAAGAAAGCACACGAG Brassica napus CTCTCTGTTCTCTGTGATGCTAAAGTTTCCA Arg25Term TGGAAACTTTAGCATCACAGAGAACAGAGAGCTCGTGTGCTTTCTT 506 AGA-TGA GAACAAACCATTTCATCTCTTGGAGTAGGTGACCTGCCTGTTTGTT TGGTTCTCTATCCTCTTAATCTGGATCTT CCAAGAGATGAAATGGT 507 ACCATTTCATCTCTTGG 508 Male-sterile GGAGAGAAAGGAAAGCTGGAAGAAGAAAACAAGAGCAGTAGTGG 509 DEFA TAGTGGTTCGATGGCTTGAGGGAAGATCCAGATTAAGAGGATAGA Antirrhinum majus GAACCAAACAAACAGGCAGGTCACCTACTCCA Arg3Term TGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTCTATCCTCTTAAT 510 CGA-TGA CTGGATCTTCCCTCAAGCCATCGAACCACTACCACTACTGCTCTTG TTTTCTTCTTCCAGCTTTCCTTTCTCTCC CGATGGCTTGAGGGAAG 511 CTTCCCTCAAGCCATCG 512 Male-sterile AAAGGAAAGCTGGAAGAAGAAAACAAGAGCAGTAGTGGTAGTGGT 513 DEFA TCCATGGCTCGAGGGTAGATCCAGATTAAGAGGATAGAGAACCAA Antirrhinum majus ACAAACAGGCAGGTCACCTACTCCAAGAGAA Lys5Term TTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTCTATCCT 514 AAG-TAG CTTAATCTGGATCTACCCTCGAGCCATCGAACCACTAGCACTACTG CTCTTGTTTTCTTCTTCCAGCTTTCCTTT CTCGAGGGTAGATCCAG 515 CTGGATCTACCCTCGAG 516 Male-sterile AAGCTGGAAGAAGAAAACAAGAGCAGTAGTGGTAGTGGTTCGATG 517 DEFA GCTCGAGGGAAGATCTAGATTAAGAGGATAGAGAACCAAACAAAC Antirrhinum majus AGGCAGGTCACCTACTCCAAGAGAAGAAATG Gln7Term CATTTCTTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTTGGTTCTC 518 CAG-TAG TATCCTCTTAATCTAGATCTTCCCTCGAGCCATCGAACCACTACCA CTACTGCTCTTGTTTTCTTCTTCCAGCTT GGAAGATCTAGATTAAG 519 CTTAATCTAGATCTTCC 520 Male-sterile GAAGAAGAAAACAAGAGCAGTAGTGGTAGTGGTTCGATGGCTCGA 521 DEFA GGGAAGATCCAGATTTAGAGGATAGAGAACCAAACAAACAGGCAG Antirrhinum majus GTCACCTACTCCAAGAGAAGAAATGGTTTGT Lys9Term ACAAACCATTTCTTCTCTTGGAGTAGGTGACCTGCCTGTTTGTTTG 522 AAG-TAG GTTCTCTATCCTCTAAATCTGGATCTTCCCTCGAGCCATCGAACCA CTACCACTACTGCTCTTGTTTTCTTCTTC TCCAGATTTAGAGGATA 523 TATCCTCTAAATCTGGA 524 Male-sterile TCAGTAATTCTTAAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAAC 525 AP3 TATGGCTCGTGGGTAGATCCAGATCAAGAGAATAGAGAACCAAAC Nicotiana tabacum AAACAGACAAGTCACTTATTCTAAGAGAA Lys5Term TTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGGTTCTCTATTCTC 526 AAG-TAG TTGATCTGGATCTACCCACGAGCCATAGTTTTTTTTTCTTTTTGCTC AAAGTTTGAGATCTTAAGAATTACTGA CTCGTGGGTAGATCCAG 527 CTGGATCTACCCACGAG 528 Male-sterile ATTCTTAAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAACTATGGC 529 AP3 TCGTGGGAAGATCTAGATCAAGAGAATAGAGAACCAAACAAACAG Nicotiana tabacum ACAAGTCACTTATTCTAAGAGAAGAAATG Gln7Term CATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGGTTCTCT 530 CAG-TAG ATTCTCTTGATCTAGATCTTCCCACGAGCCATAGTTTTTTTTTCTTT TTGCTCAAAGTTTGAGATCTTAAGAAT GGAAGATCTAGATCAAG 531 CTTGATCTAGATCTTCC 532 Male-sterile AAGATCTCAAACTTTGAGCAAAAAGAAAAAAAAACTATGGCTCGTG 533 AP3 GGAAGATCCAGATCTAGAGAATAGAGAACCAAACAAACAGACAAG Nicotiana tabacum TCACTTATTCTAAGAGAAGAAATGGACTTT Lys9Term AAAGTCCATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTTTGG 534 AAG-TAG TTCTCTATTCTCTAGATCTGGATCTTCCCACGAGCCATAGTTTTTTT TTCTTTTTGCTCAAAGTTTGAGATCTT TCCAGATCTAGAGAATA 535 TATTCTCT+E,un AGATCTGGA 536 Male-sterile ATCTCAAACTTTGAGCAAAAAGAAAAAAAAACTATGGCTCGTGGGA 537 AP3 AGATCCAGATCAAGTGAATAGAGAACCAAACAAACAGACAAGTCA Nicotiana tabacum CTTATTCTAAGAGAAGAAATGGACTTTTCA Arg10Term TGAAAAGTCCATTTCTTCTCTTAGAATAAGTGACTTGTCTGTTTGTT 538 AGA-TGA TGGTTCTCTATTCACTTGATCTGGATCTTCCCACGAGCCATAGTTT TTTTTTCTTTTTGCTCAAAGTTTGAGAT AGATCAAGTGAATAGAG 539 CTCTATTCACTTGATCT 540 Male-sterile GGCTCGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAA 541 AP3 CAGACAAGTAACTTAGTCAAAACGAAGGGATGGTCTTTTCAAGAAG Medicago sativa GCCAATGAGCTCACTGTTCTTTGTGATGCT Tyr21Term AGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAGACCA 542 TAC-TAG TCCCTTCGTTTTGACTAAGTTACTTGTCTGTTCGTTGTGTTCTCTAT TCTCTTGATCTGGATCTTTCCTCGAGCC GTAACTTAGTCAAAACG 543 CGTTTTGACTAAGTTAC 544 Male-sterile CTCGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACA 545 AP3 GACAAGTAACTTACTGAAAACGAAGGGATGGTCTTTTCAAGAAGG Medicago sativa CCAATGAGCTCACTGTTCTTTGTGATGCTAA Ser22Term TTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAGAC 546 TCA-TGA CATCCCTTCGTTTTCAGTAAGTTACTTGTCTGTTCGTTGTGTTCTCT ATTCTCTTGATCTGGATCTTTCCTCGAG AACTTACTGAAAACGAA 547 TTCGTTTT+E,un CAGTAAGTT 548 Male-sterile CGAGGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACAGA 549 AP3 CAAGTAACTTACTCATAACGAAGGGATGGTCTTTTCAAGAAGGCCA Medicago sativa ATGAGCTCACTGTTCTTTGTGATGCTAAGG Lys23Term CCTTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAAAAG 550 AAA-TAA ACCATCCCTTCGTTATGAGTAAGTTACTTGTCTGTTCGTTGTGTTCT CTATTCTCTTGATCTGGATCTTTCCTCG CTTACTCATAACGAAGG 551 CCTTCGTTATGAGTAAG 552 Male-sterile GGAAAGATCCAGATCAAGAGAATAGAGAACACAACGAACAGACAA 553 AP3 GTAACTTACTCAAAATGAAGGGATGGTCTTTTCAAGAAGGCCAATG Medicago sativa AGCTCACTGTTCTTTGTGATGCTAAGGTTT Arg24Term AAACCTTAGCATCACAAAGAACAGTGAGCTCATTGGCCTTCTTGAA 554 CGA-TGA AAGACCATCCCTTCATTTTGAGTAAGTTACTTGTCTGTTCGTTGTGT TCTCTATTCTCTTGATCTGGATCTTTCC ACTCAAAATGAAGGGAT 555 ATCCCTTCATTTTGAGT 556 Male-sterile GGCTCGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAAT 557 DEF4 AGGCAAGTGACTTAGTCAAAGAGAAGAAATGGGCTATTCAAGAAG Solanum tuberosum GCTAATGAACTTACAGTTCTTTGTGATGCT Tyr21Term AGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAGCCCA 558 TAT-TAG TTTCTTCTCTTTGACTAAGTCACTTGCCTATTTGTTTGGTTTTCTATT TTCTTGATCTGGATCTTACCACGAGCC GTGACTTAGTCAAAGAG 559 CTCTTTGACTAAGTCAC 560 Male-sterile CTCGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAG 561 DEF4 GCAAGTGACTTATTGAAAGAGAAGAAATGGGCTATTCAAGAAGGC Solanum tuberosum TAATGAACTTACAGTTCTTTGTGATGCTAA Ser22Term TTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAGCC 562 TCA-TGA CATTTCTTCTCTTTCAATAAGTCACTTGCCTATTTGTTTGGTTTTCTA TTTTCTTGATCTGGATCTTACCACGAG GACTTATTGAAAGAGAA 563 TTCTCTTTCAATAAGTC 564 Male-sterile CGTGGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAGG 565 DEF4 CAAGTGACTTATTCATAGAGAAGAAATGGGCTATTCAAGAAGGCTA Solanum tuberosum ATGAACTTACAGTTCTTTGTGATGCTAAAG Lys23Term CTTTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAATAG 566 AAG-TAG CCCATTTCTTCTCTATGAATAAGTCACTTGCCTATTTGTTTGGTTTT CTATTTTCTTGATCTGGATCTTACCACG CTTATTCATAGAGAAGA 567 TCTTCTCTATGAATAAG 568 Male-sterile GGTAAGATCCAGATCAAGAAAATAGAAAACCAAACAAATAGGCAA 569 DEF4 GTGACTTATTCAAAGTGAAGAAATGGGCTATTCAAGAAGGCTAATG Solanum tuberosum AACTTACAGTTCTTTGTGATGCTAAAGTTT Arg24Term AAACTTTAGCATCACAAAGAACTGTAAGTTCATTAGCCTTCTTGAAT 570 AGA-TGA AGCCCATTTCTTCACTTTGAATAAGTCACTTGCCTATTTGTTTGGTT TTCTATTTTCTTGATCTGGATCTTACC ATTCAAAGTGAAGAAAT 571 ATTTCTTCAGTTTGAAT 572 Male-sterile GCTAATGAACTTACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTAT 573 AP3 GATTTCTAGTACTTGAAAACTTCATGAGTTTATAAGTCCCTCTATCA Lycopersicon CGACCAAACAATTGTTCGATCTGTACC esculentum GGTACAGATCGAACAATTGTTTGGTCGTGATAGAGGGACTTATAAA 574 Gly27Term CTCATGAAGTTTTCAAGTACTAGAAATCATAACAATTGAAACTTTAG GGA-TGA CATCACAAAGAACAGTAAGTTCATTAGC CTAGTACTTGAAAACTT 575 AAGTTTTCAAGTACTAG 576 Male-sterile AATGAACTTACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTATGAT 577 AP3 TTCTAGTACTGGATAACTTCATGAGTTTATAAGTCCCTCTATCACGA Lycopersicon CCAAACAATTGTTCGATCTGTACCAGA esculentum TCTGGTACAGATCGAACAATTGTTTGGTCGTGATAGAGGGACTTAT 578 Lys28Term AAACTCATGAAGTTATCCAGTACTAGAAATCATAACAATTGAAACTT AAA-TAA TAGCATCACAAAGAACAGTAAGTTCATT GTACTGGATAACTTCAT 579 ATGAAGTTATCCAGTAC 580 Male-sterile ACTGTTCTTTGTGATGCTAAAGTTTCAATTGTTATGATTTCTAGTAC 581 AP3 TGGAAAACTTCATTAGTTTATAAGTCCCTCTATCACGACCAAACAAT Lycopersicon TGTTCGATCTGTACCAGAAGACTATTG esculentum CAATAGTCTTCTGGTACAGATCGAACAATTGTTTGGTCGTGATAGA 582 Glu31Term GGGACTTATAAACTAATGAAGTTTTCCAGTACTAGAAATCATAACA GAG-TAG ATTGAAACTTTAGCATCACAAAGAACAGT AACTTCATTAGTTTATA 583 TATAAACTAATGAAGTT 584 Male-sterile ATTGTTATGATTTCTAGTACTGGAAAACTTCATGAGTTTATAAGTCC 585 AP3 CTCTATCACGACCTAACAATTGTTCGATCTGTACCAGAAGACTATT Lycopersicon GGAGTTGATATTTGGACTACTCACTATG esculentum CATAGTGAGTAGTCCAAATATCAACTCCAATAGTCTTCTGGTACAG 586 Lys40Term ATCGAACAATTGTTAGGTCGTGATAGAGGGACTTATAAACTCATGA AAA-TAA AGTTTTCCAGTACTAGAAATCATAACAAT TCACGACCTAACAATTG 587 CAATTGTTAGGTCGTGA 588 Male-sterile GGGGCGGGGGAAGATTGAGATAAAGCGGATCGAGAACGCCACCA 589 AP3 ACAGGCAGGTGACCTAGTCCAAGCGCCGGTCGGGGATCATGAAG Triticum aestivum AAGGCGCGGGAGCTCACCGTGCTCTGCGACGCC Tyr21Term GGCGTCGCAGAGCACGGTGAGCTCCCGCGCCTTCTTCATGATCC 590 TAC-TAG CCGACCGGCGCTTGGACTAGGTCACCTGCCTGTTGGTGGCGTTCT CGATCCGCTTTATCTCAATCTTCCCCCGCCCC GTGACCTAGTCCAAGCG 591 CGCTTGGACTAGGTCAC 592 Male-sterile CGGGGGAAGATTGAGATAAAGCGGATCGAGAACGCCACCAACAG 593 AP3 GCAGGTGACCTACTCCTAGCGCCGGTCGGGGATCATGAAGAAGG Triticum aestivum CGCGGGAGCTCACCGTGCTCTGCGACGCCCAGG Lys23Term CCTGGGCGTCGCAGAGCACGGTGAGCTCCCGCGCCTTCTTCATG 594 AAG-TAG ATCCCCGACCGGCGCTAGGAGTAGGTCACCTGCCTGTTGGTGGC GTTCTCGATCCGCTTTATCTCAATCTTCCCCCG CCTACTCCTAGCGCCGG 595 CCGGCGCTAGGAGTAGG 596 Male-sterile TTGAGATAAAGCGGATCGAGAACGCCACCAACAGGCAGGTGACCT 597 AP3 ACTCGAAGCGCCGGTAGGGGATCATGAAGAAGGCGCGGGAGCTC Triticum aestivum ACCGTGCTCTGCGACGCCCAGGTCGCCATCAT Ser26Term ATGATGGCGACCTGGGCGTCGCAGAGCACGGTGAGCTCCCGCGC 598 TCG-TAG CTTCTTCATGATCCCCTACCGGCGCTTGGAGTAGGTCACCTGCCT GTTGGTGGCGTTGTCGATCCGCTTTATCTCAA GCGCCGGTAGGGGATCA 599 TGATCCCCTACCGGCGC 600 Male-sterile CGGATCGAGAACGCCACCAACAGGCAGGTGACCTACTCCAAGCG 601 AP3 CCGGTCGGGGATCATGTAGAAGGCGCGGGAGCTCACCGTGCTCT Triticum aestivum GCGACGCCCAGGTCGCCATCATCATGTTCTCCT Lys30Term AGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACGGTG 602 AAG-TAG AGCTCCCGCGCCTTCTACATGATCCCCGACCGGCGCTTGGAGTAG GTCACCTGCCTGTTGGTGGCGTTGTCGATCCG GGATCATGTAGAAGGCG 603 CGCCTTCTACATGATCC 604 Male-sterile GGGGCGCGGCAAGATCGAGATCAAGCGGATCGAGAACGCCACCA 605 Silky1 ACCGCCAGGTGACCTAGTCCAAGCGCCGGACGGGGATCATGAAG Zea mays AAGGCACGCGAGCTCACCGTGCTCTGCGACGCC Tyr21Term GGCGTCGCAGAGCACGGTGAGCTCGCGTGCCTTCTTCATGATCCC 606 TAG-TAG CGTCCGGCGCTTGGACTAGGTCACCTGGCGGTTGGTGGCGTTCT CGATCGGCTTGATCTCGATCTTGCCGCGCCCC GTGACCTAGTCCAAGCG 607 CGCTTGGACTAGGTCAC 608 Male-sterile CGCGGCAAGATCGAGATCAAGCGGATCGAGAACGCCACCAACCG 609 Silky1 CCAGGTGACCTACTCCTAGCGCCGGACGGGGATCATGAAGAAGG Zea mays CACGCGAGCTCACCGTGCTCTGCGACGCCCAGG Lys23Term CCTGGGCGTCGCAGAGCACGGTGAGCTCGCGTGCCTTCTTCATG 610 AAG-TAG ATCCCCGTCCGGCGCTAGGAGTAGGTCACCTGGCGGTTGGTGGC GTTCTCGATCCGCTTGATCTCGATCTTGCCGCG CCTACTCCTAGCGCCGG 611 CCGGCGCTAGGAGTAGG 612 Male-sterile CGGATCGAGAACGCCACCAACCGCCAGGTGACCTACTCCAAGCG 613 Silky1 CCGGACGGGGATCATGTAGAAGGCACGCGAGCTCACCGTGCTCT Zea mays GCGACGCCCAGGTCGCCATCATCATGTTCTCCT Lys30Term AGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACGGTG 614 AAG-TAG AGCTCGCGTGCCTTCTACATGATCCCGGTCCGGCGCTTGGAGTAG GTCACCTGGCGGTTGGTGGCGTTCTCGATCCG GGATCATGTAGAAGGCA 615 TGCCTTCTACATGATCC 616 Male-sterile ATCGAGAACGCCACCAACCGCCAGGTGACGTACTCCAAGCGCCG 617 Silky1 GACGGGGATCATGAAGTAGGCACGCGAGCTCACCGTGCTCTGCG Zea mays ACGCCCAGGTCGCCATCATCATGTTCTCCTCCA Lys31Term TGGAGGAGAACATGATGATGGCGACCTGGGCGTCGCAGAGCACG 618 AAG-TAG GTGAGCTCGCGTGCCTACTTCATGATCCCCGTCCGGCGCTTGGAG TAGGTCACCTGGCGGTTGGTGGCGTTCTCGAT TCATGAAGTAGGCACGC 619 GCGTGCCTACTTCATGA 620 Male-sterile GCTAGCTGCATTGTCCGGCGAGAGAGATAGCTGCTGCAGGGGGC 621 AP3 GGCCATGGGGAGGGGCTAGATCGAGATCAAGCGGATCGAGAACG Oryza sativa CGACCAACAGGCAGGTGACCTACTCGAAGCGCC Lys5Term GGCGCTTGGAGTAGGTCACCTGCCTGTTGGTCGCGTTCTCGATCC 622 AAG-TAG GCTTGATCTCGATCTAGCCCGTCCCCATGGCGGCCCCCTGCAGCA GCTATCTCTCTCGCCGGACAATGCAGCTAGC GGAGGGGCTAGATCGAG 623 CTCGATCTAGCCCCTCC 624 Male-sterile TGCATTGTCCGGCGAGAGAGATAGCTGCTGCAGGGGGCGGCCAT 625 AP3 GGGGAGGGGCAAGATCTAGATCAAGCGGATCGAGAACGCGACCA Oryza sativa ACAGGCAGGTGACCTACTCGAAGCGCCGCACGG Glu7Term CCGTGCGGCGCTTCGAGTAGGTCACCTGCCTGTTGGTCGCGTTCT 626 GAG-TAG CGATCCGCTTGATCTAGATCTTGCCCCTCCCCATGGCCGCCCCCT GCAGCAGCTATCTCTCTCGCCGGACAATGCA GCAAGATCTAGATCAAG 627 CTTGATCTAGATCTTGC 628 Male-sterile GTCCGGCGAGAGAGATAGCTGCTGCAGGGGGCGGCCATGGGGA 629 AP3 GGGGCAAGATCGAGATCTAGCGGATCGAGAACGCGACCAACAGG Oryza sativa CAGGTGACCTACTCGAAGCGCCGCACGGGGATCA Lys9Term TGATCCCCGTGCGGCGCTTCGAGTAGGTCACCTGCCTGTTGGTCG 630 AAG-TAG CGTTCTCGATCCGCTAGATCTCGATCTTGCCCCTCCCCATGGCCG CCCCCTGCAGCAGCTATCTCTCTCGCCGGAC TCGAGATCTAGCGGATC 631 GATCCGCTAGATCTCGA 632 Male-sterile GAGAGATAGCTGCTGCAGGGGGCGGCCATGGGGAGGGGCAAGA 633 AP3 TCGAGATCAAGCGGATCTAGAACGCGACCAACAGGCAGGTGACCT Oryza sativa ACTCGAAGCGCCGCACGGGGATCATGAAGAAGG Glu12Term CCTTCTTCATGATCCCCGTGCGGCGCTTCGAGTAGGTCACCTGCC 634 GAG-TAG TGTTGGTCGCGTTCTAGATCCGCTTGATCTCGATCTTGCCCCTCCC CATGGCGGCCCCCTGCAGCAGCTATCTCTC AGCGGATCTAGAACGCG 635 CGCGTTCTAGATCCGCT 636
[0126] 17 TABLE 15 Oligonucleotides to produce male-sterile plants Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Male-sterile TCTGTACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCA 637 AG GCAATCACGGCGTAGCAATCGGAGCTAGGAGGAGATTCCTCTCC Arabidopsis thaliana CTTGAGGAAATCTGGGAGAGGAAAGATCGAA Tyr35Term TTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAATCTCCT 638 TAG-TAG CCTAGGTCCGATTGCTACGCCGTGATTGCTGCTCCAAAGCCAAAA ACGTTTAGGGCAAAATTTGATTAGTACAGA ACGGCGTAGCAATCGGA 639 TCCGATTGCTACGCCGT 640 Male-sterile CTGTACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAG 641 AG CAATCACGGCGTACTAATCGGAGCTAGGAGGAGATTCCTCTCCCT Arabidopsis thaliana TGAGGAAATCTGGGAGAGGAAAGATCGAAA Gln36Term TTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAATCTCC 642 CAA-TAA TCCTAGCTCCGATTAGTACGCCGTGATTGCTGCTCCAAAGCCAAA AACGTTTAGGGCAAAATTTGATTAGTACAG CGGCGTACTAATCGGAG 643 CTCCGATTAGTACGCCG 644 Male-sterile ACTAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAGCAAT 645 AG CACGGCGTACCAATAGGAGCTAGGAGGAGATTCCTCTCCCTTGA Arabidopsis thaliana GGAAATCTGGGAGAGGAAAGATCGAAATCAA Ser37Term TTGATTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGAAT 646 TCG-TAG CTCCTCCTAGCTCCTATTGGTACGCCGTGATTGCTGCTCCAAAGC CAAAAACGTTTAGGGCAAAATTTGATTAGT GTACCAATAGGAGCTAG 647 CTAGCTCCTATTGGTAC 648 Male-sterile TAATCAAATTTTGCCCTAAACGTTTTTGGCTTTGGAGCAGCAATCA 649 AG CGGCGTACCAATCGTAGCTAGGAGGAGATTCCTCTCCCTTGAGGA Arabidopsis thalana AATCTGGGAGAGGAAAGATCGAAATCAAAC Glu38Term GTTTGATTTCGATCTTTCCTCTCCCAGATTTCCTCAAGGGAGAGGA 650 GAG-TAG ATCTCCTCCTAGCTACGATTGGTACGCCGTGATTGCTGCTCCAAA GCCAAAAACGTTTAGGGCAAAATTTGATTA ACCAATCGTAGCTAGGA 651 TCCTAGCTACGATTGGT 652 Male-sterile CTCTCCCACTTCTTTTCGGTGGTTTATTCATTTGGTGACGATATCA 653 AG CAGAAGCAATGGATTAAGGTGGGAGTAGTCACGATGCAGAGAGT Brassica napus AGCAAGAAGATAGGTAGAGGGAAGATAGAGA Glu3Term TCTCTATCTTCCCTCTACCTATCTTCTTGCTACTCTCTGCATCGTGA 654 GAA-TAA CTACTCCCACCTTAATCCATTGCTTCTGTGATATCGTCACCAAATG AATAAACCACCGAAAAGAAGTGGGAGAG CAATGGATTAAGGTGGG 655 CCCACCTTAATCCATTG 656 Male-sterile TATTCATTTGGTGACGATATCACAGAAGCAATGGATGAAGGTGGG 657 AG AGTAGTCACGATGCATAGAGTAGCAAGAAGATAGGTAGAGGGAA Brassica napus GATAGAGATAAAGAGGATAGAGAACACAACAA Glu11Term TTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTCCCTCTACCTATC 658 GAG-TAG TTCTTGCTACTCTATGCATCGTGACTACTCCCACCTTCATCCATTG CTTCTGTGATATCGTCACCAAATGAATA ACGATGCATAGAGTAGC 659 GCTACTCTATGCATCGT 660 Male-sterile GGTGACGATATCACAGAAGCAATGGATGAAGGTGGGAGTAGTCA 661 AG CGATGCAGAGAGTAGCTAGAAGATAGGTAGAGGGAAGATAGAGA Brassica napus TAAAGAGGATAGAGAACACAACAAATCGTCAAG Lys14Term CTTGACGATTTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTCCCT 662 AAG-TAG GTACCTATCTTCTAGCTACTCTCTGCATCGTGACTACTCCCACCTT CATCCATTGCTTCTGTGATATCGTCACC AGAGTAGCTAGAAGATA 663 TATCTTCTAGCTAGTCT 664 Male-sterile GACGATATCACAGAAGCAATGGATGAAGGTGGGAGTAGTCACGA 665 AG TGCAGAGAGTAGCAAGTAGATAGGTAGAGGGAAGATAGAGATAAA Brassica napus GAGGATAGAGAACACAACAAATCGTCAAGTAA Lys15Term TTACTTGACGATTTGTTGTGTTCTCTATCCTCTTTATCTCTATCTTC 666 AAG-TAG CCTCTACCTATCTACTTGCTACTCTCTGCATCGTGACTACTCCCAC CTTCATCCATTGCTTCTGTGATATCGTC GTAGCAAGTAGATAGGT 667 ACCTATCTACTTGCTAC 668 Male-sterile CAACCAAAAAACTTAAAAATCTTCTCTTTCCTTTCCTTACAAGGTGA 669 AG AGTAATGGACTTCTAAAGTGATCTAACCAGAGAGATCTCACCACAA Lycopersicon AGGAAACTAGGAAGGGGGAAAATTGAGA esculentum TCTCAATTTTCCCCCTTCCTAGTTTCCTTTGTGGTGAGATCTCTCT 670 Glu4Term GGTTAGATCACTTTAGAAGTCCATTACTTCACCTTGTAAGGAAAGG CAA-TAA AAAGAGAAGATTTTTAAGTTTTTTGGTTG TGGACTTC+E,unc TAAAGTGAT 671 ATCACTTTAGAAGTCCA 672 Male-sterile AAAATCTTCTCTTTCCTTTCCTTACAAGGTGAAGTAATGGACTTCC 673 AG AAAGTGATCTAACCTGAGAGATCTCACCACAAAGGAAACTAGGAA Lycopersicon GGGGGAAAATTGAGATCAAAAGGATCGAAA esculentum TTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAGTTTCCTTTGT 674 Arg9Term GGTGAGATCTCTCAGGTTAGATCACTTTGGAAGTCCATTACTTCAC AGA-TGA CTTGTAAGGAAAGGAAAGAGAAGATTTT ATCTAACCTGAGAGATC 675 GATCTCTCAGGTTAGAT 676 Male-sterile ATCTTCTCTTTCCTTTCCTTACAAGGTGAAGTAATGGACTTCCAAA 677 AG GTGATCTAACCAGATAGATCTCACCACAAAGGAAACTAGGAAGGG Lycopersicon GGAAAATTGAGATCAAAAGGATCGAAAACA esculentum TGTTTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAGTTTCCTT 678 Glu10Term TGTGGTGAGATCTATCTGGTTAGATCACTTTGGAAGTCCATTACTT GAG-TAG CACCTTGTAAGGAAAGGAAAGAGAAGAT TAACCAGATAGATCTCA 679 TGAGATCTATCTGGTTA 680 Male-sterile CTTTCCTTTCCTTACAAGGTGAAGTAATGGACTTCCAAAGTGATCT 681 AG AACCAGAGAGATCTGACCACAAAGGAAACTAGGAAGGGGGAAAA Lycopersicon TTGAGATCAAAAGGATCGAAAACACGACGAA esculentum TTCGTCGTGTTTTCGATCCTTTTGATCTCAATTTTCCCCCTTCCTAG 682 Ser12Term TTTCCTTTGTGGTCAGATCTCTGTGGTTAGATCACTTTGGAAGTCC TCA-TGA ATTACTTCACCTTGTAAGGAAAGGAAAG AGAGATCTGACCACAAA 683 TTTGTGGTCAGATCTCT 684 Male-sterile GTACTCTCTATTTTCATCTTCCAACCCTTTCTTTCCTTACCAGGTGA 685 NAG1 AAGTATGGACTTCTAAAGTGATCTAACAAGAGAGATCTCTCCACAA Nicotiana tabacum AGGAAACTGGGAAGAGGAAAGATTGAGA Gln4Term TCTCAATCTTTCCTCTTCCCAGTTTCCTTTGTGGAGAGATCTCTCTT 686 CAA-TAA GTTAGATCACTTTAGAAGTCCATACTTTCACCTGGTAAGGAAAGAA AGGGTTGGAAGATGAAAATAGAGAGTAC TGGACTTCTAAAGTGAT 687 ATCACTTTAGAAGTCCA 688 Male-sterile ATCTTCCAACCCTTTCTTTCCTTACCAGGTGAAAGTATGGACTTCC 689 NAG1 AAAGTGATCTAACATGAGAGATCTCTCCACAAAGGAAACTGGGAA Nicotiana tabacum GAGGAAAGATTGAGATCAAACGGATCGAAA Arg9Term TTTCGATCCGTTTGATCTCAATCTTTCCTCTTCCCAGTTTCCTTTGT 690 AGA-TGA GGAGAGATCTCTCATGTTAGATCACTTTGGAAGTCCATACTTTCAC CTGGTAAGGAAAGAAAGGGTTGGAAGAT ATCTAACATGAGAGATC 691 GATCTCTCATGTTAGAT 692 Male-sterile TTCCAACCCTTTCTTTCCTTAGCAGGTGAAAGTATGGACTTCCAAA 693 NAG1 GTGATCTAACAAGATAGATCTCTCCACAAAGGAAACTGGGAAGAG Nicotiana tabacum GAAAGATTGAGATCAAACGGATCGAAAACA Glu10Term TGTTTTCGATCCGTTTGATCTCAATCTTTCCTCTTCCCAGTTTCCTT 694 GAG-TAG TGTGGAGAGATCTATCTTGTTAGATGACTTTGGAAGTCCATACTTT CACCTGGTAAGGAAAGAAAGGGTTGGAA TAACAAGATAGATCTCT 695 AGAGATCTATCTTGTTA 696 Male-sterile CTTTCCTTACCAGGTGAAAGTATGGACTTCCAAAGTGATCTAACAA 697 NAG1 GAGAGATCTCTCCATAAAGGAAACTGGGAAGAGGAAAGATTGAGA Nicotiana tabacum TCAAACGGATCGAAAACACAACGAATCGTC Gln14Term GACGATTCGTTGTGTTTTCGATCCGTTTGATCTCAATCTTTCCTCTT 698 CAA-TAA CCCAGTTTCCTTTATGGAGAGATCTCTCTTGTTAGATCACTTTGGA AGTCCATACTTTCACCTGGTAAGGAAAG TCTCTCCATAAAGGAAA 699 TTTCCTTTATGGAGAGA 700 Male-sterile GCCTATGAAAACAAACCCAACACGGTCCTGGACGCTGATGCCCAA 701 AG AGAAGATTGGGAAGGTGAAAGATCGAGATCAAGCGGATCGAAAA Rosa hybrida CACCACCAATCGTCAAGTCACCTTCTGCAAAA Gly22Term TTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTTCGATCCGCT 702 GGA-TGA TGATCTGGATCTTTCACCTTCCCAATCTTCTTTGGGCATCAGCGTC CAGGACCGTGTTGGGTTTGTTTTCATAGGC TGGGAAGGTGAAAGATC 703 GATCTTTCACCTTCCCA 704 Male-sterile TATGAAAACAAACCCAACACGGTCCTGGACGCTGATGCCCAAAGA 705 AG AGATTGGGAAGGGGATAGATCGAGATCAAGCGGATCGAAAACAC Rosa hybrida CACCAATCGTCAAGTCACCTTCTGCAAAAGGC Lys23Term GCCTTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTTCGATCC 706 AAG-TAG GCTTGATCTCGATCTATCCCCTTCCCAATCTTCTTTGGGCATCAGC GTCCAGGACCGTGTTGGGTTTGTTTTCATA GAAGGGGATAGATCGAG 707 CTCGATCTATCCCCTTC 708 Male-sterile AACAAACCCAACACGGTCCTGGACGCTGATGCCCAAAGAAGATTG 709 AG GGAAGGGGAAAGATCTAGATCAAGCGGATCGAAAACACCACCAA Rosa hybrida TCGTCAAGTCACCTTCTGCAAAAGGCGCAATG Glu25Term CATTGCGCCTTTTGCAGAAGGTGACTTGACGATTGGTGGTGTTTT 710 GAG-TAG CGATCCGCTTGATCTAGATCTTTCCCCTTCCCAATCTTCTTTGGGC ATCAGCGTCCAGGACCGTGTTGGGTTTGTT GAAAGATCTAGATCAAG 711 CTTGATCTAGATCTTTC 712 Male-sterile CCCAACACGGTCCTGGACGCTGATGCCCAAAGAAGATTGGGAAG 713 AG GGGAAAGATCGAGATCTAGCGGATCGAAAACACCACCAATCGTCA Rosa hybrida AGTCACCTTCTGCAAAAGGCGCAATGGTTTGC Lys27 GCAAACCATTGCGCCTTTTGCAGAAGGTGACTTGACGATTGGTGG 714 AAG-TAG TGTTTTCGATCCGCTAGATCTCGATCTTTCCCCTTCCCAATCTTCT TTGGGCATCAGCGTCCAGGACCGTGTTGGG TCGAGATCTAGCGGATC 715 GATCCGCTAGATCTCGA 716 Male-sterile CAATTGCGTGTTTTTATTTTTTTTGTTTTTGACTAAGTAGAAATGGC 717 far GTCTCTAAGCGATTAATCGACCGAGGTATCGCGCGAGAGGAAAAT Antirrhinum majus CGGGAGAGGAAAGATCGAGATCAAACGGA Gln7Term TCCGTTTGATCTCGATCTTTCCTCTCCCGATTTTCCTCTCGGGCGA 718 CAA-TAA TACCTCGGTCGATTAATCGCTTAGAGACGCCATTTCTACTTAGTCA AAAAGAAAAAAAATAAAAACAGGCAATTG TAAGCGATTAATCGACC 719 GGTCGATTAATCGCTTA 720 Male-sterile GTTTTTATTTTTTTTCTTTTTGACTAAGTAGAAATGGCGTCTCTAAG 721 far CGATCAATCGACCTAGGTATCGCCCGAGAGGAAAATCGGGAGAG Antirrhinum majus GAAAGATCGAGATCAAACGGATCGAAAACA Glu10Term TGTTTTCGATCCGTTTGATCTCGATCTTTCCTCTCCCGATTTTCCTC 722 GAG-TAG TCGGGCGATACCTAGGTCGATTGATCGCTTAGAGACGCCATTTCT ACTTAGTCAAAAAGAAAAAAAATAAAAAC AATCGACCTAGGTATCG 723 CGATACCTAGGTCGATT 724 Male-sterile TTTCTTTTTGACTAAGTAGAAATGGCGTCTCTAAGCGATCAATCGA 725 far CCGAGGTATCGCCCTAGAGGAAAATCGGGAGAGGAAAGATCGAG Antirrhinum majus ATCAAACGGATCGAAAACAAAACAAATCAAC Glu14Term GTTGATTTGTTTTGTTTTCGATCCGTTTGATCTCGATCTTTCCTCTC 726 GAG-TAG CCGATTTTCCTCTAGGGCGATACCTCGGTCGATTGATCGCTTAGA GACGCCATTTCTACTTAGTCAAAAAGAAA TATCGCCCTAGAGGAAA 727 TTTCCTCTAGGGCGATA 728 Male-sterile TTTGACTAAGTAGAAATGGCGTCTCTAAGCGATCAATCGACCGAG 729 far GTATCGCCCGAGAGGTAAATCGGGAGAGGAAAGATCGAGATCAA Antirrhinum majus ACGGATCGAAAACAAAACAAATCAACAGGTTA Lys16Term TAACCTGTTGATTTGTTTTGTTTTCGATCCGTTTGATCTCGATCTTT 730 AAA-TAA CCTCTCCCGATTTACCTCTCGGGCGATACCTCGGTCGATTGATCG CTTAGAGACGCCATTTCTACTTAGTCAAA CCGAGAGGTAAATCGGG 731 CCCGATTTACCTCTCGG 732 Male-sterile TGTCCAAGCATTATCAGTCACCACTCACAAGAATGATTAAGGAAGA 733 AG AGGAAAGGGTAAGTAGCAAATAAAGGGGATGTTCCAGAATCAAGA Cucumis sativus AGAGAAGATGTCAGACTCGCCTCAGAGGAA Leu21Term TTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATTCTGGAACA 734 TTG-TAG TCCCCTTTATTTGCTACTTACCCTTTCCTTCTTCCTTAATCATTCTT GTGAGTGGTGACTGATAATGCTTGGACA GGGTAAGTAGCAAATAA 735 TTATTTGCTACTTACCC 736 Male-sterile TCCAAGCATTATCAGTCACCACTCACAAGAATGATTAAGGAAGAA 737 AG GGAAAGGGTAAGTTGTAAATAAAGGGGATGTTCCAGAATCAAGAA Cucumis sativus GAGAAGATGTCAGACTCGCCTCAGAGGAAGA Gln22Term TCTTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATTCTGGAA 738 CAA-TAA CATCCCCTTTATTTACAACTTACCCTTTCCTTCTTCCTTAATCATTC TTGTGAGTGGTGACTGATAATGCTTGGA GTAAGTTGTAAATAAAG 739 CTTTATTTACAACTTAC 740 Male-sterile CATTATCAGTCACCACTCACAAGAATGATTAAGGAAGAAGGAAAG 741 AG GGTAAGTTGCAAATATAGGGGATGTTCCAGAATCAAGAAGAGAAG Cucumis sativus ATGTCAGACTCGCCTCAGAGGAAGATGGGAA Lys24Term TTCCCATCTTCCTCTGAGGCGAGTCTGACATCTTCTCTTCTTGATT 742 AAG-TAG CTGGAACATCCCCTATATTTGCAACTTACCCTTTCCTTCTTCCTTAA TCATTCTTGTGAGTGGTGACTGATAATG TGCAAATATAGGGGATG 743 CATCCCCTATATTTGCA 744 Male-sterile CCACTCACAAGAATGATTAAGGAAGAAGGAAAGGGTAAGTTGCAA 745 AG ATAAAGGGGATGTTCTAGAATCAAGAAGAGAAGATGTCAGACTCG Cucumis sativus CCTCAGAGGAAGATGGGAAGAGGAAAGATTG Gln28Term CAATCTTTCCTCTTCCCATCTTCCTCTGAGGCGAGTCTGACATCTT 746 CAG-TAG CTCTTCTTGATTCTAGAACATCCCCTTTATTTGCAACTTACCCTTTC CTTCTTCCTTAATCATTCTTGTGAGTGG GGATGTTCTAGAATCAA 747 TTGATTCTAGAACATCC 748 Male-sterile CCACCACCACCACCACCACCACCACCACACCATGCTCAACATGAT 749 AG GACTGATCTGAGCTGAGGGCCGTCGTCCAAGGTCAAGGAGCAGG Zea mays TGGCGGCGGCGCCGACGGGCTCCGGCGACAGG Cys10Term CCTGTCGCCGGAGCCCGTCGGCGCCGCCGCCACCTGCTCCTTGA 750 TGC-TGA CCTTGGACGACGGCCCTCAGCTCAGATCAGTCATCATGTTGAGCA TGGTGTGGTGGTGGTGGTGGTGGTGGTGGTGG CTGAGCTGAGGGCCGTC 751 GACGGCCCTCAGCTCAG 752 Male-sterile ACCACCACCACCACCACCACACCATGCTCAACATGATGACTGATC 753 AG TGAGCTGCGGGCCGTAGTCCAAGGTCAAGGAGCAGGTGGCGGC Zea mays GGCGCCGACGGGCTCCGGCGACAGGCAGGGGCA Ser13Term TGCCCCTGCCTGTCGCCGGAGCCCGTCGGCGCCGCCGCCACCT 754 TCG-TAG GCTCCTTGACCTTGGACTACGGCCCGCAGCTCAGATCAGTCATCA TGTTGAGCATGGTGTGGTGGTGGTGGTGGTGGT CGGGCCGTAGTCCAAGG 755 CCTTGGACTACGGCCCG 756 Male-sterile CACCACCACCACCACACCATGCTCAACATGATGACTGATCTGAGC 757 AG TGCGGGCCGTCGTCCTAGGTCAAGGAGCAGGTGGCGGCGGCGC Zea mays CGACGGGCTCCGGCGACAGGCAGGGGCAGGGGA Lys15Term TCCCCTGCCCCTGCCTGTCGCCGGAGCCCGTCGGCGCCGCCGC 758 AAG-TAG CACCTGCTCCTTGACCTAGGACGACGGCCCGCAGCTCAGATCAG TCATCATGTTGAGCATGGTGTGGTGGTGGTGGTG CGTCGTCCTAGGTCAAG 759 CTTGACCTAGGACGACG 760 Male-sterile CACCACCACACCATGCTCAACATGATGACTGATCTGAGCTGCGGG 761 AG CCGTCGTCCAAGGTCTAGGAGCAGGTGGCGGCGGCGCCGACGG Zea mays GCTCCGGCGACAGGCAGGGGCAGGGGAGAGGCA Lys17Term TGCCTCTCCCCTGCCCCTGCCTGTCGCCGGAGCCCGTCGGCGCC 762 AAG-TAG GCCGCCACCTGCTCCTAGACCTTGGACGACGGCCCGCAGCTCAG ATCAGTCATCATGTTGAGCATGGTGTGGTGGTG CCAAGGTCTAGGAGCAG 763 CTGCTCCTAGACCTTGG 764 Male-sterile TCCTACCTTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACA 765 AG AGAGCATGCACATCTGAGAAGAGGAGGCTACACCATCCACAGTAA Zea mays CAGGCATCATGTCGACCCTGACTTCGGCGG Arg4Term CCGCCGAAGTCAGGGTCGACATGATGCCTGTTACTGTGGATGGT 766 CGA-TGA GTAGCCTCCTCTTCTCAGATGTGCATGCTCTTGTTCCTATCACACA GATTTTGAGGTCTGAAGGAGAAAAGGTAGGA TGCACATCTGAGAAGAG 767 CTCTTCTCAGATGTGCA 768 Male-sterile TACCTTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGA 769 AG GCATGCACATCCGATAAGAGGAGGCTACACCATCCACAGTAACAG Zea mays GCATCATGTCGACCCTGACTTCGGCGGGGC Glu5Term GCCCCGCCGAAGTCAGGGTCGACATGATGCCTGTTACTGTGGAT 770 GAA-TAA GGTGTAGCCTCCTCTTATCGGATGTGCATGCTCTTGTTCCTATCAC ACAGATTTTGAGGTCTGAAGGAGAAAAGGTA ACATCCGATAAGAGGAG 771 CTCCTCTTATCGGATGT 772 Male-sterile CTTTTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGAGCA 773 AG TGCACATCCGAGAATAGGAGGCTACACCATCCACAGTAACAGGCA Zea mays TCATGTCGACCCTGACTTCGGCGGGGCAGC Glu6Term GCTGCCCCGCCGAAGTGAGGGTCGACATGATGCCTGTTACTGTG 774 GAG-TAG GATGGTGTAGCCTCCTATTCTCGGATGTGCATGCTCTTGTTCCTAT CACACAGATTTTGAGGTCTGAAGGAGAAAAG TCCGAGAATAGGAGGCT 775 AGCCTCCTATTCTCGGA 776 Male-sterile TTCTCCTTCAGACCTCAAAATCTGTGTGATAGGAACAAGAGCATG 777 AG CACATCCGAGAAGAGTAGGCTACACCATCCACAGTAACAGGCATC Zea mays ATGTCGACCCTGACTTCGGCGGGGCAGCAGA Glu7Term TCTGCTGCCCCGCCGAAGTCAGGGTCGACATGATGCCTGTTACT 778 GAG-TAG GTGGATGGTGTAGCCTACTCTTCTCGGATGTGCATGCTCTTGTTC CTATCACACAGATTTTGAGGTCTGAAGGAGAA GAGAAGAGTAGGCTACA 779 TGTAGCCTACTCTTCTC 780 Male-sterile GCTGGGTCAGGATCGTCGGCGGCGGTGGCGGCGGGGAGCAGC 781 AG GAGAAGATGGGGAGGGGGTAGATCGAGATAAAGCGGATCGAGAA Oryza sativa CACGACGAACCGGCAGGTGACCTTCTGCAAGCGCC Lys5Term GGCGCTTGCAGAAGGTCACCTGCCGGTTCGTCGTGTTCTCGATC 782 AAG-TAG CGCTTTATCTCGATCTACCCCCTCCCCATCTTCTCGCTGCTCCCC GCCGCCACCGCCGCCGACGATCCTGACCCAGC GGAGGGGGTAGATCGAG 783 CTCGATCTACCCCCTCC 784 Male-sterile TCAGGATCGTCGGCGGGGGTGGCGGCGGGGAGCAGCGAGAAGA 785 AG TGGGGAGGGGGAAGATCTAGATAAAGCGGATCGAGAACACGACG Oryza sativa AACCGGCAGGTGACCTTCTGCAAGCGCCGCAATG GTu7Term CATTGCGGCGCTTGCAGAAGGTCACCTGCCGGTTCGTCGTGTTCT 786 GAG-TAG CGATCCGCTTTATCTAGATCTTCCCCCTCCCCATCTTCTCGCTGCT CCCCGCCGCCACCGCCGCCGACGATCCTGA GGAAGATCTAGATAAAG 787 CTTTATCTAGATCTTCC 788 Male-sterile TCGTCGGCGGCGGTGGCGGCGGGGAGCAGCGAGAAGATGGGG 789 AG AGGGGGAAGATCGAGATATAGCGGATCGAGAACACGACGAACCG Oryza sativa GCAGGTGACCTTCTGCAAGCGCCGCAATGGCCTCC Lys9Term GGAGGCCATTGCGGCGCTTGCAGAAGGTCACCTGCCGGTTCGTC 790 AAG-TAG GTGTTCTCGATCCGCTATATCTCGATCTTCCCCCTCCCCATCTTCT CGCTGCTCCCCGCCGCCACCGCCGCCGACGA TCGAGATATAGCGGATC 791 GATCCGCTATATCTCGA 792 Male-sterile GCGGTGGCGGCGGGGAGCAGCGAGAAGATGGGGAGGGGGAAG 793 AG ATCGAGATAAAGCGGATCTAGAACACGACGAACCGGCAGGTGAC Oryza sativa CTTCTGCAAGCGCCGCAATGGCCTCCTGAAGAAGG Glu12Term CCTTCTTCAGGAGGCCATTGCGGCGCTTGCAGAAGGTCACCTGC 794 GAG-TAG CGGTTCGTCGTGTTCTAGATCCGCTTTATCTCGATCTTCCCCCTCC CCATCTTCTCGCTGCTCCCCGCCGCCACCGC AGCGGATCTAGAACACG 795 CGTGTTCTAGATCCGCT 796
[0127] 18 TABLE 16 Oligonucleotides to produce male-sterile plants Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Male-sterile GGGAAGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAA 797 P1 TAGACAAGTTACATAGTCAAAGAGAAGAAATGGTATCATCAAAAAA Cucumis sativus GCCAAAGAAATTACTGTTCTTTGCGATGCT Tyr21Term AGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATACCAT 798 TAT-TAG TTCTTCTCTTTGACTATGTAACTTGTCTATTGCTTGAGTTCTCTATTC TTTTTATTTCTATTTTCCCTCTTCCC GTTACATAGTCAAAGAG 799 CTCTTTGACTATGTAAC 800 Male-sterile GAAGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATA 801 P1 GACAAGTTACATATTGAAAGAGAAGAAATGGTATCATCAAAAAAGC Cucumis sativus CAAAGAAATTACTGTTCTTTGCGATGCTCA Ser22Term TGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATAC 802 TCA-TGA CATTTCTTCTCTTTCAATATGTAACTTGTCTATTGCTTGAGTTCTCTA TTGTTTTTATTTCTATTTTCCCTCTTC TACATATTGAAAGAGAA 803 TTCTCTTT+E,un CAATATGTA 804 Male-sterile AGAGGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATAGAC 805 P1 AAGTTAGATATTCATAGAGAAGAAATGGTATCATCAAAAAAGCCAA Cucumis sativus AGAAATTACTGTTCTTTGCGATGCTCAAG Lys23Term CTTGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATGATA 806 AAG-TAG CCATTTCTTCTCTATGAATATGTAACTTGTCTATTGCTTGAGTTCTC TATTCTTTTTATTTCTATTTTCCCTCT CATATTCATAGAGAAGA 807 TCTTCTCTATGAATATG 808 Male-sterile GGGAAAATAGAAATAAAAAGAATAGAGAACTCAAGCAATAGACAAG 809 P1 TTACATATTCAAAGTGAAGAAATGGTATCATCAAAAAAGCCAAAGA Cucumis sativus AATTACTGTTCTTTGCGATGCTCAAGTTT Arg24Term AAACTTGAGCATCGCAAAGAACAGTAATTTCTTTGGCTTTTTTGATG 810 AGA-TGA ATACCATTTCTTCACTTTGAATATGTAACTTGTCTATTGCTTGAGTT CTCTATTCTTTTTATTTCTATTTTCCC ATTCAAAGTGAAGAAAT 811 ATTTCTTCACTTTGAAT 812 Male-sterile GGGACGTGGGAAGGTTGAGATCAAGAGGATTGAGAACTGAAGTAA 813 P1 CAGGCAGGTGACCTAGTCCAAGAGGAGGAATGGGATTATCAAGAA Malus domestica GGCAAAGGAGATCACTGTTCTATGTGATGCT Tyr21Term AGCATCACATAGAACAGTGATCTCCTTTGCCTTCTTGATAATCCCA 814 TAG-TAG TTCCTCCTCTTGGACTAGGTGACCTGCCTGTTACTTGAGTTCTCAA TCCTCTTGATCTCAACCTTCCCACGTCGC GTGACCTAGTGCAAGAG 815 CTCTTGGACTAGGTCAC 816 Male-sterile CGTGGGAAGGTTGAGATCAAGAGGATTGAGAACTCAAGTAACAGG 817 P1 CAGGTGACCTACTCCTAGAGGAGGAATGGGATTATCAAGAAGGCA Malus domestica AAGGAGATCACTGTTCTATGTGATGCTAAAG Lys23Term CTTTAGCATCACATAGAACAGTGATCTCCTTTGCCTTCTTGATAATC 818 AAG-TAG CCATTCCTCCTCTAGGAGTAGGTCACCTGCCTGTTACTTGAGTTCT CAATCCTCTTGATCTCAACCTTCCCACG CCTACTCCTAGAGGAGG 819 CCTCCTCTAGGAGTAGG 820 Male-sterile AGGATTGAGAAGTCAAGTAACAGGCAGGTGACCTACTCCAAGAGG 821 P1 AGGAATGGGATTATCTAGAAGGCAAAGGAGATGACTGTTCTATGT Malus domestica GATGCTAAAGTATCTCTTATCATTTATTCTA Lys30Term TAGAATAAATGATAAGAGATACTTTAGCATCACATAGAACAGTGAT 822 AAG-TAG CTCCTTTGCCTTCTAGATAATCGCATTCCTCCTCTTGGAGTAGGTC ACCTGCCTGTTACTTGAGTTCTCAATCCT GGATTATCTAGAAGGCA 823 TGCCTTCTAGATAATCC 824 Male-sterile ATTGAGAACTCAAGTAACAGGCAGGTGACCTACTCCAAGAGGAGG 825 P1 AATGGGATTATCAAGTAGGCAAAGGAGATCACTGTTCTATGTGATG Malus domestica CTAAAGTATCTCTTATCATTTATTCTAGCT Lys31Term AGCTAGAATAAATGATAAGAGATACTTTAGCATCACATAGAACAGT 826 AAG-TAG GATCTCCTTTGCCTACTTGATAATGCCATTCCTCCTCTTGGAGTAG GTCACCTGCCTGTTACTTGAGTTCTCAAT TTATCAAGTAGGCAAAG 827 CTTTGCCTACTTGATAA 828 Male-sterile CATTTTTACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAA 829 globosa AAACAAAAAAATGTGAAGAGGAAAAATTGAGATCAAAAGAATTGAG Antirrhinum majus AACTCAAGCAACAGGCAGGTTACTTACT Gly2Term AGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTGATCTCA 830 GGA-TGA ATTTTTCCTCTTCACATTTTTTTGTTTTTGTTTTTCTCTCTTGTTTTTG TTTGCAGATAACTATTGTAAAAATG AAAAAATGTGAAGAGGA 831 TCCTCTTCACATTTTTT 832 Male-sterile TTTTACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAAAAA 833 globosa CAAAAAAATGGGATGAGGAAAAATTGAGATCAAAAGAATTGAGAAC Antirrhinum majus TCAAGCAACAGGCAGGTTACTTACTCAA Arg3Term TTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTGATC 834 AGA-TGA TCAATTTTTCCTCATCCCATTTTTTTGTTTTTGTTTTTCTCTCTTGTTT TTGTTTGCAGATAACTATTGTAAAA AAATGGGATGAGGAAAA 835 TTTTCCTCATCCCATTT 836 Male-sterile TACAATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAAAAACA 837 globosa AAAAAATGGGAAGATGAAAAATTGAGATCAAAAGAATTGAGAACTC Antirthinum majus AAGCAACAGGCAGGTTACTTACTCAAAGA Gly4Term TCTTTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTCTTTTG 838 GGA-TGA ATCTCAATTTTTCATCTTCCCATTTTTTTGTTTTTGTTTTTCTCTCTTG TTTTTGTTTGCAGATAACTATTGTA TGGGAAGATGAAAAATT 839 AATTTTTCATCTTCCCA 840 Male-sterile AATAGTTATCTGCAAACAAAAACAAGAGAGAAAAACAAAAACAAAA 841 globosa AAATGGGAAGAGGATAAATTGAGATCAAAAGAATTGAGAACTCAAG Antirrhinum majus CAACAGGCAGGTTACTTACTCAAAGAGAA Lys5Term TTCTCTTTGAGTAAGTAACCTGCCTGTTGCTTGAGTTCTCAATTGTT 842 AAA-TAA TTGATCTCAATTTATCCTCTTCCCATTTTTTTGTTTTTGTTTTTCTCT CTTGTTTTTGTTTGCAGATAACTATT GAAGAGGATAAATTGAG 843 CTCAATTTATCCTCTTC 844 Male-sterile GCTGAGCTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGC 845 P1 AGTATGGGGCGCGGCTAGATCAAGATCAAGAGGATCGAGAACTCT Zea mays ACCAACCGGCAGGTGACCTTCTCCAAGCGCC Lys5Term GGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTCTCGATCC 846 AAG-TAG TCTTGATCTTGATCTAGCCGCGCCCCATACTGCGTTCTCCACTCCC AAACAGATCCAAGGGCAGCAAGAGCTCAGC GGCGCGGCTAGATGAAG 847 CTTGATCTAGCCGCGCC 848 Male-sterile CTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGCAGTATG 849 P1 GGGCGCGGCAAGATCTAGATCAAGAGGATCGAGAACTCTACCAAC Zea mays CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG Lys7Term CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC 850 AAG-TAG TCGATCCTCTTGATCTAGATCTTGCCGCGCCCCATACTGCGTTCTC CACTCCCAAACAGATCCAAGGGCAGCAAGAG GCAAGATCTAGATCAAG 851 CTTGATCTAGATCTTGC 852 Male-sterile CTCTTGCTGCCCTTGGATCTGTTTGGGAGTGGAGAACGCAGTATG 853 P1 GGGCGCGGCAAGATCTAGATCAAGAGGATCGAGAACTCTACCAAC Zea mays CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG Lys9Term CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC 854 AAG-TAG TCGATCCTCTTGATCTAGATCTTGCCGCGCCCCATACTGCGTTCTC CACTCCCAAACAGATCCAAGGGCAGCAAGAG GCAAGATCTAGATCAAG 855 GTTGATCTAGATCTTGC 856 Male-sterile GATCTGTTTGGGAGTGGAGAACGCAGTATGGGGCGCGGCAAGAT 857 P1 CAAGATCAAGAGGATCTAGAACTCTACCAACCGGCAGGTGACCTT Zea mays CTCCAAGCGCCGGGCCGGACTGGTCAAGAAGG Glu12Term CCTTCTTGACGAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGC 858 GAG-TAG CGGTTGGTAGAGTTCTAGATCCTCTTGATCTTGATCTTGCCGCGCC CCATACTGCGTTCTCCACTCCCAAACAGATC AGAGGATCTAGAACTCT 859 AGAGTTCTAGATGCTCT 860 Male-sterile GCTGAGCTCTTGCTGCCCTTGAATCTGTTAGGGAGTGGAGAACGG 861 P1 AGTATGGGGCGCGGCTAGATCGAGATCAAGAGGATCGAGAACTCT Zea mays ACCAACCGGCAGGTGACCTTCTCCAAGCGCC Lys5Term GGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTCTCGATCC 862 AAG-TAG TCTTGATCTCGATCTAGCCGCGCCCCATACTCCGTTCTCCACTCCC TAACAGATTCAAGGGCAGCAAGAGCTCAGC GGCGCGGCTAGATCGAG 863 CTCGATCTAGCCGCGCC 864 Male-sterile CTCTTGCTGCCCTTGAATCTGTTAGGGAGTGGAGAACGGAGTATG 865 P1 GGGCGCGGCAAGATCTAGATCAAGAGGATCGAGAACTCTACCAAC Zea mays CGGCAGGTGACCTTCTCCAAGCGCCGGGCCG Glu7Term CGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTAGAGTTC 866 GAG-TAG TCGATCCTCTTGATCTAGATCTTGCCGCGCCCCATACTCCGTTCTC CACTCCCTAACAGATTCAAGGGCAGCAAGAG GCAAGATCTAGATCAAG 867 CTTGATCTAGATCTTGC 868 Male-sterile CTGCCCTTGAATCTGTTAGGGAGTGGAGAACGGAGTATGGGGCG 869 P1 CGGCAAGATCGAGATCTAGAGGATCGAGAACTCTACCAACCGGCA Zea mays GGTGACCTTCTCCAAGCGCCGGGCCGGACTGG Lys9Term CCAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGCCGGTTGGTA 870 AAG-TAG GAGTTCTCGATCCTCTAGATCTCGATCTTGCCGCGCCCCATACTC CGTTCTCCACTCCCTAACAGATTCAAGGGCAG TCGAGATCTAGAGGATC 871 GATCCTCTAGATCTCGA 872 Male-sterile AATCTGTTAGGGAGTGGAGAACGGAGTATGGGGCGCGGCAAGAT 873 P1 GGAGATGAAGAGGATCTAGAACTCTACCAACCGGCAGGTGACCTT Zea mays CTCCAAGCGCCGGGCCGGACTGGTCAAGAAGG Glu12Term CCTTCTTGACCAGTCCGGCCCGGCGCTTGGAGAAGGTCACCTGC 874 GAG-TAG CGGTTGGTAGAGTTCTAGATCCTCTTGATCTCGATCTTGCCGCGC CCCATACTCCGTTCTCCACTCCCTAACAGATT AGAGGATCTAGAACTCT 875 AGAGTTCTAGATCCTCT 876 Male-sterile TTGCTGCTAAGCTAGCTGGAGGAAGGAGGAGGAGGAGGAGGAGG 877 P1 CGGGATGGGGCGCGGG+E,un TAGATCGAGATCAAGAGGATCGAGAACT Oryza sativa CCACCAACCGCCAGGTGACCTTCTCCAAGCGCA Lys5Term TGCGCTTGGAGAAGGTCACCTGGCGGTTGGTGGAGTTCTCGATCC 878 AAG-TAG TCTTGATGTCGATGTACCCGCGCCCCATCCCGCCTCCTCCTCCTC CTCCTCCTTCCTCCAGCTAGCTTAGCAGCAA GGCGCGGGTAGATCGAG 879 CTCGATCTACCCGCGCC 880 Male-sterile CTAAGCTAGCTGGAGGAAGGAGGAGGAGGAGGAGGAGGCGGGA 881 P1 TGGGGCGCGGGAAGATCTAGATCAAGAGGATCGAGAACTCCACC Oryza sativa AACCGCCAGGTGACCTTCTCCAAGCGCAGGAGCG Glu7Term CGCTCCTGCGCTTGGAGAAGGTCACCTGGCGGTTGGTGGAGTTCT 882 GAG-TAG CGATCCTCTTGATCTAGATCTTCCCGCGCCCCATCCCGCCTCCTC CTCCTCCTCCTCCTTCCTCCAGCTAGCTTAG GGAAGATCTAGATCAAG 883 CTTGATCTAGATCTTCC 884 Male-sterile TAGCTGGAGGAAGGAGGAGGAGGAGGAGGAGGCGGGATGGGGC 885 P1 GCGGGAAGATCGAGATCTAGAGGATCGAGAACTCCACCAACCGC Oryza sativa CAGGTGACCTTCTCCAAGCGCAGGAGCGGGATCC Lys9Term GGATCCCGCTCCTGCGCTTGGAGAAGGTCACCTGGCGGTTGGTG 886 AAG-TAG GAGTTCTCGATCCTCTAGATCTCGATCTTCCCGCGCCCCATCCCG CCTCCTCCTCCTCCTCCTCCTTCCTCCAGCTA TCGAGATCTAGAGGATC 887 GATCCTCTAGATCTCGA 888 Male-sterile GAAGGAGGAGGAGGAGGAGGAGGCGGGATGGGGCGCGGGAAG 889 P1 ATCGAGATCAAGAGGATCTAGAACTCCACCAACCGCCAGGTGACC Oryza sativa TTCTCCAAGCGCAGGAGCGGGATCCTCAAGAAGG Glu12Term CCTTCTTGAGGATCCCGCTCCTGCGCTTGGAGAAGGTCACCTGGC 890 GAG-TAG GGTTGGTGGAGTTCTAGATCCTCTTGATCTCGATCTTCCCGCGCC CCATCCCGCCTCCTCCTCCTCCTCCTCCTTC AGAGGATCTAGAACTCC 891 GGAGTTCTAGATCCTCT 892
EXAMPLE 7 Engineering Plants for Abiotic Stress Tolerance[0128] Environmental stresses, such as drought, increased soil salinity, soil contamination with heavy meals, and extreme temperature, are major factors limiting plant growth and productivity. The worldwide loss in yield of three major cereal crops, rice, maize, and wheat due to water stress (drought) has been estimated to be over ten billion dollars annually and many currently marginal soils could be brought into cultivation if suitable plant varieties were available.
[0129] Physiological and biochemical responses to high levels of ionic or nonionic solutes and decreased water potential have been studied in a variety of plants. It is known, for example, that increasing levels of alcohol dehydrogenase can confer enhances flooding resistance in plants. There are also several possible mechanisms to enhance plant salt tolerance. For example, one mechanism underlying the adaptation or tolerance of plants to osmotic stresses is the accumulation of compatible, low molecular weight osmolytes such as sugar alcohols, special amino acids, and glycinebetaine. Such accumulation can be engineered, for example, by removing feedback inhibition on 1-pyrroline-t-carboxylate synthetase, which results in accumulation of proline. Additionally, recent experiments suggest that altering the expression or activity of specific sodium or potassium transporters can confer enhanced salt tolerance.
[0130] Plant tolerance of contamination by heavy metals such as lead and aluminum in soils has also been investigated and one mechanism underlying tolerance is the production of dicarboxylic acids such as oxalate and citrate. In addition, individual genes involved in heavy metal sensitivity have been identified.
[0131] The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that confer stress tolerance in plants. 19 TABLE 17 Genome-Altering Oligos Conferring Stress Tolerance Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Salt Tolerance CGTCTTTTTGTGTGGTAGTTGGATGTGACGGTTGCTCAAATGCTT 893 P5CS GTGACCGATAGCAGTGCTAGAGATAAGGATTTCAGGAAGCAACTT Arabidopsis thaliana AGTGAAACTGTCAAAGCGATGCTGAGGATGA Phe128Ala TCATCCTCAGCATCGCTTTGACAGTTTCACTAAGTTGCTTCCTGAA 894 TTT-GCT ATCCTTATGTCTAGCACTGCTATCGGTCACAAGCATTTGAGCAACC GTCACATCCAACTACCACACAAAAAGACG ATAGCAGTGCTAGAGAT 895 ATCTCTAGCACTGCTAT 896 Salt Tolerance GAGAGTATGTTTGACCAGCTGGATGTGACGGCTGCTCAGCTGCTG 897 P5CS 1 GTGAATGACAGTAGTGCCAGAGACAAGGAGTTCAGGAAGCAACTT Brassica napus AATGAGACAGTGAAGTCCATGCTTGATTTGA Phe128Ala TCAAATCAAGCATGGACTTCACTGTCTCATTAAGTTGCTTCCTGAA 898 TTC-GCC CTCCTTGTCTCTGGCACTACTGTCATTCACCAGCAGCTGAGCAGC CGTCACATCCAGCTGGTCAAACATAGTGTC ACAGTAGTGCCAGAGAC 899 GTCTCTGGCACTACTGT 900 Salt Tolerance GAGACTATGTTTGACCAGATGGATGTGACGGTGGCTCAAATGCTG 901 P505 2 GTGACTGATAGCAGTGTCAGAGATAAGGATTTCAGGAAGCAACTT Brassica napus AGTGAGACAGTCAAAGCTATGCTGAAAATGA Phe129Ala TCATTTTCAGCATAGCTTTGACTGTCTCACTAAGTTGCTTCCTGAA 902 TTC-GCC ATCCTTATCTCTGACACTGCTATCAGTCACCAGCATTTGAGCCACC GTCACATCCATCTGGTCAAACATAGTCTC ATAGCAGTGTCAGAGAT 903 ATCTCTGACACTGCTAT 904 Salt Tolerance GATATGTTGTTTAACCAACTGGATGTCTCGTCATCTCAACTTCTTG 905 P5GS TCACCGACAGTGATGCTGAGAACCCAAAGTTCCGGGAGCAACTCA Oryza sativa CTGAAACTGTTGAGTCATTATTAGATCTTA Phe128Ala TAAGATCTAATAATGACTCAACAGTTTCAGTGAGTTGCTCCCGGAA 906 TTT-GCT CTTTGGGTTCTCAGCATCACTGTCGGTGACAAGAAGTTGAGATGA CGAGACATCCAGTTGGTTAAACAACATATC ACAGTGATGCTGAGAAC 907 GTTCTCAGCATCACTGT 908 Salt Tolerance GATATTTTGTTTAGTCAGCTGGATGTGACATCTGCTCAGCTTCTTG 909 P5CS TTACTGACAATGATGCTAGAGACCAAGATTTTAGAAAGCAACTTTC Medicago sativa TGAAACTGTGAGATCACTTCTAGCACTAA Phe128Ala TTAGTGCTAGAAGTGATCTCACAGTTTCAGAAAGTTGCTTTCTAAA 910 TTT-GCT ATCTTGGTCTCTAGCATCATTGTCAGTAAGAAGAAGCTGAGCAGAT GTCACATCCAGCTGACTAAACAAAATATC ACAATGATGCTAGAGAC 911 GTCTCTAGCATCATTGT 912 Salt Tolerance GATACATTGTTTAGTCAGCTGGATGTGACATCAGCTCAGCTACTC 913 P5CS GTTACTGATAATGATGCTAGGGATCCAGAATTCAGGAAGCAACTT Actinidia deliciosa ACTGAAACTGTAGAATCACTATTGAATTTGA Phe128Ala TCAAATTCAATAGTGATTCTACAGTTTCAGTAAGTTGCTTCCTGAAT 914 TTT-GCT TCTGGATCCCTAGCATCATTATCAGTAACGAGTAGCTGAGCTGAT GTCACATCCAGCTGACTAAACAATGTATC ATAATGATGCTAGGGAT 915 ATCCCTAGCATCATTAT 916 Salt Tolerance GACACACTCTTCAGTCAACTGGATGTGACATCAGCACAGCTTCTT 917 P5CS GTAACAGATAATGACGCCAGAAGTCCAGAATTTAGAAAACAACTTA Cichorium intybus CTGAAACAGTCGATTCTTTATTATCTTATA Phe122Ala TATAAGATAATAAAGAATCGACTGTTTCAGTAAGTTGTTTTCTAAAT 918 TTC-GCC TCTGGACTTCTGGCGTCATTATCTGTTACAAGAAGCTGTGCTGAT GTCACATCCAGTTGACTGAAGAGTGTGTC ATAATGACGCCAGAAGT 919 ACTTCTGGCGTCATTAT 920 Salt Tolerance GATTCTTTGTTCAGTCAGTTGGATGTGACATCAGCTCAGCTTCTGG 921 P5CS TGACTGATAATGACGCTAGAGATCCAGATTTTAGGAGACAACTCA Lycopersicon ATGACACAGTAAATTCGTTGCTTTCTCTAA esculentum TTAGAGAAAGCAACGAATTTACTGTGTCATTGAGTTGTCTCCTAAA 922 Phe12BAla ATCTGGATCTCTAGCGTCATTATCAGTCACCAGAAGCTGAGCTGA TTT-GCT TGTCACATCCAACTGACTGAACAAAGAATC ATAATGACGCTAGAGAT 923 ATCTCTAGCGTCATTAT 924 Salt Tolerance GATACCATGTTCAGCCAGCTTGATGTGACTTCTTCCCAACTTCTTG 925 P5CS TGAATGATGGATTTGCTAGGGATGCTGGCTTCAGAAAACAACTTT Vigna unguiculata CGGACACAGTGAACGCGTTATTAGATTTAA Phe162Ala TTAAATCTAATAACGCGTTCACTGTGTCCGAAAGTTGTTTTCTGAA 926 TTT-GCT GCCAGCATCCCTAGCAAATCCATCATTCACAAGAAGTTGGGAAGA AGTCACATCAAGCTGGCTGAACATGGTATC ATGGATTTGCTAGGGAT 927 ATCCCTAGCAAATCCAT 928 Salt Tolerance GACACCTTGTTTAGTCAGTTGGATCTGACTGCTGCTCAGCTGCTT 929 P5CS GTGACGGACAACGACGCTAGAGATCCAAGTTTTAGAACACAACTA Mesembryanthemum ACTGAAACAGTGTATCAGTTGTTGGATCTAA crystallinum TTAGATCCAACAACTGATACACTGTTTCAGTTAGTTGTGTTCTAAA 930 Phe125Ala ACTTGGATCTCTAGCGTCGTTGTCCGTCACAAGCAGCTGAGCAGC TTT-GCT AGTCAGATCCAACTGACTAAACAAGGTGTC ACAACGACGCTAGAGAT 931 ATCTCTAGCGTCGTTGT 932 Salt Tolerance GACACATTATTTAGCCAGCTGGATGTGACATCAGCTCAGCTTCTT 933 P5CS GTGACTGATAATGATGCTAGGGATGAAGCTTTCCGAAATCAACTTA Vitis vinifera CTCAAACAGTGGATTCATTGTTAGCTTTGA Phe130Ala TCAAAGCTAACAATGAATCCACTGTTTGAGTAAGTTGATTTCGGAA 934 TTT-GCT AGCTTCATCCCTAGCATCATTATCAGTCACAAGAAGCTGAGCTGAT GTCACATCCAGCTGGCTAAATAATGTGTC ATAATGATGCTAGGGAT 935 ATCCCTAGCATCATTAT 936 Salt Tolerance GATACGCTGTTCACTCAGCTCGATGTGACATCGGCTCAGCTTCTT 937 P5CS GTGACGGATAACGATGCTCGAGATAAGGATTTCAGGAAGCAGCTT Vigna aconitifolia ACTGAGACTGTGAAGTCGCTGTTGGGGCTGA Phe129Ala TCAGCGCCAACAGCGACTTCACAGTCTCAGTAAGCTGCTTCCTGA 938 TTT-GCT AATCCTTATCTCGAGCATCGTTATCCGTCACAAGAAGCTGAGCCG ATGTCACATCGAGCTGAGTGAACAGCGTATC ATAACGATGCTCGAGAT 939 ATCTCGAGCATCGTTAT 940 Salt Tolerance AGAGATGTTCTTAGTTCCAAAGAAATCTCACCTCTCAGTTTCTCCG 941 HKT1 TCTTCACAACAGTTGTCACGTTTGCAAACTGCGGATTTGTCCCCAC Arabidopsis thaliana GAATGAGAACATGATCATCTTTCGCAAAA Ser207Val TTTTGCGAAAGATGATCATGTTCTCATTCGTGGGGACAAATCCGC 942 TCC-GTC AGTTTGCAAACGTGACAACTGTTGTGAAGACGGAGAAAGTGAGAG GTGAGATTTCTTTGGAACTAAGAACATCTCT CAACAGTTGTCACGTTT 943 AAACGTGACAACTGTTG 944 Salt Tolerance CGAATGAGAACATGATCATCTTTCGCAAAAACTCTGGTCTCATCTG 945 HKT1 GCTCCTAATCCCTCTAGTACTGATGGGAAACACTTTGTTCCCTTGC Arabidopsis thaliana TTCTTGGTTTTGCTCATATGGGGACTTTA Gln237Leu TAAAGTCCCCATATGAGCAAAACCAAGAAGCAAGGGAACAAAGTG 946 CAA-CTA TTTCCCATCAGTACTAGAGGGATTAGGAGCCAGATGAGACCAGAG TTTTTGCGAAAGATGATCATGTTCTCATTCG AATCCCTCTAGTACTGA 947 TCAGTACTAGAGGGATT 948 Salt Tolerance AGTCTCTAGAAGGAATGAGTTCGTACGAGAAGTTGGTTGGATCGT 949 HKT1 TGTTTCAAGTGGTGAGTTCGCGACACACCGGAGAAACTATAGTAG Arabidopsis thaliana ACCTCTCTACACTTTCCCCAGCTATCTTGGT Asn332Ser ACCAAGATAGCTGGGGAAAGTGTAGAGAGGTCTACTATAGTTTCT 950 AAT-AGT CCGGTGTGTCGCGAACTCACCACTTGAAACAACGATCCAACCAAC TTCTCGTACGAACTCATTCCTTCTAGAGACT AGTGGTGAGTTCGCGAC 951 GTCGCGAACTCACCACT 952 Salt Tolerance AGAGATGTGCTAAAGAAGAAAGGTCTCAAAATGGTGACCTTTTCC 953 HKT1 GTCTTCACCACCGTGGTGACCTTTGCCAGTTGTGGGTTTGTCCCG Eucalyptus ACCAATGAAAACATGATTATCTTCAGCAAAA camaldulensis TTTTGCTGAAGATAATCATGTTTTCATTGGTCGGGACAAACCCACA 954 Ser256Val ACTGGCAAAGGTCACCACGGTGGTGAAGACGGAAAAGGTCACCA TCG-GTG TTTTGAGACCTTTCTTCTTTAGCACATCTCT CCACCGTGGTGACCTTT 955 AAAGGTCACCACGGTGG 956 Salt Tolerance CCAATGAAAACATGATTATCTTCAGCAAAAACTCTGGCCTCCTCCT 957 HKT1 GATTCTCATCCCTCTGGCCCTTCTTGGGAACATGCTGTTCCCATC Eucalyptus GAGCCTACGTTTGACGCTTTGGCTCATCGG camaldulensis CCGATGAGCCAAAGCGTCAAACGTAGGCTCGATGGGAACAGCAT 958 Gln286Leu GTTCCCAAGAAGGGCCAGAGGGATGAGAATCAGGAGGAGGCCA CAG-CTG GAGTTTTTGCTGAAGATAATCATGTTTTCATTGG CATCCCTCTGGCCCTTC 959 GAAGGGCCAGAGGGATG 960 Salt Tolerance AATCGTTGAATGGACTAAGCTCCTGTGAGAAAATCGTGGGCGCGC 961 HKT1 TGTTTCAGTGCGTGAGCAGCAGACATACCGGCGAGACGGTCGTC Eucalyptus GATCTGTCCACAGTTGCTCCCGCCATCTTGGT camaldulensis ACCAAGATGGCGGGAGCAACTGTGGACAGATCGACGACCGTCTC 962 Asn381Ser GCCGGTATGTCTGCTGCTCACGCACTGAAACAGCGCGCCCACGA AAC-AGC TTTTCTCACAGGAGCTTAGTCCATTCAACGATT GTGCGTGAGCAGCAGAC 963 GTCTGCTG+E,un CTCACGCAC 964 Salt Tolerance AAAGCTCCACTGAAGAAGAAAGGGATCAACATTGCACTCTTCTCA 965 HKT1 TTCTCGGTCACGGTCGTCTCGTTTGCGAATGTGGGGCTCGTGCC Oryza sativa GACAAATGAGAACATGGCAATCTTCTCCAAGA Ser238Val TCTTGGAGAAGATTGCCATGTTCTCATTTGTCGGCACGAGCCCCA 966 TCC-GTC CATTCGCAAACGAGACGACCGTGACCGAGAATGAGAAGAGTGCA ATGTTGATCCCTTTCTTCTTCAGTGGAGCTTT TCACGGTCGTCTCGTTT 967 AAACGAGACGACCGTGA 968 Salt Tolerance CAAATGAGAACATGGCAATCTTCTCCAAGAACCCGGGCCTCCTCC 969 HKT1 TCCTGTTCATCGGCCTGATTGTTGCAGGCAATACACTTTACCCTCT Oryza sativa CTTCCTAAGGCTATTGATATGGTTCCTGGG Gln268Leu CCCAGGAACCATATCAATAGCCTTAGGAAGAGAGGGTAAAGTGTA 970 CAG-CTG TTGCCTGCAAGAATCAGGCCGATGAACAGGAGGAGGAGGCCCGG GTTCTTGGAGAAGATTGCCATGTTCTCATTTG CATCGGCCTGATTCTTG 971 CAAGAATCAGGCCGATG 972 Salt Tolerance CAGTCTTTGATGGACTCAGCTCTTACCAGAAGATTATCAATGCATT 973 HKT1 GTTCATGGCAGTGAGCGCAAGGCACTCGGGGGAGAACTCCATCG Oryza sativa ACTGCTCACTCATCGCCCCTGCTGTTCTAGT Asn363Ser ACTAGAACAGCAGGGGCGATGAGTGAGCAGTCGATGGAGTTCTC 974 AAC-AGC CCCCGAGTGCCTTGCGCTCACTGCCATGAACAATGCATTGATAAT CTTCTGGTAAGAGCTGAGTCCATCAAAGACTG GGCAGTGAGCGCAAGGC 975 GCCTTGCGCTCACTGCC 976 Salt Tolerance GTGCCCCACTGAACAAGAAAGGGATCAACATCGTGCTCTTCTCAC 977 HKT1 TATCAGTCACCGTTGTCTCCTGTGCGAATGCAGGACTCGTGCCCA Triticum aestivum CAAATGAGAACATGGTCATCTTCTCAAAGAA Ala240Val TTCTTTGAGAAGATGACCATGTTCTCATTTGTGGGCACGAGTCCT 978 GCC-GTC GCATTCGCACAGGAGACAACGGTGAGTGATAGTGAGAAGAGCAC GATGTTGATCCCTTTCTTGTTCAGTGGGGCAC CACCGTTGTCTCCTGTG 979 CACAGGAGACAACGGTG 980 Salt Tolerance CAAATGAGAACATGGTCATCTTCTCAAAGAATTCAGGCCTCTTGTT 981 HKT1 GCTGCTGAGTGGCCTGATGCTCGCAGGCAATACATTGTTCCCTCT Triticum aestivum CTTCCTGAGGCTACTGGTGTGGTTCCTGGG Gln270Leu CCCAGGAACCACACCAGTAGCCTCAGGAAGAGAGGGAACAATGT 982 CAG-CTG ATTGCCTGCGAGCATCAGGCCACTCAGCAGCAACAAGAGGCCTG AATTCTTTGAGAAGATGACCATGTTCTCATTTG GAGTGGCCTGATGCTCG 983 CGAGCATCAGGCCACTC 984 Salt Tolerance CAGTCTTTGATGGGCTCAGCTCTTATCAGAAGACTGTCAATGCATT 985 HKT1 CTTCATGGTGGTGAGTGCGAGGCACTCAGGGGAGAATTCCATCG Triticum aestivum ACTGCTCGCTCATGTCCCCTGCCATTATAGT Asn365Ser ACTATAATGGCAGGGGACATGAGCGAGCAGTCGATGGAATTCTCC 986 AAT-AGT CCTGAGTGCCTCGCACTCACCACCATGAAGAATGCATTGACAGTC TTCTGATAAGAGCTGAGCCCATCAAAGACTG GGTGGTGAGTGCGAGGC 987 GCCTCGCACTCACCACC 988 Freezing Tolerance TTTTTTTTGTTTTCGTTTTCAAAAAGAAAATCTTTGAATTTTATGGCA 989 praline oxidase ACCGGTCTTCTCTGAACAAACTTTATCCGGCGATCTTACCGTTTAG precursor CCGCTTTTAGCCCGGTGGGTCCTCCCA Arabidopsis thaliana TGGGAGGACCCACCGGGCTAAAAGCGGGTAAACGGTAAGATCGC 990 Arg7Term GGGATAAAGTTTGTTCAGAGAAGACGGGTTGCCATAAAATTCAAA CGA-TGA GATTTTGTTTTTGAAAACGAAAACAAAAAAAA GTCTTCTCTGAACAAAC 991 GTTTGTTCAGAGAAGAC 992 Freezing Tolerance TCAAAAACAAAATCTTTGAATTTTATGGCAACCCGTCTTCTCAGAA 993 proline oxidase CAAACTTTATCCGGTGATCTTACCGTTTACCGGCTTTTAGCCCGGT precursor GGGTCCTCCCACCGTGACTGCTTCCACCG Arabidopsis thaliana CGGTGGAAGCAGTCACGGTGGGAGGACCCAGCGGGCTAAAAGC 994 Arg13Term GGGTAAACGGTAAGATCACCGGATAAAGTTTGTTCTGAGAAGACG CGA-TGA GGTTGCCATAAAATTCAAAGATTTTGTTTTTGA TTATCCGGTGATCTTAC 995 GTAAGATCACCGGATAA 996 Freezing Tolerance AAAATCTTTGAATTTTATGGCAACCCGTCTTCTCCGAACAAACTTT 997 praline oxidase ATCCGGCGATCTTAGCGTTTACCCGCTTTTAGCCCGGTGGGTCCT precursor CCCACCGTGACTGCTTCCACCGCCGTCGTC Arabidopsis thaliana GACGACGGCGGTGGAAGCAGTCACGGTGGGAGGACCCACCGGG 998 Tyr15Term CTAAAAGCGGGTAAACGCTAAGATCGCCGGATAAAGTTTGTTCGG TAG-TAG AGAAGAGGGGTTGCCATAAAATTCAAAGATTTT CGATCTTAGCGTTTACC 999 GGTAAACGCTAAGATCG 1000 Freezing Tolerance CTTTGAATTTTATGGCAACCCGTCTTCTCCGAACAAACTTTATCCG 1001 praline oxidase GCGATCTTACCGTTAACCCGCTTTTAGCCCGGTGGGTCCTCCCAC precursor CGTGACTGCTTCCACCGCCGTCGTCCCGGA Arabidopsis thaliana TCCGGGACGACGGCGGTGGAAGCAGTCACGGTGGGAGGACCCA 1002 Leu17Term CCGGGCTAAAAGCGGGTTAACGGTAAGATCGGCGGATAAAGTTT TTA-TAA GTTCGGAGAAGACGGGTTGCCATAAAATTCAAAG TTACCGTTAACCCGCTT 1003 AAGCGGGTTAACGGTAA 1004 Freezing Tolerance CCGGTGGGTCCTCCCACCGTGACTGCTTCCAGCGCCGTGGTCCC 1005 proline oxidase GGAGATTCTCTCCTTTTGACAACAAGCACCGGAACCACCTCTTCA precursor CCACCCAAAACCCACCGAGCAATCTCACGATG Arabidopsis thaliana CATCGTGAGATTGCTCGGTGGGTTTTGGGTGGTGAAGAGGTGGT 1006 Gly42Term TCCGGTGCTTGTTGTCAAAAGGAGAGAATCTCCGGGACGACGGC GGA-TGA GGTGGAAGCAGTCACGGTGGGAGGACCCACCGG TCTCCTTTTGACAACAA 1007 TTGTTGTCAAAAGGAGA 1008 Lead Tolerance ACATGAAGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCT 1009 cyclic nucleotide- AAACTATGAATTTCTGACAAGAGAAGTTTGTAAGGTCAGTGTTCCA regulated ion channel GATTTGTCTCATTGAATTCTAAGTCGTGA Arabidopsis thaliana TCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGACCTTAC 1010 Arg4Term AAACTTCTCTTGTCAGAAATTCATAGTTTGAGACTAATAAGATTCAA CGA-TGA TACAAACAGAGATTTCACTGCTTCATGT TGAATTTCTGACAAGAG 1011 CTCTTGTCAGAAATTCA 1012 Lead Tolerance TGAAGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAA 1013 cyclic nucleotide- CTATGAATTTCCGATAAGAGAAGTTTGTAAGGTCAGTGTTCCAGAT regulated ion channel TTGTCTCATTGAATTCTAAGTCGTGAAGC Arabidopsis thaliana GCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGACCT 1014 Gln5Term TACAAACTTCTCTTATCGGAAATTCATAGTTTGAGACTAATAAGATT CAA-TAA CAATACAAACAGAGATTTCACTGCTTCA ATTTCCGATAAGAGAAG 1015 CTTCTCTTATCGGAAAT 1016 Lead Tolerance AGCAGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAACTAT 1017 cyclic nucleotide- GAATTTCCGACAATAGAAGTTTGTAAGGTCAGTGTTCCAGATTTGT regulated ion channel CTCATTGAATTCTAAGTCGTGAAGCTTA Arabidopsis thaliana TAAGCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACACTGA 1018 Glu6Term CCTTACAAACTTCTATTGTCGGAAATTCATAGTTTGAGACTAATAA GAG-TAG GATTCAATACAAACAGAGATTTCACTGCT TCCGACAATAGAAGTTT 1019 AAACTTCTATTGTCGGA 1020 Lead Tolerance AGTGAAATCTCTGTTTGTATTGAATCTTATTAGTCTCAAACTATGAA 1021 cyclic nucleotide- TTTCCGACAAGAGTAGTTTGTAAGGTCAGTGTTCCAGATTTGTCTC regulated ion channel ATTGAATTCTAAGTCGTGAAGCTTAATT Arabidopsis thaliana AATTAAGCTTCACGACTTAGAATTCAATGAGACAAATCTGGAACAC 1022 Lys7Term TGACCTTACAAACTACTCTTGTCGGAAATTCATAGTTTGAGACTAA AAG-TAG TAAGATTCAATACAAACAGAGATTTCACT GACAAGAGTAGTTTGTA 1023 TACAAACTACTCTTGTC 1024 Lead Tolerance CATTGAATTCTAAGTCGTGAAGCTTAATTCGATTCTTCTTCACTTTC 1025 cyclic nucleotide- TCGGATCAGGTTTTAAGATTGGAAGTCGGATAAGACTTCCTCCGA regulated ion channel CGTGGAATATTCCGGTAAAAACGAGATTC Arabidopsis thaliana GAATCTCGTTTTTACCGGAATATTCCACGTCGGAGGAAGTCTTATC 1026 Gln12Term CGACTTCCAATCTTAAAACCTGATCCGAGAAAGTGAAGAAGAATC CAA-TAA GAATTAAGCTTCACGACTTAGAATTCAATG TCAGGTTTTAAGATTGG 1027 CCAATCTTAAAACCTGA 1028 Lead Tolerance TGGAAGTCAATCCCCCACGTTGAGCAGGTTGATGCATTGGGTAAA 1029 cyclic nucleotide- GTTATGAATCACCGCTAAGACGAGTTTGTGAGGTTTCAGGATTGG gated calmodulin- AAATCAGAGAGAAGCTCTGAGGGAAATTTTC binding ion channel GAAAATTTCCCTCAGAGCTTCTCTCTGATTTCCAATCCTGAAACCT 1030 (CBP4) CACAAACTCGTCTTAGCGGTGATTCATAACTTTAGCCAATGCATCA Nicotiana Tabacum ACCTGCTCAACGTGGGGGATTGACTTCCA Gln5Term ATCACCGCTAAGACGAG 1031 CAA-TAA CTCGTCTTAGCGGTGAT 1032 Lead Tolerance TCAATCCCCCACGTTGAGCAGGTTGATGCATTGGCTAAAGTTATG 1033 cyclic nucleotide- AATCACCGCCAAGACTAGTTTGTGAGGTTTCAGGATTGGAAATCA gated calmodulin- GAGAGAAGCTCTGAGGGAAATTTTCATGCTA binding ion channel TAGCATGAAAATTTCCCTCAGAGCTTCTCTCTGATTTCCAATCCTG 1034 (CBP4) AAACCTCACAAACTAGTCTTGGCGGTGATTCATAACTTTAGCCAAT Nicotiana Tabacum GCATCAACCTGCTCAACGTGGGGGATTGA Gly7Term GCCAAGACTAGTTTGTG 1035 GAG-TAG CACAAACTAGTCTTGGC 1036 Lead Tolerance GAGCAGGTTGATGCATTGGCTAAAGTTATGAATCACCGCCAAGAC 1037 cyclic nucleotide- GAGTTTGTGAGGTTTTAGGATTGGAAATCAGAGAGAAGCTCTGAG gated calmodulin- GGAAATTTTCATGCTAAAGGTGGAGTCCACC binding ion channel GGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGAGCTTCTCTC 1038 (CBP4) TGATTTCCAATCCTAAAACCTCACAAACTCGTCTTGGCGGTGATTC Nicotiana Tabacum ATAACTTTAGCCAATGCATCAACCTGCTC Gln12Term TGAGGTTTTAGGATTGG 1039 CAG-TAG CCAATCCTAAAACCTCA 1040 Lead Tolerance TGATGCATTGGCTAAAGTTATGAATCACCGCCAAGACGAGTTTGT 1041 cyclic nucleotide- GAGGTTTCAGGATTGTAAATCAGAGAGAAGCTCTGAGGGAAATTT gated calmodulin- TCATGCTAAAGGTGGAGTCCACCGAAGTAAA binding ion channel TTTACTTCGGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGAG 1042 (CBP4) CTTCTCTCTGATTTACAATCCTGAAACCTCACAAACTCGTCTTGGC Nicotiana Tabacum GGTGATTCATAACTTTAGCCAATGCATCA Trp14Term CAGGATTGTAAATCAGA 1043 TGG-TGA TCTGATTTACAATCCTG 1044 Lead Tolerance GATGCATTGGCTAAAGTTATGAATCACCGCCAAGACGAGTTTGTG 1045 cyclic nucleotide- AGGTTTCAGGATTGGTAATCAGAGAGAAGCTGTGAGGGAAATTTT gated calmoduin- CATGCTAAAGGTGGAGTCCACCGAAGTAAAG binding ion channel CTTTACTTCGGTGGACTCCACCTTTAGCATGAAAATTTCCCTCAGA 1046 (CBP4) GCTTCTCTCTGATTACCAATCCTGAAACCTCACAAACTCGTCTTGG Nicotiana Tabacum CGGTGATTCATAACTTTAGCCAATGCATC Lys15Term AGGATTGGTAATCAGAG 1047 AAA-TAA CTCTGATTACCAATCCT 1048 Lead Tolerance CTTGAAGAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGG 1049 calmoduin binding TGGAGATAATGATGTAAAGAGAGGACAGATATGTTAGATTTCAGG transport protein ACTGCAAATCAGAGCAATCTGTTATCTCAG Hordeum vulgare CTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATGTAACATA 1050 Glu2Term TCTGTCCTCTCTTTACATCATTATCTCCACCAGGCGAACAGTTAGC GAA-TAA AGCTAAGAGTGGTAGATCAATTCTTCAAG TAATGATGTAAAGAGAG 1051 CTCTCTTTACATCATTA 1052 Lead Tolerance GAAGAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTG 1053 calmodulin binding GAGATAATGATGGAATGAGAGGACAGATATGTTAGATTTCAGGAC transport protein TGCAAATCAGAGCAATCTGTTATCTCAGAGA Hordeum vulgare TCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATCTAAC 1054 Arg3Term ATATCTGTCCTCTCATTCCATCATTATCTCCACCAGGCGAACAGTT AGA-TGA AGCAGCTAAGAGTGGTAGATCAATTCTTC TGATGGAATGAGAGGAC 1055 GTCCTCTCATTCCATCA 1056 Lead Tolerance GAATTGATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAG 1057 calmodulin binding ATAATGATGGAAAGATAGGACAGATATGTTAGATTTCAGGACTGC transport protein AAATCAGAGCAATCTGTTATCTCAGAGAACG Hordeum vulgare CGTTCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTGAAATCT 1058 Glu4Term AACATATCTGTCCTATCTTTCCATCATTATCTCCACCAGGCGAACA GAG-TAG GTTAGCAGCTAAGAGTGGTAGATCAATTC TGGAAAGATAGGACAGA 1059 TCTGTCCTATCTTTCCA 1060 Lead Tolerance ATCTACCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAGATAATG 1061 calmodulin binding ATGGAAAGAGAGGACTGATATGTTAGATTTCAGGACTGCAAATCA transport protein GAGCAATCTGTTATCTCAGAGAACGCAGTTT Hordeum vulgare AAACTGCGTTCTCTGAGATAACAGATTGCTCTGATTTGCAGTCCTG 1062 Arg6Term AAATCTAACATATCAGTCCTCTCTTTCCATCATTATCTCCACCAGG AGA-TGA CGAACAGTTAGCAGCTAAGAGTGGTAGAT GAGAGGACTGATATGTT 1063 AACATATCAGTCCTCTC 1064 Lead Tolerance CCACTCTTAGCTGCTAACTGTTCGCCTGGTGGAGATAATGATGGA 1065 calmodulin binding AAGAGAGGACAGATAGGTTAGATTTCAGGAGTGCAAATCAGAGCA transport protein ATCTGTTATCTCAGAGAACGCAGTTTCACCA Hordeum vulgare TGGTGAAACTGCGTTCTCTGAGATAACAGATTGCTCTGATTTGCA 1066 Tyr7Term GTCCTGAAATCTAACCTATCTGTCCTCTCTTTCCATCATTATCTCCA TAT-TAG CCAGGCGAACAGTTAGCAGCTAAGAGTGG GACAGATAGGTTAGATT 1067 AATCTAACCTATCTGTC 1068 2,4-DB resistance ATCCTTCTCTGAGAAAAAACAACAGATCCGAATTTTATCTTTAATCA 1069 3-ketoacyl-CoA GCCGGAAAAAATGTAGAAAGCGATCGAGAGACAACGCGTTCTTCT thiolase TGAGCATCTCCGACCTTCTTCTTCTTCTT Arabidopsis thaliana AAGAAGAAGAAGAAGGTCGGAGATGCTCAAGAAGAACGCGTTGT 1070 Glu2Term CTCTCGATCGCTTTCTACATTTTTTCCGGCTGATTAAAGATAAAATT GAG-TAG CGGATCTGTTGTTTTTTCTCAGAGAAGGAT AAAAAATGTAGAAAGCG 1071 CGCTTTCTACATTTTTT 1072 2,4-DB resistance CTTCTCTGAGAAAAAACAACAGATCCGAATTTTATCTTTAATCAGC 1073 3-ketoacyl-CoA CGGAAAAAATGGAGTAAGCGATCGAGAGACAACGCGTTCTTCTTG thiolase AGCATCTCCGACCTTCTTCTTCTTCTTCGC Arabidopsis thaliana GCGAAGAAGAAGAAGAAGGTCGGAGATGCTCAAGAAGAACGCGT 1074 Lys3Term TGTCTCTCGATCGCTTACTCCATTTTTTCCGGCTGATTAAAGATAA AAA-TAA AATTCGGATCTGTTGTTTTTTCTCAGAGAAG AAATGGAGTAAGCGATC 1075 GATCGCTTACTCCATTT 1076 2,4-DB resistance GAAAAAACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAA 1077 3-ketoacyl-CoA TGGAGAAAGCGATCTAGAGACAACGCGTTCTTCTTGAGCATCTCC thiolase GACCTTCTTCTTCTTCTTCGCACAATTACG Arabidopsis thaliana CGTAATTGTGCGAAGAAGAAGAAGAAGGTCGGAGATGCTCAAGA 1078 Glu6Term AGAACGCGTTGTCTCTAGATCGCTTTCTCCATTTTTTCCGGCTGAT GAG-TAG TAAAGATAAAATTCGGATCTGTTGTTTTTTC AAGCGATCTAGAGACAA 1079 TTGTCTCTAGATCGCTT 1080 2,4-DB resistance AAAACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAATGG 1081 3-ketoacyl-CoA AGAAAGCGATCGAGTGACAACGCGTTCTTCTTGAGCATCTCCGAC thiolase CTTCTTCTTCTTCTTCGCACAATTACGAGG Arabidopsis thaliana CCTCGTAATTGTGGGAAGAAGAAGAAGAAGGTCGGAGATGCTCAA 1082 Arg7Term GAAGAACGCGTTGTCACTCGATCGCTTTCTCCATTTTTTCCGGCT AGA-TGA GATTAAAGATAAAATTCGGATCTGTTGTTTT CGATCGAGTGACAACGC 1083 GCGTTGTCACTCGATCG 1084 2,4-DB resistance ACAACAGATCCGAATTTTATCTTTAATCAGCCGGAAAAAATGGAGA 1085 3-ketoacyl-CoA AAGCGATCGAGAGATAACGCGTTCTTCTTGAGCATCTCCGACCTT thiolase CTTCTTCTTCTTCGCACAATTACGAGGCTT Arabidopsis thaliana AAGCCTCGTAATTGTGCGAAGAAGAAGAAGAAGGTCGGAGATGC 1086 Gln8Term TCAAGAAGAACGCGTTATCTCTCGATCGCTTTCTCCATTTTTTCCG CAA-TAA GCTGATTAAAGATAAAATTCGGATCTGTTGT TCGAGAGATAACGCGTT 1087 AACGCGTTATCTCTCGA 1088 2,4-DB resistance GAGAGACAAAGAGTTCTTCTTGAACATCTCCGTCCTTCTTCTTCTT 1089 glyoxysomal beta- CCTCTCACAGCTTTTAAGGCTCTCTCTCTGCTTCAGCTTGCTTGGC ketoacyol-thiolase TGGGGACAGTGCTGCGTATCAGAGGACCT precursor AGGTCGTCTGATACGCAGCACTGTCCCCAGCCAAGCAAGCTGAA 1090 Brassica napus GCAGAGAGAGAGCCTTAAAAGCTGTGAGAGGAAGAAGAAGAAGG Glu26Term ACGGAGATGTTCAAGAAGAACTCTTTGTCTCTC GAA-TAA ACAGCTTTTAAGGCTCT 1091 AGAGCCTTAAAAGCTGT 1092 2,4-DB resistance TTGAACATCTCCGTCCTTCTTCTTCTTCCTCTCACAGCTTTGAAGG 1093 glyoxysomal beta- CTCTCTCTCTGCTTGAGCTTGCTTGGCTGGGGACAGTGCTGCGTA ketoacyol-thiolase TCAGAGGACCTCTCTCTATGGAGATGATGT precursor ACATCATCTCCATAGAGAGAGGTCCTCTGATACGCAGCACTGTCC 1094 Brassica napus CCAGCCAAGCAAGCTCAAGCAGAGAGAGAGCCTTCAAAGCTGTG Ser32Term AGAGGAAGAAGAAGAAGGACGGAGATGTTCAA TCA-TGA CTCTGCTTGAGCTTGCT 1095 AGCAAGCTCAAGCAGAG 1096 2,4-DB resistance TCTCCGTCCTTCTTCTTCTTCCTCTCACAGCTTTGAAGGCTCTCTC 1097 glyoxysomal beta- TCTGCTTCAGCTTGATTGGCTGGGGACAGTGCTGCGTATCAGAG ketoacyol-thiolase GACCTCTCTCTATGGAGATGATGTAGTCATT precursor AATGACTACATCATCTCCATAGAGAGAGGTCCTCTGATACGCAGC 1098 Brassica napus ACTGTCCCCAGCCAATCAAGCTGAAGCAGAGAGAGAGCCTTCAAA Cys34Term GCTGTGAGAGGAAGAAGAAGAAGGACGGAGA TGC-TGA TCAGCTTGATTGGCTGG 1099 CCAGCCAATCAAGCTGA 1100 2,4-DB resistance TCCGTCCTTCTTCTTGTTCCTCTCACAGCTTTGAAGGCTCTCTCTC 1101 glyoxysomal beta- TGCTTCAGCTTGCTAGGCTGGGGACAGTGCTGCGTATCAGAGGA ketoacyol-thiolase CCTCTCTCTATGGAGATGATGTAGTCATTGT precursor ACAATGACTACATCATCTCCATAGAGAGAGGTCGTCTGATACGCA 1102 Brassica napus GCACTGTCCCCAGCCTAGCAAGCTGAAGCAGAGAGAGAGCCTTC Leu35Term AAAGCTGTGAGAGGAAGAAGAAGAAGGACGGA TTG-TAG AGCTTGCTAGGCTGGGG 1103 CCCCAGCCTAGCAAGCT 1104 2,4-DB resistance TCACAGCTTTGAAGGCTCTCTCTCTGCTTCAGCTTGCTTGGCTGG 1105 glyoxysomal beta- GGACAGTGCTGCGTAGCAGAGGACCTCTCTCTATGGAGATGATGT ketoacyol-thiolase AGTCATTGTTGCGGCACATAGGACTGCACTA precursor TAGTGCAGTCCTATGTGCCGCAACAATGACTACATCATCTCCATA 1106 Brassica napus GAGAGAGGTCGTCTGCTACGCAGCACTGTCCCCAGCCAAGCAAG Tyr42Term CTGAAGCAGAGAGAGAGCCTTCAAAGCTGTGA TAT-TAG GCTGCGTAGCAGAGGAC 1107 GTCCTCTGCTACGCAGC 1108 2,4-DB resistance CAACAGACAGGAAGTGTTGCTCCAGCATCTCCGCCCTTCTAATTC 1109 3-ketoacyl-CoA TTCTTCTCACAATTAGee GAGTCCGCTCTTGCCGCATCAGTATGTGCT thiolase B GCAGGGGATAGCGCCGCATATCATAGGGCT Mangifera indica AGCCCTATGATATGCGGCGCTATCCCCTGCAGCACATACTGATGC 1110 Tyr25Term GGCAAGAGCGGACTCCTAATTGTGAGAAGAAGAATTAGAAGGGC TAC-TAG GGAGATGCTGGAGCAACACTTGCTGTCTGTTG CACAATTAGGAGTCCGC 1111 GCGGACTCCTAATTGTG 1112 2,4-DB resistance AACAGACAGCAAGTGTTGCTCCAGCATCTCCGCCCTTCTAATTCTT 1113 3-ketoacyol-CoA CTTCTCACAATTACTAGTCCGCTCTTGCCGCATCAGTATGTGCTGC thiolase B AGGGGATAGCGCCGCATATCATAGGGCTT Magnifera indica AAGCCCTATGATATGCGGCGCTATCCCCTGCAGCACATACTGATG 1114 Glu26Term CGGCAAGAGCGGACTAGTAATTGTGAGAAGAAGAATTAGAAGGG GAG-TAG CGGAGATGCTGGAGCAACACTTGCTGTCTGTT ACAATTACTAGTCCGCT 1115 AGCGGACTAGTAATTGT 1116 2,4-DB resistance TCCAGCATCTCCGCCCTTCTAATTCTTCTTCTCACAATTACGAGTC 1117 3-ketoacy\to-CoA CGCTCTTGCCGCATGAGTATGTGCTGCAGGGGATAGCGCCGCAT thioblase B ATCATAGGGCTTCTGTTTATGGAGACGATGT Mangifera indica ACATCGTCTCCATAAACAGAAGCCCTATGATATGCGGCGCTATCC 1118 Ser32Term CCTGCAGCACATACTCATGCGGCAAGAGCGGACTCGTAATTGTGA TCA-TGA GAAGAAGAATTAGAAGGGCGGAGATGCTGGA TGCCGCATGAGTATGTG 1119 CACATACTCATGCGGCA 1120 2,4-DB resistance TCTCCGCCCTTCTAATTCTTCTTCTCACAATTACGAGTCCGCTCTT 1121 3-ketoacyl-CoA GCCGCATCAGTATGAGCTGCAGGGGATAGCGCCGGATATCATAG thiolase B GGCTTCTGTTTATGGAGACGATGTGGTGATT Mangifera indica AATCACCACATCGTCTCCATAAACAGAAGCCCTATGATATGCGGC 1122 Cys34Term GCTATCCCCTGCAGCTCATACTGATGCGGCAAGAGCGGACTCGT TGT-TGA AATTGTGAGAAGAAGAATTAGAAGGGCGGAGA TCAGTATGAGCTGCAGG 1123 CCTGCAGCTCATACTGA 1124 2,4-DB resistance TCACAATTACGAGTCCGCTCTTGCCGCATCAGTATGTGCTGCAGG 1125 3-ketoacyl-CoA GGATAGCGCCGCATAGCATAGGGCTTGTGTTTATGGAGACGATGT thiolase B GGTGATTGTGGCAGGTCATCGTACTGCACTT Mangifera indica AAGTGCAGTAGGATGAGCTGCCACAATCACCACATCGTCTCCATA 1126 Tyr42Term AACAGAAGCCCTATGCTATGCGGCGCTATCCCCTGCAGCACATAC TAT-TAG TGATGCGGCAAGAGCGGACTCGTAATTGTGA GCCGCATAGCATAGGGC 1127 GCCCTATGCTATGCGGC 1128 2,4-DB resistance GAAGGCGATCAACAGGCAGAGCATTTTGCTACATCATCTCCGGCC 1129 3-ketoacyl-CoA TTCTTCTTCCGCTTAGACAAATGAATCTTCGCTCTCTGCATCGGTT thiolase TGTGCAGCTGGGGATAGTGCTTCGTATCAA Cucumis sativus TTGATACGAAGCACTATCCCCAGCTGCACAAACCGATGCAGAGAG 1130 Tyr22Term CGAAGATTCATTTGTCTAAGCGGAAGAAGAAGGCCGGAGATGATG TAG-TAG TAGCAAAATGCTCTGGCTGTTGATCGCCTTC TCCGCTTAGACAAATGA 1131 TCATTTGTCTAAGCGGA 1132 2,4-DB resistance ATCAACAGGCAGAGCATTTTGCTACATCATCTCCGGCCTTCTTCTT 1133 3-ketoacyl-CoA CCGCTTACACAAATTAATCTTCGCTCTCTGCATCGGTTTGTGCAGC thiolase TGGGGATAGTGCTTCGTATCAAAGGACAT Cucumis sativus ATGTCCTTTGATACGAAGCAGTATCCCCAGCTGCACAAACCGATG 1134 Glu25Term CAGAGAGCGAAGATTAATTTGTGTAAGCGGAAGAAGAAGGCCGG GAA-TAA AGATGATGTAGCAAAATGCTCTGCCTGTTGAT ACACAAATTAATCTTCG 1135 CGAAGATTAATTTGTGT 1136 2,4-DB resistance GGCAGAGCATTTTGCTACATCATCTCCGGCCTTCTTCTTCCGCTTA 1137 3-ketoacyl-CoA CACAAATGAATCTTAGCTCTCTGCATCGGTTTGTGCAGCTGGGGA thiolase TAGTGCTTCGTATCAAAGGACATCGGTGTT Cucumis sativus AACACCGATGTCCTTTGATACGAAGCACTATCCCCAGCTGCACAA 1138 Ser27Term ACCGATGCAGAGAGCTAAGATTCATTTGTGTAAGCGGAAGAAGAA TCG-TAG GGCCGGAGATGATGTAGCAAAATGCTCTGCC TGAATCTTAGCTCTCTG 1139 CAGAGAGCTAAGATTCA 1140 2,4-DB resistance TGCTACATCATCTCCGGCCTTCTTCTTCCGCTTACACAAATGAATC 1141 3-ketoacyl-CoA TTCGCTCTCTGCATAGGTTTGTGCAGCTGGGGATAGTGCTTCGTA thiolase TCAAAGGACATCGGTGTTTGGAGATGATGT Cucumis sativus ACATCATCTCCAAACACCGATGTCCTTTGATACGAAGCACTATCCC 1142 Ser31Term CAGCTGCACAAACCTATGCAGAGAGCGAAGATTCATTTGTGTAAG TCG-TAG CGGAAGAAGAAGGCCGGAGATGATGTAGCA CTCTGCATAGGTTTGTG 1143 CACAAACCTATGCAGAG 1144 2,4-DB resistance TCATCTCCGGCCTTCTTCTTCCGCTTACACAAATGAATCTTCGCTC 1145 3-ketoacyl-CoA TCTGCATCGGTTTGAGCAGCTGGGGATAGTGCTTCGTATCAAAGG thiolase ACATCGGTGTTTGGAGATGATGTCGTGATT Cucumis sativus AATCACGACATCATCTCCAAACACCGATGTCCTTTGATACGAAGCA 1146 Cys33Term CTATCCCCAGCTGCTCAAACCGATGCAGAGAGCGAAGATTCATTT TGT-TGA GTGTAAGCGGAAGAAGAAGGCCGGAGATGA TCGGTTTGAGCAGCTGG 1147 CCAGCTGCTCAAACCGA 1148 2A-DB resistance GAAGGCAATCAACAGGCAGAGCATTCTGCTACATCATCTCCGGCC 1149 3-ketoacyl-CoA TTCATCTTCGGCTTAGACCCATGAATCTTCGCTCTCTGCATCGGTT thiolase TGTGCAGCTGGGGATAGTGCGTCGTATCAA Cucurbita sp. TTGATACGACGCACTATCCCCAGCTGCACAAACCGATGCAGAGAG 1150 Tyr22Term CGAAGATTCATGGCTCTAAGCCGAAGATGAAGGCCGGAGATGAT TAT-TAG GTAGCAGAATGCTCTGCCTGTTGATTGCCTTC TCGGCTTAGAGCCATGA 1151 TCATGGCTCTAAGCCGA 1152 2,4-DB resistance ATCAACAGGCAGAGCATTCTGCTACATCATCTCCGGCCTTCATCTT 1153 3-ketoacyl-CoA CGGCTTATAGCCATTAATCTTCGCTCTCTGCATCGGTTTGTGCAGC thiolase TGGGGATAGTGCGTCGTATCAAAGAACGT Cucurbita sp. ACGTTCTTTGATACGACGCACTATCCCCAGCTGCACAAACCGATG 1154 Glu25Term CAGAGAGCGAAGATTAATGGCTATAAGCCGAAGATGAAGGCCGG GAA-TAA AGATGATGTAGCAGAATGCTCTGCCTGTTGAT ATAGCCATTAATCTTCG 1155 CGAAGATTAATGGCTAT 1156 2,4-DB resistance GGCAGAGCATTCTGCTACATCATCTCCGGCCTTCATCTTCGGCTT 1157 3-ketoacyl-CoA ATAGCCATGAATCTTAGCTCTCTGCATCGGTTTGTGCAGCTGGGG thiolase ATAGTGCGTCGTATCAAAGAACGTCGGTGTT Cucurbita sp. AACACCGACGTTCTTTGATACGACGCACTATCCCCAGCTGCACAA 1158 Ser27Term ACCGATGCAGAGAGCTAAGATTCATGGCTATAAGCCGAAGATGAA TCG-TAG GGCCGGAGATGATGTAGCAGAATGCTCTGCC TGAATCTTAGCTCTCTG 1159 CAGAGAGCTAAGATTCA 1160 2,4-DB resistance TGCTACATCATCTCCGGCCTTCATCTTCGGCTTATAGCCATGAATC 1161 3-ketoacyl-CoA TTCGCTCTCTGCATAGGTTTGTGCAGCTGGGGATAGTGCGTCGTA thiolase TCAAAGAACGTCGGTGTTTGGAGATGATGT Cucurbita sp. ACATCATCTCCAAACACCGACGTTCTTTGATACGACGCACTATCCC 1162 Ser31Term CAGCTGCACAAACCTATGCAGAGAGCGAAGATTCATGGCTATAAG TCG-TAG CCGAAGATGAAGGCCGGAGATGATGTAGCA CTCTGCATAGGTTTGTG 1163 CACAAACCTATGCAGAG 1164 2,4-DB resistance TCATCTCCGGCCTTCATCTTCGGCTTATAGCCATGAATCTTCGCTC 1165 3-ketoacyl-CoA TCTGCATCGGTTTGAGCAGCTGGGGATAGTGCGTCGTATCAAAGA thiolase ACGTCGGTGTTTGGAGATGATGTCGTGATA Cucurbita sp. TATCACGACATCATCTCCAAACACCGACGTTCTTTGATACGACGCA 1166 Cys33Term CTATCCCCAGCTGCTCAAACCGATGCAGAGAGCGAAGATTCATGG TGT-TGA CTATAAGCCGAAGATGAAGGCCGGAGATGA TCGGTTTGAGCAGCTGG 1167 CCAGCTGCTCAAACCGA 1168 2,4 DB resistance TCATAGTCTCTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTG 1169 Pex14 CTATGGCAACTCATTAGCAAACGCAACCTCCTTCCGATTTTCCCGC Arabidopsis thaliana TCTTGCCGATGAAAATTCCCAGATTCCAG Gln5Term CTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAAAATCGGAA 1170 CAG-TAG GGAGGTTGCGTTTGCTAATGAGTTGCCATAGCAGCTCACTAACCT TGGAAGAATCCAAGCGGCAAAAGAGACTATGA CAACTCATTAGCAAACG 1171 CGTTTGCTAATGAGTTG 1172 2,4 DB resistance TAGTCTCTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTGCTA 1173 Pex14 TGGCAACTCATCAGTAAACGCAACCTCCTTCCGATTTTCCCGCTCT Arabidopsis thaliana TGCCGATGAAAATTCCCAGATTGCAGGTT Gln6Term AACCTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAAAATCGG 1174 CAA-TAA AAGGAGGTTGCGTTTACTGATGAGTTGCCATAGCAGCTCACTAAC CTTGGAAGAATCCAAGCGGCAAAAGAGACTA CTCATCAGTAAACGCAA 1175 TTGCGTTTACTGATGAG 1176 2,4 DB resistance CTTTTGCCGCTTGGATTCTTCCAAGGTTAGTGAGCTGCTATGGCA 1177 Pex14 ACTCATCAGCAAACGTAACCTCCTTCCGATTTTCCCGCTCTTGCCG Arabidopsis thaliana ATGAAAATTCCGAGATTCCAGGTTCAATTT Gln8Term AAATTGAACCTGGAATCTGGGAATTTTCATCGGCAAGAGCGGGAA 1178 CAA-TAA AATCGGAAGGAGGTTACGTTTGCTGATGAGTTGCCATAGCAGCTC ACTAACCTTGGAAGAATCCAAGCGGCAAAAG AGCAAACGTAACCTCCT 1179 AGGAGGTTACGTTTGCT 1180 2,4 DB resistance GCTGCTATGGCAACTGATGAGCAAACGCAACCTCCTTCCGATTTT 1181 Pex14 CCCGCTCTTGCCGATTAAAATTCCCAGATTCCAGGTTCAATTTACA Arabidopsis thaliana CCTTCTAATCATTATTTCTTAATTTTTCTT Glu19Term AAGAAAAATTAAGAAATAATGATTAGAAGGTGTAAATTGAACCTGG 1182 GAA-TAA AATCTGGGAATTTTAATCGGCAAGAGCGGGAAAATCGGAAGGAG GTTGCGTTTGCTGATGAGTTGCCATAGCAGC TTGCCGATTAAAATTCC 1183 GGAATTTTAATCGGCAA 1184 2,4 DB resistance GCAACTCATCAGCAAACGCAACCTCCTTCCGATTTTCCCGCTCTT 1185 Pex14 GCCGATGAAAATTCCTAGATTCCAGGTTCAATTTACACCTTCTAAT Arabidopsis thaliana CATTATTTCTTAATTTTTCTTTGGTGGATT Gln22Term AATCCACCAAAGAAAAATTAAGAAATAATGATTAGAAGGTGTAAAT 1186 CAG-TAG TGAACCTGGAATCTAGGAATTTTCATCGGCAAGAGCGGGAAAATC GGAAGGAGGTTGCGTTTGCTGATGAGTTGC AAAATTCCTAGATTCCA 1187 TGGAATCTAGGAATTTT 1188
EXAMPLE 8 Production of Albino Mutants for the Analysis of Photosynthetic Processes[0132] Plant productivity is limited by resources available and the ability of plants to harness these resources. The conversion of light to chemical energy, which is then used to synthesize carbohydrates, fatty acids, sugars, amino acids and other compounds, requires a complex system which combines the light harvesting apparatus of pigments and proteins. The value of light energy to the plant can only be realized when it is efficiently converted into chemical energy by photosynthesis and fed into various biochemical processes. Significant effort has therefore been directed at studying photosynthetic processes in plants in order to improve productivity and/or the efficiency of photosynthesis. The analysis of the photosynthetic process is substantially aided by the ability to produce albino plants.
[0133] The attached table discloses exemplary oligonucleotide base sequences which can be used to generate site-specific mutations in genes involved in starch metabolism. 20 TABLE 18 Oligonucleotides to produce albino plants Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: White leaves TTCTTTCCTGTGAAATTATCTGCTCAAATCTTTGGTTCCTGACGGAG 1189 Immutans ATGGCGGCGATTTGAGGCATCTCCTCTGGTACGTTGACGATTTCA Arabidopsis thaliana CGGCCTTTGGTTACTCTTCGACGCTCTAG Ser5Term CTAGAGCGTCGAAGAGTAACCAAAGGCCGTGAAATCGTCAACGTA 1190 TCA-TGA CCAGAGGAGATGCCTCAAATCGCCGCCATCTCCGTCAGGAACCAA AGATTTGAGCAGATAATTTCACAGGAAAGAA GGCGATTTGAGGCATCT 1191 AGATGCCTCAAATCGCC 1192 White leaves GCTCAAATCTTTGGTTCCTGACGGAGATGGCGGCGATTTCAGGCA 1193 Immutans TCTCCTCTGGTACGTAGACGATTTCACGGCCTTTGGTTACTCTTCG Arabidopsis thaliana ACGCTCTAGAGCCGCCGTTTCGTACAGCTC Leu12Term GAGCTGTACGAAACGGCGGCTCTAGAGCGTCGAAGAGTAACCAAA 1194 TTG-TAG GGCCGTGAAATCGTCTACGTACCAGAGGAGATGCCTGAAATCGCC GCCATCTCCGTCAGGAACCAAAGATTTGAGC TGGTACGTAGACGATTT 1195 AAATCGTCTACGTACCA 1196 White leaves TTTGGTTCCTGACGGAGATGGCGGCGATTTCAGGCATCTCCTCTG 1197 Immutans GTACGTTGACGATTTGACGGCCTTTGGTTACTCTTCGACGCTCTAG Arabidopsis thaliana AGCCGCCGTTTCGTACAGCTCCTCTCACCG Ser15Term CGGTGAGAGGAGCTGTACGAAACGGCGGCTCTAGAGCGTCGAAG 1198 TCA-TGA AGTAACCAAAGGCCGTCAAATCGTCAACGTACCAGAGGAGATGCC TGAAATCGCCGCCATCTCCGTCAGGAACCAAA GACGATTTGACGGCCTT 1199 AAGGCCGTCAAATCGTC 1200 White leaves GCGGCGATTTCAGGCATCTCCTCTGGTACGTTGACGATTTCACGG 1201 Immutans CCTTTGGTTACTCTTTGACGCTCTAGAGCCGCCGTTTCGTACAGCT Arabidopsis thaliana CCTCTCACCGATTGCTTCATCATCTTCCTC Arg22Term GAGGAAGATGATGAAGCAATCGGTGAGAGGAGCTGTACGAAACG 1202 CGA-TGA GCGGCTCTAGAGCGTCAAAGAGTAACCAAAGGCCGTGAAATCGTC AACGTACCAGAGGAGATGCCTGAAATCGCCGC TTACTCTTTGACGCTCT 1203 AGAGCGTCAAAGAGTAA 1204 White leaves TCAGGCATCTCCTCTGGTACGTTGACGATTTCACGGCCTTTGGTTA 1205 Immutans CTCTTCGACGCTCTTGAGCCGCCGTTTCGTACAGCTCCTCTCACC Arabidopsis thaliana GATTGCTTCATCATCTTCCTCTCTCTTCTC Arg25Term GAGAAGAGAGAGGAAGATGATGAAGCAATCGGTGAGAGGAGCTG 1206 AGA-TGA TACGAAACGGCGGCTCAAGAGCGTCGAAGAGTAACCAAAGGCCG TGAAATCGTCAACGTACCAGAGGAGATGCCTGA GACGCTCTTGAGCCGCC 1207 GGCGGCTCAAGAGCGTC 1208 White leaves GATTCTTGTGGGAAGGAAGAAGGATCAAGAATGGCGATTTCGATT 1209 Immutans TCTGCTATGAGTTTTTGAACCTCAGTTTCTTCATATTCTTGTTTTAG Lycopersicon AGCTAGGAGTTTTGAGAAGTCATCAGTTT esculentum AAACTGATGACTTCTCAAAACTCCTAGCTCTAAAACAAGAATATGA 1210 Gly11Term AGAAACTGAGGTTCAAAAACTCATAGCAGAAATCGAAATCGCCATT GGA-TGA CTTGATCCTTCTTCCTTCCCACAAGAATC TGAGTTTTTGAACCTCA 1211 TGAGGTTCAAAAACTCA 1212 White leaves GTGGGAAGGAAGAAGGATCAAGAATGGCGATTTCGATTTCTGCTA 1213 Immutans TGAGTTTTGGAACCTGAGTTTCTTCATATTCTTGTTTTAGAGCTAGG Lycopersicon AGTTTTGAGAAGTCATCAGTTTTATGCAA esculentum TTGCATAAAACTGATGACTTCTCAAAACTCCTAGCTCTAAAACAAG 1214 Ser13Term AATATGAAGAAACTCAGGTTCCAAAACTCATAGCAGAAATCGAAAT TCA-TGA CGCCATTCTTGATCCTTCTTCCTTCCCAC TGGAACCTGAGTTTCTT 1215 AAGAAACTCAGGTTCCA 1216 White leaves AAGAAGGATCAAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGG 1217 Immutans AACCTCAGTTTCTTGATATTCTTGTTTTAGAGCTAGGAGTTTTGAGA Lycopersicon AGTCATCAGTTTTATGCAATTCCCAGAA esculentum TTCTGGGAATTGCATAAAACTGATGACTTCTCAAAACTCCTAGCTC 1218 Ser16Term TAAAACAAGAATATCAAGAAACTGAGGTTCCAAAACTCATAGCAGA TCA-TGA AATCGAAATCGCCATTCTTGATCCTTCTT AGTTTCTTGATATTCTT 1219 AAGAATATCAAGAAACT 1220 White leaves AGGATCAAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGGAACC 1221 Immutans TCAGTTTCTTCATAGTCTTGTTTTAGAGCTAGGAGTTTTGAGAAGTC Lycopersicon ATCAGTTTTATGCAATTCCCAGAACCCA esculentum TGGGTTCTGGGAATTGCATAAAACTGATGACTTCTCAAAACTCCTA 1222 Tyr17Term GCTCTAAAACAAGACTATGAAGAAACTGAGGTTCCAAAACTCATAG TAT-TAG CAGAAATCGAAATCGCCATTCTTGATCCT TCTTCATAGTCTTGTTT 1223 AAACAAGACTATGAAGA 1224 White leaves AAGAATGGCGATTTCGATTTCTGCTATGAGTTTTGGAACCTCAGTT 1225 Immutans TCTTCATATTCTTGATTTAGAGCTAGGAGTTTTGAGAAGTCATCAGT Lycopersicon TTTATGCAATTCCCAGAACCCATGTCGG esculentum CCGACATGGGTTCTGGGAATTGCATAAAACTGATGACTTCTCAAAA 1226 Cys19Term CTCCTAGCTCTAAATCAAGAATATGAAGAAACTGAGGTTCCAAAAC TGT-TGA TCATAGCAGAAATCGAAATCGCCATTCTT TATTCTTGATTTAGAGC 1227 GCTCTAAATCAAGAATA 1228 White leaves CGCGTCCGATAAAAAAATCAAGAATGGCGATTTCCATATCTGCTAT 1229 Immutans GAGTTTTCGAACTTGAGTTTCTTCTTCATATTCAGCATTTTTGTGCA Capsicum annuum ATTCCAAGAACCCATTTTGTTTGAATTC Ser13Term GAATTCAAACAAAATGGGTTCTTGGAATTGCACAAAAATGCTGAAT 1230 TCA-TGA ATGAAGAAGAAACTCAAGTTCGAAAACTCATAGCAGATATGGAAAT CGCCATTCTTGATTTTTTTATCGGACGCG TCGAACTTGAGTTTCTT 1231 AAGAAACTCAAGTTCGA 1232 White leaves AAAAATCAAGAATGGCGATTTCCATATCTGCTATGAGTTTTCGAAC 1233 Immutans TTCAGTTTCTTCTTGATATTCAGCATTTTTGTGCAATTCCAAGAACC Capsicum annuum CATTTTGTTTGAATTCTCTATTTTCACT Ser17Term AGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAATTGCACA 1234 TCA-TGA AAAATGCTGAATATCAAGAAGAAACTGAAGTTCGAAAACTCATAGC AGATATGGAAATCGCCATTCTTGATTTTT TTCTTCTTGATATTCAG 1235 CTGAATATCAAGAAGAA 1236 White leaves CAAGAATGGCGATTTCCATATCTGCTATGAGTTTTCGAACTTCAGT 1237 Immutans TTCTTCTTCATATTGAGCATTTTTGTGCAATTCCAAGAACCCATTTT Capsicum annuum GTTTGAATTCTCTATTTTCACTTAGGAA Ser19Term TTCCTAAGTGAAAATAGAGAATTCAAACAAAATGGGTTCTTGGAAT 1238 TCA-TGA TGCACAAAAATGCTCAATATGAAGAAGAAACTGAAGTTCGAAAACT CATAGCAGATATGGAAATCGCCATTCTTG TTCATATTGAGCATTTT 1239 AAAATGCTCAATATGAA 1240 White leaves CGATTTCCATATCTGCTATGAGTTTTCGAACTTCAGTTTCTTCTTCA 1241 Immutans TATTCAGCATTTTAGTGCAATTCCAAGAACCCATTTTGTTTGAATTC Capsicum annuum TCTATTTTCACTTAGGAATTCTCATAG Leu21Term CTATGAGAATTCCTAAGTGAAAATAGAGAATTCAAACAAAATGGGT 1242 TTG-TAG TCTTGGAATTGCACTAAAATGCTGAATATGAAGAAGAAACTGAAGT TCGAAAACTCATAGCAGATATGGAAATCG AGCATTTTAGTGCAATT 1243 AATTGCACTAAAATGCT 1244 White leaves TTCCATATCTGCTATGAGTTTTCGAACTTCAGTTTCTTCTTCATATT 1245 Immutans CAGCATTTTTGTGAAATTCCAAGAACCCATTTTGTTTGAATTCTCTA Capsicum annuum TTTTCACTTAGGAATTCTCATAGAACT Cys22Term AGTTCTATGAGAATTCCTAAGTGAAAATAGAGAATTCAAACAAAAT 1246 TGC-TGA GGGTTCTTGGAATTTCACAAAAATGCTGAATATGAAGAAGAAACTG AAGTTCGAAAACTCATAGCAGATATGGAA TTTTTGTGAAATTCCAA 1247 TTGGAATTTCACAAAAA 1248 White leaves TTCGGCACGAGGGAGAAGGAGCAGACCGAGGTGGCCGTCGAGG 1249 Immutans AGTCCTTCCCCTTCAGGTAGACGGCTCCTCCTGACGAGCCACTGG Oryza sativa TCACCGCCGAGGAGAGCTGGGTGGTTAAGCTCG Glu22Term CGAGCTTAACCACCCAGCTCTCCTCGGCGGTGACCAGTGGCTCGT 1250 GAG-TAG CAGGAGGAGCCGTCTACCTGAAGGGGAAGGACTCCTCGACGGCC ACCTCGGTCTGCTCCTTCTCCCTCGTGCCGAA CCTTCAGGTAGACGGCT 1251 AGCCGTCTACCTGAAGG 1252 White leaves GAGCAGACCGAGGTGGCCGTCGAGGAGTCCTTCCCCTTCAGGGA 1253 Immutans GACGGCTCCTCCTGACTAGCCACTGGTCACCGCCGAGGAGAGCT Oryza sativa GGGTGGTTAAGCTCGAGCAGTCCGTGAACATTT Glu28Term AAATGTTCACGGACTGCTCGAGCTTAACCACCCAGCTCTCCTCGG 1254 CAG-TAG CGGTGACCAGTGGCTAGTCAGGAGGAGCCGTCTCCCTGAAGGGG AAGGACTCCTCGACGGCCACCTCGGTCTGCTC CTCCTGACTAGCCACTG 1255 CAGTGGCTAGTCAGGAG 1256 White leaves GTCGAGGAGTCCTTCCCCTTCAGGGAGACGGCTCCTCCTGACGA 1257 Immutans GCCACTGGTCACCGCCTAGGAGAGCTGGGTGGTTAAGCTCGAGC Oryza sativa AGTCCGTGAACATTTTCCTCACGGAGTCAGTCA Glu34Term TGACTGACTCCGTGAGGAAAATGTTCACGGACTGCTCGAGCTTAA 1258 GAG-TAG CCACCCAGCTCTCCTAGGCGGTGACCAGTGGCTCGTCAGGAGGA GCCGTCTCCCTGAAGGGGAAGGACTCCTCGAC TCACCGCCTAGGAGAGC 1259 GCTCTCCTAGGCGGTGA 1260 White leaves GAGGAGTCCTTCCCCTTCAGGGAGACGGCTCCTCCTGACGAGCC 1261 Immutans ACTGGTCACCGCCGAGTAGAGCTGGGTGGTTAAGCTCGAGCAGT Oryza sativa CCGTGAACATTTTCCTCACGGAGTCAGTCATCA Glu35Term TGATGACTGACTCCGTGAGGAAAATGTTCACGGACTGCTCGAGCT 1262 GAG-TAG TAACCACCCAGCTCTACTCGGCGGTGACCAGTGGCTCGTCAGGA GGAGCCGTCTCCCTGAAGGGGAAGGACTCCTC CCGCCGAGTAGAGCTGG 1263 CCAGCTCTACTCGGCGG 1264 White leaves CTTCCCCTTCAGGGAGACGGCTCCTCCTGACGAGCCACTGGTCAC 1265 Immutans CGCCGAGGAGAGCTGAGTGGTTAAGCTCGAGCAGTCCGTGAACA Oryza sativa TTTTCCTCACGGAGTCAGTCATCACGATACTT Trp37Term AAGTATCGTGATGACTGACTCCGTGAGGAAAATGTTCACGGACTG 1266 TGG-TGA CTCGAGCTTAACCACTCAGCTCTCCTCGGCGGTGACCAGTGGCTC GTCAGGAGGAGCCGTCTCCCTGAAGGGGAAG GAGAGCTGAGTGGTTAA 1267 TTAACCACTCAGCTCTC 1268 White leaves TCCGGAGGAGGAAGGGGGATTCGACGAGGAGCTCACCCTCGCCG 1269 Immutans GCGAGGACGGCGACTGAGTCGTCAGATTCGAGCAGTCCTTCAAC Triticum aestivum GTATTCCTCACGGATACTGTCATCTTTATACTC Trp22Term GAGTATAAAGATGACAGTATCCGTGAGGAATACGTTGAAGGACTG 1270 TGG-TGA CTCGAATCTGACGACTCAGTCGCCGTCCTCGCCGGCGAGGGTGA GCTCCTCGTCGAATCCCCCTTCCTCCTCCGGA GGCGACTGAGTCGTCAG 1271 CTGACGACTCAGTCGCC 1272 White leaves GAGGAAGGGGGATTCGACGAGGAGCTCACCCTCGCCGGCGAGG 1273 Immutans ACGGCGACTGGGTCGTCTGATTCGAGCAGTCCTTCAACGTATTCC Triticum aestivum TCACGGATACTGTCATCTTTATACTCGATATTC Arg25Term GAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATACGTTGAA 1274 AGA-TGA GGACTGCTCGAATCAGACGACCCAGTCGCCGTCCTCGCCGGCGA GGGTGAGCTCCTCGTCGAATCCCCCTTCCTC GGGTCGTCTGATTCGAG 1275 CTCGAATCAGACGACCC 1276 White leaves GGGGGATTCGACGAGGAGCTCACCCTCGCCGGCGAGGACGGCG 1277 Immutans ACTGGGTCGTCAGATTCTAGCAGTCCTTCAACGTATTCCTCACGGA Triticum aestivum TACTGTCATCTTTATACTCGATATTCTGTATC Glu21Term GATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAATAC 1278 GAG-TAG GTTGAAGGACTGCTAGAATCTGACGACCCAGTCGCCGTCCTCGCC GGCGAGGGTGAGCTCCTCGTCGAATCCCCC TCAGATTCTAGCAGTCC 1279 GGACTGCTAGAATCTGA 1280 White leaves GGATTCGACGAGGAGCTCACCCTCGCCGGCGAGGACGGCGACTG 1281 Immutans GGTCGTCAGATTCGAGTAGTCCTTCAACGTATTCCTCACGGATACT Triticum aestivum GTCATCTTTATACTCGATATTCTGTATCGTG Gln28Term CACGATACAGAATATCGAGTATAAAGATGACAGTATCCGTGAGGAA 1282 CAG-TAG TACGTTGAAGGACTACTCGAATCTGACGACCCAGTCGCCGTCCTC GCCGGCGAGGGTGAGCTCCTCGTCGAATCC GATTCGAGTAGTCCTTC 1283 GAAGGACTACTCGAATC 1284 White leaves CGAGCAGTCCTTCAACGTATTCCTCACGGATACTGTCATCTTTATA 1285 Immutans CTCGATATTCTGTAGCGTGACCGCGACTACGCAAGGTTCTTCGTG Triticum aestivum CTCGAGACCATCGCCAGGGTGCCCTATTTC Tyr46Term GAAATAGGGCACCCTGGCGATGGTCTCGAGCACGAAGAACCTTG 1286 TAT-TAG CGTAGTCGCGGTCACGCTACAGAATATCGAGTATAAAGATGACAG TATCCGTGAGGAATACGTTGAAGGACTGCTCG ATTCTGTAGCGTGACCG 1287 CGGTCACGCTACAGAAT 1288
EXAMPLE 9 Altering Amino Acid Content of Plants[0134] Another aim of biotechnology is to generate plants, especially crop plants, with added value traits. An example of such a trait is improved nutritional quality in food crops. For example, lysine, tryptophan and threonine, which are essential amino acids in the diet of humans and many animals, are limiting nutrients in most cereal crops. Consequently, grain-based diets, such as those based on corn, barley, wheat, rice, maize, millet, sorghum, and the like, must be supplemented with more expensive synthetic amino acids or amino-acid-containing oilseed protein meals. Increasing the lysine content of these grains or of any of the feed component crops would result in significant added value.
[0135] Naturally occurring mutants of plants that have different levels of particular essential amino acids have been identified. However, these mutants are generally not the result of increased free amino acid, but are instead the result of shifts in the overall protein profile of the grain. For example, in maize, reduced levels of lysine-deficient endosperm proteins (prolamines) are complemented by elevated levels of more lysine-rich proteins (albumins, globulins and glutelins). While nutritionally superior, these mutants are associated with reduced yields and poor grain quality, limiting their agronomic usefulness.
[0136] An alternative approach is to generate plants with mutations that render key amino acid biosynthetic enzymes insensitive to feedback inhibition. Many such mutations are known and mutation results in increased free amino acid. The increased production can optionally be coupled to increased expression of an abundant storage protein comprising the chosen amino acid. Alternatively, a normally abundant protein can be engineered to contain more of the target amino acid.
[0137] The attached table discloses exemplary oligonucleotide base sequences which can be used to generate site-specific mutations that remove feedback inhibition in plant amino acid biosynthetic enzymes. 21 TABLE 19 Genome-Altering Oligos Conferring Amino Acid Overproduction Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Met Overproduction TATCCTCCAGGATCTTAAGATTTCCTCCTAATTTCGTCCGTCAGCT 1289 CGS GAGCATTAAAGCCCATAGAAACTGTAGCAACATCGGTGTTGCACA Arabidopsis thaliana GATCGTGGCGGCTAAGTGGTCCAACAACCC Arg77His GGGTTGTTGGACCACTTAGCCGCCACGATCTGTGCAACACCGAT 1290 CGT-CAT GTTGCTACAGTTTCTATGGGCTTTAATGCTCAGCTGACGGACGAA ATTAGGAGGAAATCTTAAGATCCTGGAGGATA TAAAGCCCATAGAAACT 1291 AGTTTCTATGGGCTTTA 1292 Met Overproduction TCTTAAGATTTCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGC 1293 CGS CCGTAGAAACTGTAACAACATCGGTGTTGCACAGATCGTGGCGG Arabidopsis thaliana CTAAGTGGTCCAACAACCCATCCTCCGCGTT Ser81Asn AACGCGGAGGATGGGTTGTTGGACCACTTAGCCGCCACGATCTG 1294 AGC-AAC TGCAACACCGATGTTGTTACAGTTTCTACGGGCTTTAATGCTCAGC TGACGGACGAAATTAGGAGGAAATCTTAAGA AAACTGTAACAACATCG 1295 CGATGTTGTTACAGTTT 1296 Met Overproduction TTTCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGCCCGTAGAA 1297 CGS ACTGTAGCAACATCAGTGTTGCACAGATCGTGGCGGCTAAGTGGT Arabidopsis thaliana CCAACAACCCATCCTCCGCGTTACCTTCGG Gly84Ser CCGAAGGTAACGCGGAGGATGGGTTGTTGGACCACTTAGCCGCC 1298 GGT-AGT ACGATCTGTGCAACACTGATGTTGCTACAGTTTCTACGGGCTTTAA TGCTCAGCTGACGGACGAAATTAGGAGGAAA GCAACATCAGTGTTGCA 1299 TGCAACACTGATGTTGC 1300 Met Overproduction TTCCTCCTAATTTCGTCCGTCAGCTGAGCATTAAAGCCCGTAGAAA 1301 CGS CTGTAGCAACATCGATGTTGCACAGATCGTGGCGGCTAAGTGGTC Arabidopsis thaliana CAACAACCCATCCTCCGCGTTACCTTCGGC Gly84Asp GCCGAAGGTAACGCGGAGGATGGGTTGTTGGACCACTTAGCCGC 1302 GGT-GAT CACGATCTGTGCAACATCGATGTTGCTACAGTTTCTACGGGCTTTA ATGCTCAGCTGACGGACGAAATTAGGAGGAA CAACATCGATGTTGCAC 1303 GTGCAACATCGATGTTG 1304 Met Overproduction TATCGTCACTCATCCTCCGCTTCCCTCCCAACTTCGTCCGCCAGC 1305 CGS TCAGCACCAAGGCCCACCGCAACTGCAGCAACATCGGCGTCGCG Fragraria vesca CAGATCGTCGCGGCTTCGTGGTCCAACAAAGA Arg73His TCTTTGTTGGACCACGAAGCCGCGACGATCTGCGCGACGCCGAT 1306 CGC-CAC GTTGCTGCAGTTGCGGTGGGCCTTGGTGCTGAGCTGGCGGACGA AGTTGGGAGGGAAGCGGAGGATGAGTGACGATA CAAGGCCCACCGCAACT 1307 AGTTGCGGTGGGCCTTG 1308 Met Overproduction TCCTCCGCTTCCCTCCCAACTTCGTCCGCCAGCTCAGCACCAAGG 1309 CGS CCCGCCGCAACTGCAACAACATCGGCGTCGCGCAGATCGTCGCG Fragraria vesca GCTTCGTGGTCCAACAAAGACTCCGACCTTTC Ser77Asn GAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGCGACGATCTG 1310 AGC-AAC CGCGACGCCGATGTTGTTGCAGTTGCGGCGGGCCTTGGTGCTGA GCTGGCGGACGAAGTTGGGAGGGAAGCGGAGGA CAACTGCAACAACATCG 1311 CGATGTTGTTGCAGTTG 1312 Met Overproduction TTCCCTCCCAACTTCGTCCGCCAGCTCAGCACCAAGGCCCGCCG 1313 CGS CAACTGCAGCAACATCAGCGTCGCGCAGATCGTCGCGGCTTCGT Fragraria vesca GGTCCAACAAAGACTCCGACCTTTCGGCGGTGC Gly80Ser GCACCGCCGAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGCG 1314 GGC-AGC ACGATCTGCGCGACGCTGATGTTGGTGCAGTTGCGGCGGGCCTT GGTGCTGAGCTGGCGGACGAAGTTGGGAGGGAA GCAACATCAGCGTCGCG 1315 CGCGACGCTGATGTTGC 1316 Met Overproduction TCCCTCCCAACTTCGTCCGCCAGCTCAGCACCAAGGCCCGCCGC 1317 CGS AACTGCAGCAACATCGACGTCGCGCAGATCGTCGCGGCTTCGTG Fragraria vesca GTCCAACAAAGACTCCGACCTTTCGGCGGTGCC Gly80Asp GGCACCGCCGAAAGGTCGGAGTCTTTGTTGGACCACGAAGCCGC 1318 GGC-GAC GACGATCTGCGCGACGTCGATGTTGCTGCAGTTGCGGCGGGCCT TGGTGCTGAGCTGGCGGACGAAGTTGGGAGGGA CAACATCGACGTCGCGC 1319 GCGCGACGTCGATGTTG 1320 Met Overproduction TCTCCTCCCTCATCCTCCGCTTCCCTCCCAACTTCCAGCGCCAGC 1321 CGS TAAGCACCAAGGCGAGCCGCAACTGCAGCAACATCGGCGTCGCG Glycine max CAAATCGTCGCCGCTTCGTGGTCGAACAACAG Arg68His CTGTTGTTCGACCACGAAGCGGCGACGATTTGCGCGACGCCGAT 1322 CGC-CAC GTTGCTGCAGTTGCGGCTCGCCTTGGTGCTTAGCTGGCGCTGGA AGTTGGGAGGGAAGCGGAGGATGAGGGAGGAGA CCAAGGCGAGCCGCAAC 1323 GTTGCGGCTCGCCTTGG 1324 Met Overproduction TCCTCCGCTTCCCTCCCAACTTCCAGCGCCAGCTAAGCACCAAGG 1325 CGS CGCGCCGCAACTGCAACAACATCGGCGTCGCGCAAATCGTCGCC Glycine max GCTTCGTGGTCGAACAACAGCGACAACTCTCC Ser72Asn GGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGCGACGATTTG 1326 AGC-AAC CGCGACGCCGATGTTGTTGCAGTTGCGGCGCGCCTTGGTGCTTA GCTGGCGCTGGAAGTTGGGAGGGAAGCGGAGGA CAACTGCAACAACATCG 1327 CGATGTTGTTGCAGTTG 1328 Met Overproduction TTCCCTCCCAACTTCCAGCGCCAGCTAAGCACCAAGGCGCGCCG 1329 CGS CAACTGCAGCAACATCAGCGTCGCGCAAATCGTCGCCGCTTCGT Glycine max GGTCGAACAACAGCGACAACTCTCCGGCCGCCG Gly75Ser CGGCGGCCGGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGCG 1330 GGC-AGC ACGATTTGCGCGACGCTGATGTTGCTGCAGTTGCGGCGCGCCTT GGTGCTTAGCTGGCGCTGGAAGTTGGGAGGGAA GCAACATCAGCGTCGCG 1331 CGCGACGCTGATGTTGC 1332 Met Overproduction TCCCTCCCAACTTCCAGCGCCAGCTAAGCACCAAGGCGCGCCGC 1333 CGS AACTGCAGCAACATCGACGTCGCGCAAATCGTCGCCGCTTCGTG Glycine max GTCGAACAACAGCGACAACTCTCCGGCCGCCGG Gly75Asp CCGGCGGCGGGAGAGTTGTCGCTGTTGTTCGACCACGAAGCGGC 1334 GGC-GAC GACGATTTGCGCGACGTCGATGTTGCTGCAGTTGCGGCGCGCCT TGGTGCTTAGCTGGCGCTGGAAGTTGGGAGGGA CAACATCGACGTCGCGC 1335 GCGCGACGTCGATGTTG 1336 Met Overproduction TGTCTTCTCTGATTTTCAGGTTTCCTCCTAATTTCGTGAGGCAGCT 1337 CGS AAGCATTAAGGCTCACAGGAATTGCAGCAATATTGGCGTGGCTCA Solanum tuberosum AGTTGTGGCGGCTTCCTGGTCTAACAACCA Arg70His TGGTTGTTAGACCAGGAAGCCGCCACAACTTGAGCCACGCCAATA 1338 AGG-CAC TTGCTGCAATTCCTGTGAGCCTTAATGCTTAGCTGCCTCACGAAAT TAGGAGGAAACCTGAAAATCAGAGAAGACA TAAGGCTCACAGGAATT 1339 AATTCCTGTGAGCCTTA 1340 Met Overproduction TTTTCAGGTTTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGC 1341 CGS TAGGAGGAATTGCAACAATATTGGCGTGGCTCAAGTTGTGGCGG Solanum tuberosum CTTCCTGGTCTAACAACCAAGCCGGTCCTGA Ser74Asn TCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGCCACAACTTG 1342 AGC-AAC AGCCACGCCAATATTGTTGCAATTCCTCCTAGCCTTAATGCTTAGC TGCCTCACGAAATTAGGAGGAAACCTGAAAA GAATTGCAACAATATTG 1343 CAATATTGTTGCAATTC 1344 Met Overproduction TTTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGCTAGGAGG 1345 CGS AATTGCAGCAATATTAGCGTGGCTCAAGTTGTGGCGGCTTCCTGG Solanum tuberosum TCTAACAACCAAGCCGGTCCTGAATTCACTC Gly77Ser GAGTGAATTCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGCC 1346 GGC-AGC ACAACTTGAGCCACGCTAATATTGCTGCAATTCCTCCTAGCCTTAA TGCTTAGCTGCCTCACGAAATTAGGAGGAAA GCAATATTAGCGTGGGT 1347 AGCCACGCTAATATTGC 1348 Met Overproduction TTCCTCCTAATTTCGTGAGGCAGCTAAGCATTAAGGCTAGGAGGA 1349 CGS ATTGCAGCAATATTGACGTGGCTCAAGTTGTGGCGGCTTCCTGGT Solanum tuberosum CTAACAACCAAGCCGGTCCTGAATTCACTCC Gly77Asp GGAGTGAATTCAGGACCGGCTTGGTTGTTAGACCAGGAAGCCGC 1350 GGC-GAC CACAACTTGAGCCACGTCAATATTGCTGCAATTCCTCCTAGCCTTA ATGCTTAGCTGCCTCACGAAATTAGGAGGAA CAATATTGACGTGGCTC 1351 GAGCCACGTCAATATTG 1352 Met Overproduction CTTCCTCTCTTATCCTTCGCTTTCCTCCCAACTTTGTCCGTCAGCT 1353 CGS CAGCACCAAGGCTCGCCACAACTGCAGCAACATTGGTGTCGCAC Mesembryanthemum AGGTCGTCGCTGCCTCCTGGTCCAACAACTC crystallinum GAGTTGTTGGACCAGGAGGCAGCGACGACCTGTGCGACACCAAT 1354 Arg73His GTTGCTGCAGTTGTGGCGAGCCTTGGTGCTGAGCTGACGGACAA CGC-CAC AGTTGGGAGGAAAGCGAAGGATAAGAGAGGAAG GGCTCGCCACAACTGCA 1355 TGCAGTTGTGGCGAGCC 1356 Met Overproduction TCCTTCGCTTTCCTCCCAACTTTGTCCGTCAGCTCAGCACCAAGG 1357 CGS CTCGCCGCAACTGCAACAACATTGGTGTCGCACAGGTCGTCGCT Mesembryanthemum GCCTCCTGGTCCAACAACTCCGATGCCGGCGC crystallinum GCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAGCGACGACCT 1358 Ser77Asn GTGCGACACCAATGTTGTTGCAGTTGCGGCGAGCCTTGGTGCTG AGC-AAC AGCTGACGGACAAAGTTGGGAGGAAAGCGAAGGA CAACTGCAACAACATTG 1359 CAATGTTGTTGCAGTTG 1360 Met Overproduction TTTCCTCCCAACTTTGTCCGTCAGCTCAGCACCAAGGCTCGCCGC 1361 CGS AACTGCAGCAACATTAGTGTCGCACAGGTCGTCGCTGCCTCCTG Mesembryanthemum GTCCAACAACTCCGATGCCGGCGCCACCTCTT crystallinum AAGAGGTGGCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAGC 1362 Gly80Ser GACGACCTGTGCGACACTAATGTTGCTGCAGTTGCGGCGAGCCT GGT-AGT TGGTGCTGAGCTGACGGACAAAGTTGGGAGGAAA GCAACATTAGTGTCGCA 1363 TGCGACACTAATGTTGC 1364 Met Overproduction TTCCTCCCAACTTTGTCCGTCAGCTCAGCACCAAGGCTCGCCGCA 1365 CGS ACTGCAGCAACATTGATGTCGCACAGGTCGTCGCTGCCTCCTGGT Mesembryanthemum CCAACAACTCCGATGCCGGCGCCACCTCTTG crystallinum CAAGAGGTGGCGCCGGCATCGGAGTTGTTGGACCAGGAGGCAG 1366 Gly80Asp CGACGACCTGTGCGACATCAATGTTGCTGCAGTTGCGGCGAGCC GGT-GAT TTGGTGCTGAGCTGACGGACAAAGTTGGGAGGAA CAACATTGATGTCGCAC 1367 GTGCGACATCAATGTTG 1368 Met Overproduction CCTCTGCTACCATCCTCCGCTTTCCGCCAAACTTTGTCCGCCAGC 1369 CGS TTAGCACCAAGGCACACGGCAACTGCAGCAACATCGGCGTCGCG Zea mays CAGATCGTCGCCGCCGCGTGGTCCGACTGCCC Arg41His GGGCAGTCGGACCACGCGGCGGCGACGATCTGCGCGACGCCGA 1370 CGC-CAC TGTTGCTGCAGTTGCGGTGTGCCTTGGTGCTAAGCTGGCGGACA AAGTTTGGCGGAAAGCGGAGGATGGTAGCAGAGG CAAGGCACACCGCAACT 1371 AGTTGCGGTGTGCCTTG 1372 Met Overproduction TCCTCCGCTTTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGG 1373 CGS CACGCCGCAACTGCAACAACATCGGCGTCGCGCAGATCGTCGCC Zea mays GCCGCGTGGTCCGACTGCCCCGCCGCTCGCCC Ser45Asn GGGCGAGCGGCGGGGCAGTCGGACCACGCGGCGGCGACGATCT 1374 AGC-AAC GCGCGACGCCGATGTTGTTGCAGTTGCGGCGTGCCTTGGTGCTA AGCTGGCGGACAAAGTTTGGCGGAAAGCGGAGGA CAACTGCAACAACATCG 1375 CGATGTTGTTGCAGTTG 1376 Met Overproduction TTTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGGCACGCCGC 1377 CGS AACTGCAGCAACATCAGCGTCGCGCAGATCGTCGCCGCCGCGTG Zea mays GTCCGACTGCCCCGCCGCTCGCCCCCACTTAG Gly48Ser CTAAGTGGGGGCGAGCGGCGGGGCAGTCGGACCACGCGGCGG 1378 GGC-AGC CGACGATCTGCGCGACGCTGATGTTGCTGCAGTTGCGGCGTGCC TTGGTGCTAAGCTGGCGGACAAAGTTTGGCGGAAA GCAACATCAGCGTCGCG 1379 CGCGACGCTGATGTTGC 1380 Met Overproduction TTCCGCCAAACTTTGTCCGCCAGCTTAGCACCAAGGCACGCCGCA 1381 CGS ACTGCAGCAACATCGACGTCGCGCAGATCGTCGCCGCCGCGTGG Zea mays TCCGACTGCCCCGCCGCTCGCCCCCACTTAGG Gly48Asp CCTAAGTGGGGGCGAGCGGCGGGGCAGTCGGACCACGCGGCG 1382 GGC-GAC GCGACGATCTGCGCGACGTCGATGTTGCTGCAGTTGCGGCGTGC CTTGGTGCTAAGCTGGCGGACAAAGTTTGGCGGAA CAACATCGACGTCGCGG 1383 GCGCGACGTCGATGTTG 1384 Met Overproduction GTATGAATGATCTGTGGGTGAAACACTGTGGGATTAGTCATACAG 1385 TS GAAGTTTCAAGGATCGTGGAATGACTGTTTTGGTTAGTCAAGTTAA Arabidopsis thaliana TCGTCTGAGAAAGATGAAACGACCTGTGGT Leu205Arg ACCACAGGTCGTTTCATCTTTCTCAGACGATTAACTTGACTAACCA 1386 CTT-CGT AAACAGTCATTCCACGATCCTTGAAACTTCCTGTATGACTAATCCC ACAGTGTTTCACCCACAGATCATTCATAC CAAGGATCGTGGAATGA 1387 TCATTCCACGATCCTTG 1388 Met Overproduction GCATGACTGATTTGTGGGTCAAACACTGTGGGATTAGCCATACTG 1389 TS GTAGTTTTAAGGATCGTGGGATGACTGTTTTGGTGAGTCAAGTTAA Solanum tuberosum TCGCTTGCGGAAAATGCATAAACCGGTTGT Leu198Arg ACAACCGGTTTATGCATTTTCCGCAAGCGATTAACTTGACTCACCA 1390 CTT-CGT AAACAGTCATCCCACGATCCTTAAAACTACCAGTATGGCTAATCCC ACAGTGTTTGACCCACAAATCAGTCATGC TAAGGATCGTGGGATGA 1391 TCATCCCACGATCCTTA 1392 Lys Overproduction TCATTGGGCACACAGTGAACTGCTTTGGCTCTAGAATCAAAGTGA 1393 DHPS TAGGCAACACAGGAAACAACTCAACCAGAGAAGCCGTCCACGCA Zea mays ACAGAACAGGGATTTGCTGTTGGCATGCATGC Ser157Asn GCATGCATGCCAACAGCAAATCCCTGTTCTGTTGCGTGGACGGCT 1394 AGC-AAC TCTCTGGTTGAGTTGTTTCCTGTGTTGCCTATCACTTTGATTCTAG AGCCAAAGCAGTTCACTGTGTGCCCAATGA CACAGGAAACAACTCAA 1395 TTGAGTTGTTTCCTGTG 1396 Lys Overproduction GCTCTAGAATCAAAGTGATAGGCAACACAGGAAGCAACTCAACCA 1397 DHPS GAGAAGCCGTCCACGAAACAGAACAGGGATTTGCTGTTGGCATG Zea mays CATGCGGCTCTCCACATCAATCCTTACTACGG Ala166Val CCGTAGTAAGGATTGATGTGGAGAGCCGCATGCATGCCAACAGC 1398 GCA-GAA AAATCCCTGTTCTGTTTCGTGGACGGCTTCTCTGGTTGAGTTGCTT CCTGTGTTGCCTATCACTTTGATTCTAGAGC CGTCCACGAAACAGAAC 1399 GTTCTGTTTCGTGGACG 1400 Lys Overproduction GGCTCTAGAATCAAAGTGATAGGCAACACAGGAAGCAACTCAACC 1401 DHPS AGAGAAGCCGTCCACACAACAGAACAGGGATTTGCTGTTGGCAT Zea mays GCATGCGGCTCTCCACATCAATCCTTACTACG Ala166Thr CGTAGTAAGGATTGATGTGGAGAGCCGCATGCATGCCAACAGCA 1402 GCA-ACA AATCCCTGTTCTGTTGTGTGGACGGCTTCTCTGGTTGAGTTGCTTC CTGTGTTGCCTATCACTTTGATTCTAGAGCC CCGTCCACACAACAGAA 1403 TTCTGTTGTGTGGACGG 1404 Lys Overproduction TTATTGGGCATACAGTTAACTGCTTTGGCACTAAAATTAAAGTGGT 1405 DHPS CGGCAACACAGGAAATAACTCAACAAGGGAGGCTATTCACGCAAC Oryza sativa TGAGCAGGGATTCGCTGTAGGTATGCACGC Ser24Asn GCGTGCATACCTACAGCGAATCCCTGCTCAGTTGCGTGAATAGCC 1406 AGT-AAT TCCCTTGTTGAGTTATTTCCTGTGTTGCCGACCACTTTAATTTTAGT GCCAAAGCAGTTAACTGTATGCCCAATAA CACAGGAAATAACTCAA 1407 TTGAGTTATTTCCTGTG 1408 Lys Overproduction GCACTAAAATTAAAGTGGTCGGCAACACAGGAAGTAACTCAACAA 1409 DHPS GGGAGGCTATTCACGTAACTGAGCAGGGATTCGCTGTAGGTATG Oryza sativa CACGCGGCTCTCCACATCAATCCTTACTACGG Ala133Val CCGTAGTAAGGATTGATGTGGAGAGCCGCGTGCATACCTACAGC 1410 GCA-GTA GAATCCCTGCTCAGTTACGTGAATAGCCTCCCTTGTTGAGTTACTT CCTGTGTTGCCGACCACTTTAATTTTAGTGC TATTCACGTAACTGAGC 1411 GCTCAGTTACGTGAATA 1412 Lys Overproduction GGCACTAAAATTAAAGTGGTCGGCAACACAGGAAGTAACTCAACA 1413 DHPS AGGGAGGCTATTCACACAACTGAGCAGGGATTCGCTGTAGGTAT Oryza sativa GCACGCGGCTCTCCACATCAATCCTTACTACG Ala133Thr CGTAGTAAGGATTGATGTGGAGAGCCGCGTGCATACCTACAGCG 1414 GCA-ACA AATCCCTGCTCAGTTGTGTGAATAGCCTCCCTTGTTGAGTTACTTC CTGTGTTGCCGACCACTTTAATTTTAGTGCC CTATTCACACAACTGAG 1415 CTCAGTTGTGTGAATAG 1416 Lys Overproduction TCATCGGGCATACTGTTAACTGCTTTGGAGCCAACATTAAAGTGAT 1417 DHPS 1 AGGCAACACGGGAAATAACTCAACCAGAGAAGCTGTTCACGCGA Triticum aestivum CAGAGCAGGGATTTGCTGTTGGCATGCATGC Ser65Asn GCATGCATGCCAACAGCAAATCCCTGCTCTGTCGCGTGAACAGCT 1418 AGT-AAT TCTCTGGTTGAGTTATTTCCCGTGTTGCCTATCACTTTAATGTTGG CTCCAAAGCAGTTAACAGTATGCCCGATGA CACGGGAAATAACTCAA 1419 TTGAGTTATTTCCCGTG 1420 Lys Overproduction GAGCCAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACCA 1421 DHPS 1 GAGAAGCTGTTCACGTGACAGAGCAGGGATTTGCTGTTGGCATG Triticum aestivum CATGCAGCTCTTCATGTCAATCCTTACTACGG Ala174Val CCGTAGTAAGGATTGACATGAAGAGCTGCATGCATGCCAACAGCA 1422 GCG-GTG AATCCCTGCTCTGTCACGTGAACAGCTTCTCTGGTTGAGTTACTTC CCGTGTTGCCTATCACTTTAATGTTGGCTC TGTTCACGTGACAGAGC 1423 GCTCTGTCACGTGAACA 1424 Lys Overproduction GGAGCCAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACC 1425 DHPS 1 AGAGAAGCTGTTCACACGACAGAGCAGGGATTTGCTGTTGGCAT Triticum aestivum GCATGCAGCTCTTCATGTCAATCCTTACTACG Ala174Thr CGTAGTAAGGATTGACATGAAGAGCTGCATGCATGCCAACAGCAA 1426 GCG-ACG ATCCCTGCTCTGTCGTGTGAACAGCTTCTCTGGTTGAGTTACTTCC CGTGTTGCCTATCACTTTAATGTTGGCTCC CTGTTCACAGGACAGAG 1427 CTCTGTCGTGTGAACAG 1428 Lys Overproduction TCATCGGGCACACTGTTAACTGCTTTGGAACTAACATTAAAGTGAT 1429 DHPS 2 AGGCAACACGGGAAATAACTCAACTAGAGAAGCGATTCACGCTTC Triticum aestivum AGAGCAGGGATTTGCTGTTGGCATGCATGC Ser154Asn GCATGCATGCCAACAGCAAATCCCTGCTCTGAAGCGTGAATCGCT 1430 AGT-AAT TCTCTAGTTGAGTTATTTCCCGTGTTGCCTATCACTTTAATGTTAGT TCCAAAGCAGTTAACAGTGTGCCCGATGA CACGGGAAATAACTCAA 1431 TTGAGTTATTTCCCGTG 1432 Lys Overproduction GAACTAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACTA 1433 DHPS 2 GAGAAGCGATTCACGTTTCAGAGCAGGGATTTGCTGTTGGCATGC Triticum aestivum ATGCAGCTCTCCATGTCAATCCTTACTATGG Ala163Val CCATAGTAAGGATTGACATGGAGAGCTGCATGCATGCCAACAGCA 1434 GCT-GTT AATCCCTGCTCTGAAACGTGAATCGCTTCTCTAGTTGAGTTACTTC CCGTGTTGCCTATCACTTTAATGTTAGTTC GATTCACGTTTCAGAGC 1435 GCTCTGAAACGTGAATC 1436 Lys Overproduction GGAACTAACATTAAAGTGATAGGCAACACGGGAAGTAACTCAACT 1437 DHPS 2 AGAGAAGCGATTCACACTTCAGAGCAGGGATTTGCTGTTGGCATG Triticum aestivum CATGCAGCTCTCCATGTCAATCCTTACTATG Ala163Thr CATAGTAAGGATTGACATGGAGAGCTGCATGCATGCCAACAGCAA 1438 GCT-ACT ATCCCTGCTCTGAAGTGTGAATCGCTTCTCTAGTTGAGTTACTTCC CGTGTTGCCTATCACTTTAATGTTAGTTCC CGATTCACACTTCAGAG 1439 CTCTGAAGTGTGAATCG 1440 Lys Overproduction CTCATTGGGCATACTGTGAACTGCTTTGGCTCTAGAATTAAAGTGA 1441 DHPS TAGGCAACACAGGAAATAACTCAACCAGAGAAGCTGTTCACGCAA Coix lacryma-jobi CAGAGCAGGGATTTGCTGTTGGCATGCATG Ser154Asn CATGCATGCCAACAGCAAATCCCTGCTCTGTTGCGTGAACAGCTT 1442 AGT-AAT CTCTGGTTGAGTTATTTCCTGTGTTGCCTATCACTTTAATTCTAGA GCCAAAGCAGTTCACAGTATGCCCAATGAG CACAGGAAATAACTCAA 1443 TTGAGTTATTTCCTGTG 1444 Lys Overproduction GCTCTAGAATTAAAGTGATAGGCAACACAGGAAGTAACTCAACCA 1445 DHPS GAGAAGCTGTTCACGTAACAGAGCAGGGATTTGCTGTTGGCATGC Coix lacryma-jobi ATGCAGCTCTCCACATCAATCCTTACTATGG Ala163Val CCATAGTAAGGATTGATGTGGAGAGCTGCATGCATGCCAACAGCA 1446 GCA-GTA AATCCCTGCTCTGTTACGTGAACAGCTTCTCTGGTTGAGTTACTTC CTGTGTTGCCTATCACTTTAATTCTAGAGC TGTTCACGTAACAGAGC 1447 GCTCTGTTACGTGAACA 1448 Lys Overproduction GGCTCTAGAATTAAAGTGATAGGCAACACAGGAAGTAACTCAACC 1449 DHPS AGAGAAGCTGTTCACACAACAGAGCAGGGATTTGCTGTTGGCATG Coix lacryma-jobi CATGCAGCTCTCCACATCAATCCTTACTATG Ala163Thr CATAGTAAGGATTGATGTGGAGAGCTGCATGCATGCCAACAGCAA 1450 GCA-ACA ATCCCTGCTCTGTTGTGTGAACAGCTTCTCTGGTTGAGTTACTTCC TGTGTTGCCTATCACTTTAATTCTAGAGCC CTGTTCACACAACAGAG 1451 CTCTGTTGTGTGAACAG 1452 Lys Overproduction TCATTGGTCACACAGTCAATTGTTTTGGAGGGTCCATCAAAGTCAT 1453 DHPS CGGGAACACTGGAAACAACTCCACAAGGGAAGCAATCCATGCAA Nicotiana tabacum CTGAACAGGGATTTGCTGTAGGTATGCATGC Ser136Asn GCATGCATACCTACAGCAAATCCCTGTTCAGTTGCATGGATTGCTT 1454 AGC-AAC CCCTTGTGGAGTTGTTTCCAGTGTTCCCGATGACTTTGATGGACC CTCCAAAACAATTGACTGTGTGACCAATGA CACTGGAAACAACTCCA 1455 TGGAGTTGTTTCCAGTG 1456 Lys Overproduction GAGGGTCCATCAAAGTCATCGGGAACACTGGAAGCAACTCCACAA 1457 DHPS GGGAAGCAATCCATGTAACTGAACAGGGATTTGCTGTAGGTATGC Nicotiana tabacum ATGCAGCTCTTCACATTAATCCCTACTATGG Ala145Val CCATAGTAGGGATTAATGTGAAGAGCTGCATGCATACCTACAGCA 1458 GCA-GTA AATCCCTGTTCAGTTACATGGATTGCTTCCCTTGTGGAGTTGCTTC CAGTGTTCCCGATGACTTTGATGGACCCTC AATCCATGTAACTGAAC 1459 GTTCAGTTACATGGATT 1460 Lys Overproduction GGAGGGTCCATCAAAGTCATCGGGAACACTGGAAGCAACTCCAC 1461 DHPS AAGGGAAGCAATCCATACAACTGAACAGGGATTTGCTGTAGGTAT Nicotiana tabacum GCATGCAGCTCTTCACATTAATCCCTACTATG Ala145Thr CATAGTAGGGATTAATGTGAAGAGCTGCATGCATACCTACAGCAA 1462 GCA-ACA ATCCCTGTTCAGTTGTATGGATTGCTTCCCTTGTGGAGTTGCTTCC AGTGTTCCCGATGACTTTGATGGACCCTCC CAATCCATACAACTGAA 1463 TTCAGTTGTATGGATTG 1464 Lys Overproduction TTATAGGCCATACCGTTAACTGTTTTGGCGGAAGCATCAAAGTCAT 1465 DHPS TGGAAACACTGGAAACAATTCGACTAGAGAAGCAATCCACGCGAC Arabidopsis thaliana TGAACAAGGATTCGCGGTTGGAATGCATGC Ser142Asn GCATGCATTCCAACCGCGAATCCTTGTTCAGTCGCGTGGATTGCT 1466 AGC-AAC TCTCTAGTCGAATTGTTTCCAGTGTTTCCAATGACTTTGATGCTTC CGCCAAAACAGTTAACGGTATGGCCTATAA CACTGGAAACAATTCGA 1467 TCGAATTGTTTCCAGTG 1468 Lys Overproduction GCGGAAGCATCAAAGTCATTGGAAACACTGGAAGCAATTCGACTA 1469 DHPS GAGAAGCAATCCACGTGACTGAACAAGGATTCGCGGTTGGAATG Arabidopsis thaliana CATGCTGCTCTTCATATAAACCCTTACTATGG Ala151Val CCATAGTAAGGGTTTATATGAAGAGCAGCATGCATTCCAACCGCG 1470 GCG-GTG AATCCTTGTTCAGTCACGTGGATTGCTTCTCTAGTCGAATTGCTTC CAGTGTTTCCAATGACTTTGATGCTTCCGC AATCCACGTGACTGAAC 1471 GTTCAGTCACGTGGATT 1472 Lys Overproduction GGCGGAAGCATCAAAGTCATTGGAAACACTGGAAGCAATTCGACT 1473 DHPS AGAGAAGCAATCCACACGACTGAACAAGGATTCGCGGTTGGAAT Arabidopsis thaliana GCATGCTGCTCTTCATATAAACCCTTACTATG Ala151Thr CATAGTAAGGGTTTATATGAAGAGCAGCATGCATTCCAACCGCGA 1474 GCG-ACG ATCCTTGTTCAGTCGTGTGGATTGCTTCTCTAGTCGAATTGCTTCC AGTGTTTCCAATGACTTTGATGCTTCCGCC CAATCCACACGACTGAA 1475 TTCAGTCGTGTGGATTG 1476 Lys Overproduction TTATTGCTCATACAGTCAACTGTTTTGGTGGGAAAATTAAGGTTAT 1477 DHPS TGGAAATACTGGAAACAACTCCACCAGGGAAGCAATTCATGCCAC Glycine max TGAGCAGGGTTTTGCTGTTGGAATGCATGC Ser103Asn GCATGCATTCCAACAGCAAAACCCTGCTCAGTGGCATGAATTGCT 1478 AGC-AAC TCCCTGGTGGAGTTGTTTCCAGTATTTCCAATAACCTTAATTTTCC CACCAAAACAGTTGACTGTATGAGCAATAA TACTGGAAACAACTCCA 1479 TGGAGTTGTTTCCAGTA 1480 Lys Overproduction GTGGGAAAATTAAGGTTATTGGAAATACTGGAAGCAACTCCACCA 1481 DHPS GGGAAGCAATTCATGTCACTGAGCAGGGTTTTGCTGTTGGAATGC Glycine max ATGCTGCCCTTCACATAAACCCTTACTATGG Ala112Val CCATAGTAAGGGTTTATGTGAAGGGCAGCATGCATTCCAACAGCA 1482 GCC-GTC AAACCCTGCTCAGTGACATGAATTGCTTCCCTGGTGGAGTTGCTT CCAGTATTTCCAATAACCTTAATTTTCCCAC AATTCATGTCACTGAGC 1483 GCTCAGTGACATGAATT 1484 Lys Overproduction GGTGGGAAAATTAAGGTTATTGGAAATACTGGAAGCAACTCCACC 1485 DHPS AGGGAAGCAATTCATACCACTGAGCAGGGTTTTGCTGTTGGAATG Glycine max CATGCTGCCCTTCACATAAACCCTTACTATG Ala112Thr CATAGTAAGGGTTTATGTGAAGGGCAGCATGGATTCCAACAGCAA 1486 GCC-ACC AACCCTGCTCAGTGGTATGAATTGCTTCCCTGGTGGAGTTGCTTC CAGTATTTCCAATAACCTTAATTTTCCCACC CAATTCATACCACTGAG 1487 CTCAGTGGTATGAATTG 1488 Trp Overproduction CTTGCAGGAGACATATTTCAGATCGTGCTGAGTCAACGTTTTGAG 1489 AS CGGCGAACATTTGCAAACCCCTTTGAAGTTTATAGAGCACTAAGA Arabidopsis thaliana GTTGTGAATCCAAGTCCGTATATGGGTTATT Asp341Asn AATAACCCATATACGGACTTGGATTCACAACTCTTAGTGCTCTATA 1490 GAG-AAC AACTTCAAAGGGGTTTGCAAATGTTCGCCGCTCAAAACGTTGACT CAGCACGATCTGAAATATGTCTCCTGCAAG CATTTGCAAACCCCTTT 1491 AAAGGGGTTTGCAAATG 1492 Trp Overproduction GCTGCAGGAGACATATTTCAAATCGTTTTAAGTCAACGCTTTGAGA 1493 AS GAAGAACATTTGCTAACCCATTTGAAGTGTACAGAGCATTAAGAAT Nicotiana tabacum TGTGAATCCAAGCCCATATATGACTTACA Asp326Asn TGTAAGTCATATATGGGCTTGGATTCACAATTCTTAATGCTCTGTA 1494 GAC-AAC CACTTCAAATGGGTTAGCAAATGTTCTTCTCTCAAAGCGTTGACTT AAAACGATTTGAAATATGTCTCCTGCAGC CATTTGCTAACCCATTT 1495 AAATGGGTTAGCAAATG 1496 Trp Overproduction CTAGCTGGTGACATTTTTCAAGTAGTCTTAAGCCAGCGTTTTGAGA 1497 AS GGCGTACATTTGCTAACCCCTTTGAGGTGTACCGTGCATTGCGTA Oryza sativa TTGTCAATCCTAGTCCTTATATGGCCTATC Asp323Asn GATAGGCCATATAAGGACTAGGATTGACAATACGCAATGCACGGT 1498 GAC-AAC ACACCTCAAAGGGGTTAGCAAATGTACGCCTCTCAAAACGCTGGC TTAAGACTACTTGAAAAATGTCACCAGCTAG CATTTGCTAACCCCTTT 1499 AAAGGGGTTAGCAAATG 1500 Trp Overproduction CTTGCTGGTGACATATTCCAGATCGTACTAAGTCAGCGTTTTGAAA 1501 AS GGCGAACGTTCGCAAACCCATTTGAAATCTATAGATCACTGAGGA Ruta graveolens TTGTTAATCCAAGCCCATATATGACTTATT Asp354Asn AATAAGTCATATATGGGCTTGGATTAACAATCCTCAGTGATCTATA 1502 GAC-AAC GATTTCAAATGGGTTTGCGAACGTTCGCCTTTCAAAACGCTGACTT AGTACGATCTGGAATATGTCACCAGCAAG CGTTCGCAAACCCATTT 1503 AAATGGGTTTGCGAACG 1504 Trp Overproduction CTGGCTGGGGACATATTCCAGCTTGTCCTAAGTCAGCGTTTTGAA 1505 AS CGGCGAACATTTGCAAATCCATTTGAAGTCTACCGAGCATTGAGA Catharanthus roseus ATTGTCAACCCAAGTCCATATATGACTTATT Asp354Asn AATAAGTCATATATGGACTTGGGTTGACAATTCTCAATGCTCGGTA 1506 GAT-AAT GACTTCAAATGGATTTGCAAATGTTCGCCGTTCAAAACGCTGACTT AGGACAAGCTGGAATATGTCCCCAGCCAG CATTTGCAAATCCATTT 1507 AAATGGATTTGCAAATG 1508
EXAMPLE 10 Production of Modified Starch in Plants[0138] A principal aim of biotechnology is the improvement of crop plants for food value, agriculture, and to produce a range of plant-derived raw materials. Along with oils, fats and proteins, polysaccharides constitute the main raw materials derived from plants, and apart from cellulose, the storage polymer starch is the most important polysaccharide raw material. Starch is derived from a range of plants, but maize is the most important cultivated plant for the production of starch.
[0139] The polysaccharide starch is a polymer made up of glucose molecules. However, starch is not a homogeneous raw material and is, in fact, a highly complex mixture of various types of molecules which differ from each other, for example, in their degree of polymerization and in the degree of branching of the glucose chains. For example, amylose-starch is a basically non-branched polymer made up of &agr;-1,4-glycosidically branched glucose molecules, and amylopectin-starch is a complex mixture of variously branched glucose chains. The branching results from additional &agr;-1,6-glycosidic linkages. In plants from which starch is typically isolated, for example maize or potato, the starch is approximately 25% amylose-starch and 75% amylopectin-starch.
[0140] In maize, various mutants in starch metabolism are known, for example waxy, sugary, shrunken and opaque-2. In addition to producing a modified starch, these mutations greatly improve grain quality in maize, and thus expand the use of maize not only as the food but also for the important industrial materials in food chemistry. It would therefore be advantageous to be able readily to obtain mutants in these genes in particular maize genotypes as well as other plants. Such plants can be obtained, for example, using traditional breeding methods and through specific genetic modification by means of recombinant DNA techniques.
[0141] The attached tables disclose exemplary oligonucleotide base sequences which can be used to generate site-specific mutations in genes involved in starch metabolism. 22 TABLE 20 Genome-Altering Oligos Conferring Increased Starch Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Increased Starch GAACTTGAGACTGAGAAAAGGGATCCAAGGACAGTTGCTTCCATT 1509 ADPGPP ATTCTTGGAGGTGGAAAAGGAACTCGACTCTTTCCTCTCACAAAA Arabidopsis thaliana CGCCGCGCCAAGCCTGCCGTTCCTATCGGGG Ala99Lys CCCCGATAGGAACGGCAGGCTTGGCGCGGCGTTTTGTGAGAGGA 1510 GCA-AAA AAGAGTCGAGTTCCTTTTCCACCTCCAAGAATAATGGAAGCAACT GTCCTTGGATCCCTTTTCTCAGTCTCAAGTTC GAGGTGGAAAAGGAACT 1511 AGTTCCTTTTCCACCTC 1512 Increased Starch CAAAACGCCGCGCCAAGCCTGCCGTTCCTATCGGGGGAGCCTAT 1513 ADPGPP AGGTTGATAGATGTACTAATGAGCAATTGTATTAACAGCGGAATCA Arabidopsis thaliana ACAAAGTCTACATACTCACACAATATAACTC Pro127Leu GAGTTATATTGTGTGAGTATGTAGACTTTGTTGATTCCGCTGTTAA 1514 CCA-CTA TACAATTGCTCATTAGTACATCTATCAACCTATAGGCTCCCCCGAT AGGAACGGCAGGCTTGGCGCGGCGTTTTG AGATGTACTAATGAGCA 1515 TGCTCATTAGTACATCT 1516 Increased Starch TCACACAATATAACTCAGCATCATTGAACAGGCATTTAGCCCGTGC 1517 ADPGPP TTACAACTCCAATAATCTTGGCTTTGGAGATGGCTATGTTGAGGTT Arabidopsis thaliana CTTGCGGCCACTCAAACGCCAGGAGAATC Gly162Asn GATTCTCCTGGCGTTTGAGTGGCCGCAAGAACCTCAACATAGCCA 1518 GGA-AAT TCTCCAAAGCCAAGATTATTGGAGTTGTAAGCACGGGGTAAATGC CTGTTCAATGATGCTGAGTTATATTGTGTGA CTCCAATAATCTTGGCT 1519 AGCCAAGATTATTGGAG 1520 Increased Starch TCACACAATATAACTCAGCATCATTGAACAGGCATTTAGCCCGTGC 1521 ADPGPP TTACAACTCCAATAACCTTGGCTTTGGAGATGGCTATGTTGAGGTT Arabidopsis thaliana CTTGCGGCCACTCAAACGCCAGGAGAATC Gly162Asn GATTCTCCTGGCGTTTGAGTGGCCGCAAGAACCTCAACATAGCCA 1522 GGA-AAC TCTCCAAAGCCAAGGTTATTGGAGTTGTAAGCACGGGCTAAATGC CTGTTCAATGATGCTGAGTTATATTGTGTGA CTCCAATAACCTTGGCT 1523 AGCCAAGGTTATTGGAG 1524 Increased Starch GTTTGAGAGAAGAAAGGTAGACCCGCAAAATGTGGCTGCAATCAT 1525 ADPGPP TCTAGGAGGAGGCAAAGGAGCTAAACTCTTCCCTCTTACAATGAG Arabidopsis thaliana AGCCGCAACACCAGCTGTAAATATTCATCTT Asn100Lys AAGATGAATATTTACAGCTGGTGTTGCGGCTCTCATTGTAAGAGG 1526 AAT-AAA GAAGAGTTTAGCTCCTTTGCCTCCTCCTAGAATGATTGCAGCCAC ATTTTGCGGGTCTACCTTTCTTCTCTCAAAC GGAGGCAAAGGAGCTAA 1527 TTAGCTCCTTTGCCTCC 1528 Increased Starch CTTGTGTCTTCAAATTATGTTAGGTTCCTGTTGGTGGATGCTACAG 1529 ADPGPP GCTGATCGATATCCTGATGAGTAACTGTATTAACAGCTGCATCAAC Arabidopsis thaliana AAGATATTTGTGCTGACACAGTTCAACTC Pro128Leu GAGTTGAACTGTGTCAGCACAAATATCTTGTTGATGCAGCTGTTAA 1530 CCG-CTG TACAGTTACTCATCAGGATATCGATCAGCCTGTAGCATCCACCAA CAGGAACCTAACATAATTTGAAGACACAAG CGATATCCTGATGAGTA 1531 TACTCATCAGGATATCG 1532 Increased Starch TGACACAGTTCAACTCAGCTTCCCTTAATCGACATTTAGCACGAAC 1533 ADPGPP TTATTTTGGGAATAATATAAACTTTGGAGGTGGTTTCGTAGAGGTA Arabidopsis thaliana CAAACACTATGACAATAATAACTCTCAGC Gly163Asn GCTGAGAGTTATTATTGTCATAGTGTTTGTACCTCTACGAAACCAC 1534 GGC-AAT CTCCAAAGTTTATATTATTCCCAAAATAAGTTCGTGCTAAATGTCG ATTAAGGGAAGCTGAGTTGAACTGTGTCA TGGGAATAATATAAACT 1535 AGTTTATATTATTCCCA 1536 Increased Starch TGACACAGTTCAACTCAGCTTCCCTTAATCGACATTTAGCACGAAC 1537 ADPGPP TTATTTTGGGAATAACATAAACTTTGGAGGTGGTTTCGTAGAGGTA Arabidopsis thaliana CAAACACTATGACAATAATAACTCTCAGC Gly163Asn GCTGAGAGTTATTATTGTCATAGTGTTTGTACCTCTACGAAACCAC 1538 GGC-AAC CTCCAAAGTTTATGTTATTCCCAAAATAAGTTCGTGCTAAATGTCG ATTAAGGGAAGCTGAGTTGAACTGTGTCA TGGGAATAACATAAACT 1539 AGTTTATGTTATTCCCA 1540 Increased Starch TTGAGGAACAACCAACGGCAGATCCAAAAGCTGTTGCCTCTGTCA 1541 ADPGPP TTCTAGGTGGTGGTAAAGGAACTCGTCTTTTTCCTCTTACAAGCA Lycopersicon GAAGAGCTAAACCAGCTGTTCCTATTGGTGG esculentum CCACCAATAGGAACAGCTGGTTTAGCTCTTCTGCTTGTAAGAGGA 1542 Val94Lys AAAAGACGAGTTCCTTTACCACCACCTAGAATGACAGAGGCAACA GTT-AAA GCTTTTGGATCTGCCGTTGGTTGTTCCTCAA TGGTGGTAAAGGAACTC 1543 GAGTTCCTTTACCACCA 1544 Increased Starch CAAGCAGAAGAGCTAAACCAGCTGTTCCTATTGGTGGTTGTTACC 1545 ADPGPP GGCTAATTGATGTACAAATGAGTAACTGCATTAACAGTGGCATAC Lycopersicon GGAAAATTTTCATCTTAACACAGTTCAATTC esculentum GAATTGAACTGTGTTAAGATGAAAATTTTCCGTATGCCACTGTTAA 1546 Pro122Leu TGCAGTTACTCATTTGTACATCAATTAGCCGGTAACAACCACCAAT CCA-CAA AGGAACAGCTGGTTTAGCTCTTCTGGTTG TGATGTACAAATGAGTA 1547 TACTCATTTGTACATCA 1548 Increased Starch CACAGTTCAATTCCTTTTCCCTCAATCGTCACCTTGCCCGCACGTA 1549 ADPGPP TAATTTTGGAAATAATGTGGGTTTTGGAGATGGATTTGTGGAGGTT Lycopersicon TTAGCTGCAACCCAGACTCCAGGGGATGC esculentum GCATCCCCTGGAGTCTGGGTTGCAGCTAAAACCTCCACAAATCCA 1550 Gly158Asn TCTCCAAAACCCACATTATTTCCAAAATTATACGTGCGGGCAAGGT GGA-AAT GACGATTGAGGGAAAAGGAATTGAACTGTG TGGAAATAATGTGGGTT 1551 AACCCACATTATTTCCA 1552 Increased Starch CACAGTTCAATTCCTTTTCCCTCAATCGTCACCTTGCCCGCACGTA 1553 ADPGPP TAATTTTGGAAATAACGTGGGTTTTGGAGATGGATTTGTGGAGGT Lycopersicon TTTAGCTGCAACCCAGACTCCAGGGGATGC esculentum GCATCCCCTGGAGTCTGGGTTGCAGCTAAAACCTCCACAAATCCA 1554 Gly158Asn TCTCCAAAACCCACGTTATTTCCAAAATTATACGTGCGGGCAAGGT GGA-AAC GACGATTGAGGGAAAAGGAATTGAACTGTG TGGAAATAACGTGGGTT 1555 AACCCACGTTATTTCCA 1556 Increased Starch ACGTAGATTTGGAAAAAAGAGACCCAAGTACAGTTGTAGCAATTAT 1557 ADPGPP ACTAGGTGGAGGTAAAGGAACTCGTCTCTTCCCTCTCACCAAGCG Cicer arietinum ACGAGCCAAGCCTGCTGTTCCAATTGGAGG Ala101Lys CCTCCAATTGGAACAGCAGGCTTGGCTCGTCGCTTGGTGAGAGG 1558 GCT-AAA GAAGAGACGAGTTCCTTTACCTCCACCTAGTATAATTGCTACAACT GTACTTGGGTCTCTTTTTTCCAAATCTACGT TGGAGGTAAAGGAACTC 1559 GAGTTCCTTTACCTCCA 1560 Increased Starch CCAAGCGACGAGCCAAGCCTGCTGTTCCAATTGGAGGTGCTTATA 1561 ADPGPP GGCTGATAGATGTACTAATGAGTAACTGCATCAATAGTGGGATCA Cicer arietinum ACAAAGTATACATTCTCACTCAATTTAATTC Pro129Leu GAATTAAATTGAGTGAGAATGTATACTTTGTTGATCCCACTATTGA 1562 CCA-CTA TGCAGTTACTCATTAGTACATCTATCAGCCTATAAGCACCTCCAAT TGGAACAGCAGGCTTGGCTCGTCGCTTGG AGATGTACTAATGAGTA 1563 TACTCATTAGTACATCT 1564 Increased Starch CTCAATTTAATTCAGCCTCACTCAACAGGCATATTGCACGTGCTTA 1565 ADPGPP TAACTCTGGTACTAATGTCACTTTTGGAGATGGCTATGTTGAGGTT Cicer arietinum CTTGCAGCAACTCAAACTCCAGGGGAGCA Gly165Asn TGCTCCCGTGGAGTTTGAGTTGCTGCAAGAACCTCAACATAGCCA 1566 GGA-AAT TCTCCAAAAGTGACATTAGTACCAGAGTTATAAGCACGTGCAATAT GCCTGTTGAGTGAGGCTGAATTAAATTGAG TGGTACTAATGTCACTT 1567 AAGTGACATTAGTACCA 1568 Increased Starch CTCAATTTAATTCAGCCTCACTCAACAGGCATATTGCACGTGCTTA 1569 ADPGPP TAACTCTGGTACTAACGTCACTTTTGGAGATGGCTATGTTGAGGTT Cicer arietinum CTTGCAGCAACTCAAACTCCAGGGGAGCA Gly165Asn TGCTCCCCTGGAGTTTGAGTTGCTGCAAGAACCTCAACATAGCCA 1570 GGA-AAC TCTCCAAAAGTGACGTTAGTACCAGAGTTATAAGCACGTGCAATAT GCCTGTTGAGTGAGGCTGAATTAAATTGAG TGGTACTAACGTCACTT 1571 AAGTGACGTTAGTACCA 1572 Increased Starch ATATTGGAGAGGCGTCGGGCAAACCCTAAGAATGTGGCTGCAATC 1573 ADPGPP ATACTGCCAGGCGGTAAAGGGACACACCTATTCCCTCTCACCAAT Ipomoea batatas CGAGCTGCAACCCCTGCTGTTCCACTTGGAG Ala94Lys CTCCAAGTGGAACAGCAGGGGTTGCAGCTCGATTGGTGAGAGGG 1574 GCA-AAA AATAGGTGTGTCCCTTTACCGCCTGGCAGTATGATTGCAGCCACA TTCTTAGGGTTTGCCCGACGCCTCTCCAATAT CAGGCGGTAAAGGGACA 1575 TGTCCCTTTACCGCCTG 1576 Increased Starch CCAATCGAGCTGCAACCCCTGCTGTTCCACTTGGAGGATGCTATA 1577 ADPGPP GGTTGATCGACATTCTAATGAGCAACTGCATCAACAGCGGGGTTA Ipomoea batatas ACAAGATCTTTGTGCTGACCCAGTTCAATTC Pro122Leu GAATTGAACTGGGTCAGCACAAAGATCTTGTTAACCCCGCTGTTG 1578 CCA-CTA ATGCAGTTGCTCATTAGAATGTCGATCAACCTATAGCATCCTCCAA GTGGAACAGCAGGGGTTGCAGCTCGATTGG CGACATTCTAATGAGCA 1579 TGCTCATTAGAATGTCG 1580 Increased Starch TGACCCAGTTCAATTCAGCTTCTCTTAACCGTCACATTTCCCGTAC 1581 ADPGPP CGTCTTTGGCAATAATGTGAGCTTCGGAGATGGATTTGTTGAGGT Ipomoea batatas GCTGGCTGCAACCCAAACACAAGGGGAAAC Gly157Asn GTTTCCCCTTGTGTTTGGGTTGCAGCCAGCACCTCAACAAATCCA 1582 GGT-AAT TCTCCGAAGCTCACATTATTGCCAAAGACGGTACGGGAAATGTGA CGGTTAAGAGAAGCTGAATTGAACTGGGTCA TGGCAATAATGTGAGCT 1583 AGCTCACATTATTGCCA 1584 Increased Starch TGACCCAGTTCAATTCAGCTTCTCTTAACCGTCACATTTCCCGTAC 1585 ADPGPP CGTCTTTGGCAATAACGTGAGCTTCGGAGATGGATTTGTTGAGGT Ipomoea batatas GCTGGCTGCAACCCAAACACAAGGGGAAAC Gly157Asn GTTTCCCCTTGTGTTTGGGTTGCAGCCAGCACCTCAACAAATCCA 1586 GGT-AAC TCTCCGAAGCTCACGTTATTGCCAAAGACGGTACGGGAAATGTGA CGGTTAAGAGAAGCTGAATTGAACTGGGTCA TGGCAATAACGTGAGCT 1587 AGCTCACGTTATTGCCA 1588 Increased Starch CATTCCGGAGGAACTTTGCGGATCCAAATGAGGTTGCTGCTGTTA 1589 ADPGPP TATTGGGTGGTGGCAAAGGGACTCAACTTTTTCCTCTCACAAGCA Oryza sativa CAAGGGCCACGCCTGCTGTTCCTATTGGAGG Thr96Lys CCTCCAATAGGAACAGCAGGCGTGGCCCTTGTGCTTGTGAGAGG 1590 ACC-AAA AAAAAGTTGAGTCCCTTTGCCACCACCCAATATAACAGCAGCAAC CTCATTTGGATCCGCAAAGTTCCTCCGGAATG TGGTGGCAAAGGGACTC 1591 GAGTCCCTTTGCCACCA 1592 Increased Starch CAAGCACAAGGGCCACGCCTGCTGTTCCTATTGGAGGATGCTATA 1593 ADPGPP GGCTTATCGATATCCTCATGAGCAACTGTTTCAACAGTGGCATAAA Oryza sativa CAAGATATTCATAATGACTCAATTCAACTC Pro124Leu GAGTTGAATTGAGTCATTATGAATATCTTGTTTATGCCACTGTTGA 1594 CCC-CTC AACAGTTGCTCATGAGGATATCGATAAGCCTATAGCATCCTCCAAT AGGAACAGCAGGCGTGGCCCTTGTGCTTG CGATATCCTCATGAGCA 1595 TGCTCATGAGGATATCG 1596 Increased Starch TGACTCAATTCAACTCAGCATCTCTTAATCGTCACATTCATCGTAC 1597 ADPGPP GTACCTTGGTGGTAATATCAACTTTACTGATGGTTCTGTTGAGGTA Oryza sativa TTAGCCGCTACACAAATGCCTGGGGAGGC Gly159Asn GCCTCCCCAGGCATTTGTGTAGCGGCTAATACCTCAACAGAACCA 1598 GGA-AAT TCAGTAAAGTTGATATTACCACCAAGGTACGTACGATGAATGTGA CGATTAAGAGATGCTGAGTTGAATTGAGTCA TGGTGGTAATATCAACT 1599 AGTTGATATTACCACCA 1600 Increased Starch TGACTCAATTCAACTCAGCATCTCTTAATCGTCACATTCATCGTAC 1601 ADPGPP GTACCTTGGTGGTAACATCAACTTTACTGATGGTTCTGTTGAGGTA Oryza sativa TTAGCCGCTACACAAATGCCTGGGGAGGC Gly159Asn GCCTCCCCAGGCATTTGTGTAGCGGCTAATACCTCAACAGAACCA 1602 GGA-AAC TCAGTAAAGTTGATGTTACCACCAAGGTACGTACGATGAATGTGA CGATTAAGAGATGCTGAGTTGAATTGAGTCA TGGTGGTAACATCAACT 1603 AGTTGATGTTACCACCA 1604 Increased Starch GTCCTTCAGGAGGATTAAGCGATCCGAACGAGGTTGCGGCCGTC 1605 ADPGPP ATACTCGGCGGCGGCAAAGGGACTCAGCTCTTCCCACTCACGAG Triticum aestivum CACAAGGGCCACACCTGCTGTTCCTATTGGAGG Thr80Lys CCTCCAATAGGAACAGCAGGTGTGGCCCTTGTGCTCGTGAGTGG 1606 ACC-AAA GAAGAGCTGAGTCCCTTTGCCGCCGCCGAGTATGACGGCCGCAA CCTCGTTCGGATCGCTTAATCCTCCTGAAGGAC CGGCGGCAAAGGGACTC 1607 GAGTCCCTTTGCCGCCG 1608 Increased Starch CGAGCACAAGGGCCACACCTGCTGTTCCTATTGGAGGATGTTACA 1609 ADPGPP GGCTCATCGACATTCTCATGAGCAACTGCTTCAACAGTGGCATCA Triticum aestivum ACAAGATATTCGTCATGACCCAGTTCAACTC Pro108Leu GAGTTGAACTGGGTCATGACGAATATCTTGTTGATGCCACTGTTG 1610 CCC-CTC AAGCAGTTGCTCATGAGAATGTCGATGAGCCTGTAACATCCTCCA ATAGGAACAGCAGGTGTGGCCCTTGTGCTCG CGACATTCTCATGAGCA 1611 TGCTCATGAGAATGTCG 1612 Increased Starch TGACCCAGTTCAACTCGGCCTCCCTTAATCGTCACATTCACCGCA 1613 ADPGPP CCTACCTCGGCGGGAATATCAATTTCACTGATGGATCCGTTGAGG Triticum aestivum TATTGGCCGCGACGCAAATGCCCGGGGAGGC Gly143Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACGGATCC 1614 GGA-AAT ATCAGTGAAATTGATATTCCCGCCGAGGTAGGTGCGGTGAATGTG ACGATTAAGGGAGGCCGAGTTGAACTGGGTCA CGGCGGGAATATCAATT 1615 AATTGATATTCCCGCCG 1616 Increased Starch TGACCCAGTTCAACTCGGCCTCCCTTAATCGTCACATTCACCGCA 1617 ADPGPP CCTACCTCGGCGGGAACATCAATTTCACTGATGGATCCGTTGAGG Triticum aestivum TATTGGCCGCGACGCAAATGCCCGGGGAGGC Gly143Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACGGATCC 1618 GGA-AAC ATCAGTGAAATTGATGTTCCCGCCGAGGTAGGTGCGGTGAATGTG ACGATTAAGGGAGGCCGAGTTGAACTGGGTCA CGGCGGGAACATCAATT 1619 AATTGATGTTCCCGCCG 1620 Increased Starch CCTCCCGAAAGAATTATGCTGATGCAAGCCACGTTTCTGCTGTCA 1621 ADPGPP TTTTGGGTGGAGGCAAAGGAGTTCAACTCTTTCCTCTGACAAGCA Oryza sativa CAAGGGCTACCCCCGCTGTTCCTGTTGGAGG Thr95Lys CCTCCAACAGGAACAGCGGGGGTAGCCCTTGTGCTTGTCAGAGG 1622 ACT-AAA AAAGAGTTGAACTCCTTTGCCTCCACCCAAAATGACAGCAGAAAC GTGGCTTGCATCAGCATAATTCTTTCGGGAGG TGGAGGCAAAGGAGTTC 1623 GAACTCCTTTGCCTCCA 1624 Increased Starch CAAGCACAAGGGCTACCCCCGCTGTTCCTGTTGGAGGATGTTACA 1625 ADPGPP GGCTTATTGACATCCTTATGAGCAATTGCTTCAATAGCGGAATAAA Oryza sativa TAAAATATTTGTGATGACTCAGTTCAATTC Pro123Leu GAATTGAACTGAGTCATCACAAATATTTTATTTATTCCGCTATTGAA 1626 CCT-CTT GCAATTGCTCATAAGGATGTCAATAAGCCTGTAACATCCTCCAACA GGAACAGCGGGGGTAGCCCTTGTGCTTG TGACATCCTTATGAGCA 1627 TGCTCATAAGGATGTCA 1628 Increased Starch TGACTCAGTTCAATTCTGCTTCTCTTAATCGCCATATCCATCATACA 1629 ADPGPP TACCTTGGTGGGAATATCAACTTTACTGATGGGTCTGTGCAGGTA Oryza sativa TTGGCTGCTACACAAATGCCTGACGAACC Gly158Asn GGTTCGTCAGGCATTTGTGTAGCAGCCAATACCTGCACAGACCCA 1630 GGG-AAT TCAGTAAAGTTGATATTCCCACCAAGGTATGTATGATGGATATGGC GATTAAGAGAAGCAGAATTGAACTGAGTCA TGGTGGGAATATCAACT 1631 AGTTGATATTCCCACCA 1632 Increased Starch TGACTCAGTTCAATTCTGCTTCTCTTAATCGCCATATCCATCATACA 1633 ADPGPP TACCTTGGTGGGAACATCAACTTTACTGATGGGTCTGTGCAGGTA Oryza sativa TTGGCTGCTACACAAATGCCTGACGAACC Gly158Asn GGTTCGTCAGGCATTTGTGTAGCAGCCAATACCTGCACAGACCCA 1634 GGG-AAC TCAGTAAAGTTGATGTTCCCACCAAGGTATGTATGATGGATATGG CGATTAAGAGAAGCAGAATTGAACTGAGTCA TGGTGGGAACATCAACT 1635 AGTTGATGTTCCCACCA 1636 Increased Starch CCTTCCGCAGGAATTACGCCGATCCGAACGAGGTCGCGGCCGTC 1637 ADPGPP ATACTCGGCGGTGGCAAAGGGACTCAGCTCTTCCCTCTCACAAG Triticum pestivum CACAAGGGCCACACCTGCTGTTCCTATTGGAGG Thr99Lys CCTCCAATAGGAACAGCAGGTGTGGCCCTTGTGCTTGTGAGAGG 1638 ACC-AAA GAAGAGCTGAGTCCCTTTGCCACCGCCGAGTATGACGGCCGCGA CCTCGTTCGGATCGGCGTAATTCCTGCGGAAGG CGGTGGCAAAGGGACTC 1639 GAGTCCCTTTGCCACCG 1640 Increased Starch CAAGCACAAGGGCCACACCTGCTGTTCCTATTGGAGGATGTTACA 1641 ADPGPP GGCTCATCGATATTCTCATGAGCAACTGCTTCAATAGTGGCATCAA Triticum aestivum CAAGATATTCGTCATGACGCAGTTCAACTC Pro127Leu GAGTTGAACTGCGTCATGACGAATATCTTGTTGATGCCACTATTGA 1642 CCC-CTC AGCAGTTGCTCATGAGAATATCGATGAGCCTGTAACATCCTCCAA TAGGAACAGCAGGTGTGGCCCTTGTGCTTG CGATATTCTCATGAGCA 1643 TGCTCATGAGAATATCG 1644 Increased Starch TGACGCAGTTCAACTCGGCCTCTCTTAATCGTCACATTCACCGCA 1645 ADPGPP CCTACCTCGGCGGGAATATCAATTTCACTGATGGATCTGTTGAGG Triticum aestivum TATTGGCCGCGACGCAAATGCCCGGGGAGGC Gly162Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACAGATCC 1646 GGA-AAT ATCAGTGAAATTGATATTCCCGCCGAGGTAGGTGCGGTGAATGTG ACGATTAAGAGAGGCCGAGTTGAACTGCGTCA CGGCGGGAATATCAATT 1647 AATTGATATTCCCGCCG 1648 Increased Starch TGACGCAGTTCAACTCGGCCTCTCTTAATCGTCACATTCACCGCA 1649 ADPGPP CCTACCTCGGCGGGAACATCAATTTCACTGATGGATCTGTTGAGG Triticum aestivum TATTGGCCGCGACGCAAATGCCCGGGGAGGC Gly162Asn GCCTCCCCGGGCATTTGCGTCGCGGCCAATACCTCAACAGATCC 1650 GGA-AAC ATCAGTGAAATTGATGTTCCCGCCGAGGTAGGTGCGGTGAATGTG ACGATTAAGAGAGGCCGAGTTGAACTGCGTCA CGGCGGGAACATCAATT 1651 AATTGATGTTCCCGCCG 1652 Increased Starch CTTTTCGGAGGAATTATGCTGATCCTAATGAAGTCGCTGCCGTCA 1653 ADPGPP TTTTGGGTGGTGGTAAAGGGACTCAGCTTTTCCCTCTCACAAGCA Zea mays CAAGGGCCACCCCTGCTGTTCCTATTGGAGG Thr96Lys CCTCCAATAGGAACAGCAGGGGTGGCCCTTGTGCTTGTGAGAGG 1654 ACC-AAA GAAAAGCTGAGTCCCTTTACCACCACCCAAAATGACGGCAGCGAG TTCATTAGGATCAGCATAATTCCTCCGAAAAG TGGTGGTAAAGGGACTC 1655 GAGTCCCTTTACCACCA 1656 Increased Starch CAAGCACAAGGGCCACCCCTGCTGTTCCTATTGGAGGATGTTACA 1657 ADPGPP GGCTTATTGATATCCTCATGAGCAACTGTTTCAACAGTGGCATAAA Zea mays CAAGATATTTGTTATGACTCAGTTCAACTC Pro124Leu GAGTTGAACTGAGTCATAACAAATATCTTGTTTATGCCACTGTTGA 1658 CCC-CTC AACAGTTGCTCATGAGGATATCAATAAGCCTGTAACATCCTCCAAT AGGAACAGCAGGGGTGGCCCTTGTGCTTG TGATATCCTCATGAGCA 1659 TGCTCATGAGGATATCA 1660 Increased Starch TGACTCAGTTCAACTCAGCTTCTCTTAACCGTCACATTCATCGTAC 1661 ADPGPP CTATCTTGGTGGGAATATCAACTTCACTGATGGATCTGTTGAGGT Zea mays GCTGGCTGCAACACAAATGCCTGGGGAGGC Gly159Asn GCCTCCCCAGGCATTTGTGTTGCAGCCAGCACCTCAACAGATCCA 1662 GGG-AAT TCAGTGAAGTTGATATTCCCACCAAGATAGGTACGATGAATGTGA CGGTTAAGAGAAGCTGAGTTGAACTGAGTCA TGGTGGGAATATCAACT 1663 AGTTGATATTCCCACCA 1664 Increased Starch TGACTCAGTTCAACTCAGCTTCTCTTAACCGTCACATTCATCGTAC 1665 ADPGPP CTATCTTGGTGGGAACATCAACTTCACTGATGGATCTGTTGAGGT Zea mays GCTGGCTGCAACACAAATGCCTGGGGAGGC Gly159Asn GCCTCCCCAGGCATTTGTGTTGCAGCCAGCACCTCAACAGATCCA 1666 GGG-AAC TCAGTGAAGTTGATGTTCCCACCAAGATAGGTACGATGAATGTGA CGGTTAAGAGAAGCTGAGTTGAACTGAGTCA TGGTGGGAACATCAACT 1667 AGTTGATGTTCCCACCA 1668 Increased Starch CTTGAGAGGCAAAAGAAGGGCGATGCAAGGACAGTAGTAGCAAT 1669 ADPGPP CATTCTAGGAGGGGGAAAGGGAACTCGTCTTTTCCCCCTCACCAA Solanum tuberosum ACGTCGTGCTAAGCCTGCCGTTCCAATGGGAG Ala58Lys CTCCCATTGGAACGGCAGGCTTAGCACGACGTTTGGTGAGGGGG 1670 GCG-AAG AAAAGACGAGTTCCCTTTCCCCCTCCTAGAATGATTGCTACTACTG TCCTTGCATCGCCCTTCTTTTGCCTCTCAAG GAGGGGGAAAGGGAACT 1671 AGTTCCCTTTCCCCCTC 1672 Increased Starch CCAAACGTCGTGCTAAGCCTGCCGTTCCAATGGGAGGAGCATATA 1673 ADPGPP GGCTAATTGATGTACTAATGAGCAACTGTATTAACAGTGGCATCAA Solanum tuberosum CAAAGTATACATTCTCACTCAATTCAACTC Pro86Leu GAGTTGAATTGAGTGAGAATGTATACTTTGTTGATGCCACTGTTAA 1674 CCA-CTA TACAGTTGCTCATTAGTACATCAATTAGCCTATATGCTCCTCCCAT TGGAACGGCAGGCTTAGCACGACGTTTGG TGATGTACTAATGAGCA 1675 TGCTCATTAGTACATCA 1676 Increased Starch CTCAATTCAACTCAGCCTCACTTAACAGGCATATAGCTCGTGCTTA 1677 ADPGPP CAACTTTGGCAATAATGTCACATTCGAGAGTGGCTATGTCGAGGT Solanum tuberosum CTTAGCAGCAACTCAAACACCAGGTGAATT Gly122Asn AATTCACCTGGTGTTTGAGTTGCTGCTAAGACCTCGACATAGCCA 1678 GGG-AAT CTCTCGAATGTGACATTATTGCCAAAGTTGTAAGCACGAGCTATAT GCCTGTTAAGTGAGGCTGAGTTGAATTGAG TGGCAATAATGTCACAT 1679 ATGTGACATTATTGCCA 1680 Increased Starch CTCAATTCAACTCAGCCTCACTTAACAGGCATATAGCTCGTGCTTA 1681 ADPGPP CAACTTTGGCAATAACGTCACATTCGAGAGTGGCTATGTCGAGGT Solanum tuberosum CTTAGCAGCAACTCAAACACCAGGTGAATT Gly122Asn AATTCACCTGGTGTTTGAGTTGCTGCTAAGACCTCGACATAGCCA 1682 GGG-AAC CTCTCGAATGTGACGTTATTGCCAAAGTTGTAAGCACGAGCTATAT GCCTGTTAAGTGAGGCTGAGTTGAATTGAG TGGCAATAACGTCACAT 1683 ATGTGACGTTATTGCCA 1684 Increased Starch TATTTGAATCTCCAAAAGCTGACCCAAAAAATGTGGCTGCAATTGT 1685 ADPGPP GCTGGGTGGTGGTAAAGGGACTCGCCTCTTTCCTCTTACTAGCAG Beta vulgaris GAGAGCTAAGCCAGCAGTGCCAATTGGAGG Ala98Lys CCTCCAATTGGCACTGCTGGCTTAGCTCTCCTGCTAGTAAGAGGA 1686 GCT-AAA AAGAGGCGAGTCCCTTTACCACCACCCAGCACAATTGCAGCCACA TTTTTTGGGTCAGCTTTTGGAGATTCAAATA TGGTGGTAAAGGGACTC 1687 GAGTCCCTTTACCACCA 1688 Increased Starch TATTTGAATCTCCAAAAGCTGACCCAAAAAATGTGGCTGCAATTGT 1689 ADPGPP GCTGGGTGGTGGTAACGGGACTCGCCTCTTTCCTCTTACTAGCAG Beta vulgaris GAGAGCTAAGCCAGCAGTGCCAATTGGAGG Ala98Lys CCTCCAATTGGCACTGCTGGCTTAGCTCTCCTGCTAGTAAGAGGA 1690 GCT-AAC AAGAGGCGAGTCCCGTTACCACCACCCAGCACAATTGCAGCCAC ATTTTTTGGGTCAGCTTTTGGAGATTCAAATA TGGTGGTAACGGGACTC 1691 GAGTCCCGTTACCACCA 1692 Increased Starch CTAGCAGGAGAGCTAAGCCAGCAGTGCCAATTGGAGGGTGTTAC 1693 ADPGPP AGGCTGATTGATGTGCTTATGAGCAACTGCATCAACAGTGGCATT Beta vulgaris AGAAAGATTTTCATTCTTACCCAGTTCAATTC Pro126Leu GAATTGAACTGGGTAAGAATGAAAATCTTTCTAATGCCACTGTTGA 1694 CCT-CTT TGCAGTTGCTCATAAGCACATCAATCAGCCTGTAACACCCTCCAA TTGGCACTGCTGGCTTAGCTCTCCTGCTAG TGATGTGCTTATGAGCA 1695 TGCTCATAAGCACATCA 1696 Increased Starch CCCAGTTCAATTCGTTTTCGCTTAATCGTCATCTTGCTCGAACCTA 1697 ADPGPP TAATTTTGGAGATAATGTGAATTTTGGGGATGGCTTTGTGGAGGTT Beta vulgaris TTTGCTGCTACACAAACACCTGGAGAATC Gly162Asn GATTCTCCAGGTGTTTGTGTAGCAGCAAAAACCTCCACAAAGCCA 1698 GGT-AAT TCCCCAAAATTCACATTATCTCCAAAATTATAGGTTCGAGCAAGAT GACGATTAAGCGAAAACGAATTGAACTGGG TGGAGATAATGTGAATT 1699 AATTCACATTATCTCCA 1700 Increased Starch CCCAGTTCAATTCGTTTTCGCTTAATCGTCATCTTGCTCGAACCTA 1701 ADPGPP TAATTTTGGAGATAACGTGAATTTTGGGGATGGCTTTGTGGAGGT Beta vulgaris TTTTGCTGCTACACAAACACCTGGAGAATC Gly162Asn GATTCTCCAGGTGTTTGTGTAGCAGCAAAAACCTCCACAAAGCCA 1702 GGT-AAC TCCCCAAAATTCACGTTATCTCCAAAATTATAGGTTCGAGCAAGAT GACGATTAAGCGAAAACGAATTGAACTGGG TGGAGATAACGTGAATT 1703 AATTCACGTTATCTCCA 1704
[0142] 23 TABLE 21 Oligonucleotides to produce plants with waxy starch Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Waxy starch GAATCCAGGTAAACGGGTAGTTCATAATGGCAACTGTGACTGCTT 1705 GBSS CTTCTAACTTTGTGTGAAGAACTTCACTTTTCAACAATCATGGTGCT Arabidopsis thaliana TCTTCATGCTCTGATGTCGCTCAGATTAC Ser12Term GTAATCTGAGCGACATCAGAGCATGAAGAAGCACCATGATTGTTG 1706 TCA-TGA AAAAGTGAAGTTCTTCACACAAAGTTAGAAGAAGCAGTCACAGTTG CCATTATGAACTACCCGTTTACCTGGATTC CTTTGTGTGAAGAACTT 1707 AAGTTCTTCACACAAAG 1708 Waxy starch ATCCAGGTAAACGGGTAGTTCATAATGGCAACTGTGACTGCTTCTT 1709 GBSS CTAACTTTGTGTCATGAACTTCACTTTTCAACAATCATGGTGCTTCT Arabidopsis thaliana TCATGCTCTGATGTCGCTCAGATTACCT Arg13Term AGGTAATCTGAGCGACATCAGAGCATGAAGAAGCACCATGATTGT 1710 AGA-TGA TGAAAAGTGAAGTTCATGACACAAAGTTAGAAGAAGCAGTCACAGT TGCCATTATGAACTACCCGTTTACCTGGAT TTGTGTCATGAACTTCA 1711 TGAAGTTCATGACACAA 1712 Waxy starch TAAACGGGTAGTTCATAATGGCAACTGTGACTGCTTCTTCTAACTT 1713 GBSS TGTGTCAAGAACTTGACTTTTCAACAATCATGGTGCTTCTTCATGCT Arabidopsis thaliana CTGATGTCGCTCAGATTACCTTAAAAGG Ser15Term CCTTTTAAGGTAATCTGAGCGACATCAGAGCATGAAGAAGCACCAT 1714 TCA-TGA GATTGTTGAAAAGTCAAGTTCTTGACACAAAGTTAGAAGAAGCAGT CACAGTTGCCATTATGAACTACCCGTTTA AAGAACTTGACTTTTCA 1715 TGAAAAGTCAAGTTCTT 1716 Waxy starch TGACTGCTTCTTCTAACTTTGTGTCAAGAACTTGACTTTTCAACAAT 1717 GBSS CATGGTGCTTCTTGATGCTCTGATGTCGCTCAGATTACCTTAAAAG Arabidopsis thaliana GCCAATCCTTGACTCATTGTGGGTTAAG Ser24Term CTTAACCCACAATGAGTCAAGGATTGGCCTTTTAAGGTAATCTGAG 1718 TCA-TGA CGACATCAGAGCATCAAGAAGCACCATGATTGTTGAAAAGTGAAG TTCTTGACACAAAGTTAGAAGAAGCAGTCA TGCTTCTTGATGCTCTG 1719 CAGAGCATCAAGAAGCA 1720 Waxy starch TGCTTCTTCTAACTTTGTGTCAAGAACTTCACTTTTCAACAATCATG 1721 GBSS GTGCTTCTTCATGATCTGATGTCGCTCAGATTACCTTAAAAGGCCA Arabidopsis thaliana ATCCTTGACTCATTGTGGGTTAAGGTCA Cys25Term TGACCTTAACCCACAATGAGTCAAGGATTGGCCTTTTAAGGTAATC 1722 TGC-TGA TGAGCGACATCAGATCATGAAGAAGCACCATGATTGTTGAAAAGT GAAGTTCTTGACACAAAGTTAGAAGAAGCA TCTTCATGATCTGATGT 1723 ACATCAGATCATGAAGA 1724 Waxy starch GTAACAGCTTCACAGTTGGTGTCACATGTCCATGGTGGAGCAACG 1725 GBSS TCTTCACCGGATACTTAAACAAACTTGGCCCAGGTTGGCCTCAGG Antirrhinum majus AACCAGCAATTCACTCACAATGGGTTGAGAT Lys24Term ATCTCAAGCCATTGTGAGTGAATTGCTGGTTCGTGAGGCCAACCTG 1726 AAA-TAA GGCCAAGTTTGTTTAAGTATCGGGTGAAGACGTTGCTCCACCATG GACATGTGACACCAACTGTGAAGGTGTTAC CGGATACTTAAACAAAC 1727 GTTTGTTTAAGTATCCG 1728 Waxy starch CACAGTTGGTGTCACATGTCCATGGTGGAGCAAGGTCTTCACCGG 1729 GBSS ATAGTAAAACAAACTAGGGCGAGGTTGGCCTCAGGAACCAGCAAT Antirrhinum majus TCACTCACAATGGGTTGAGATCAATAAACAT Leu27Term ATGTTTATTGATCTCAACCCATTGTGAGTGAATTGCTGGTTCCTGA 1730 TTG-TAG GGCCAACCTGGGCCTAGTTTGTTTTAGTATCGGGTGAAGACGTTG CTCCACCATGGACATGTGACACCAACTGTG AACAAACTAGGCCCAGG 1731 CCTGGGCCTAGTTTGTT 1732 Waxy starch TTGGTGTCACATGTCCATGGTGGAGCAACGTCTTCACCGGATACT 1733 GBSS AAAACAAACTTGGCCTAGGTTGGCCTCAGGAACCAGCAATTCACT Antirrhinum majus CACAATGGGTTGAGATCAATAAACATGGTTG Gln29Term CAACCATGTTTATTGATCTCAACCCATTGTGAGTGAATTGCTGGTT 1734 GAG-TAG CCTGAGGCCAACCTAGGCCAAGTTTGTTTTAGTATCCGGTGAAGA CGTTGCTCCACCATGGACATGTGACACCAA ACTTGGCCTAGGTTGGC 1735 GCCAACCTAGGCCAAGT 1736 Waxy starch GGTGGAGCAACGTCTTCACCGGATACTAAAACAAACTTGGCCCAG 1737 GBSS GTTGGCCTCAGGAACTAGCAATTCACTCACAATGGGTTGAGATCA Antirrhinum majus ATAAACATGGTTGATAAGCTTCAAATGAGGA Gln35Term TCCTCATTTGAAGCTTATCAACCATGTTTATTGATGTCAACCCATTG 1738 GAG-TAG TGAGTGAATTGCTAGTTCCTGAGGCCAACCTGGGCCAAGTTTGTTT TAGTATCCGGTGAAGACGTTGCTCCACC TCAGGAACTAGCAATTC 1739 GAATTGCTAGTTCCTGA 1740 Waxy starch GGAGCAACGTCTTCACCGGATACTAAAACAAACTTGGCCCAGGTT 1741 GBSS GGCCTCAGGAACCAGTAATTCACTCACAATGGGTTGAGATCAATAA Antirrhinum majus ACATGGTTGATAAGCTTCAAATGAGGAACA Gln36Term TGTTCCTCATTTGAAGCTTATCAACCATGTTTATTGATCTCAACCCA 1742 CAA-TAA TTGTGAGTGAATTACTGGTTCCTGAGGCCAACCTGGGCCAAGTTT GTTTTAGTATCCGGTGAAGACGTTGCTCC GGAACCAGTAATTCACT 1743 AGTGAATTACTGGTTCC 1744 Waxy starch GTGATGGCGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTG 1745 GBSS GGGGTGCCACTTCTTGAGAATCAAAAGTGGGGTTGGGTCAATTAG Ipomoea batatas CCCTGAGGAGCCAAGCTGTGACTCACAATG Gly20Term CATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGACCCAACC 1746 GGA-TGA CCACTTTTGATTCTCAAGAAGTGGCACCCCCACAGACATGAGAAA CAAAGTGTGAGGCAGTTATAGTCGCCATCAC CCACTTCTTGAGAATCA 1747 TGATTCTCAAGAAGTGG 1748 Waxy starch ATGGCGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGG 1749 GBSS GTGCCACTTCTGGATAATCAAAAGTGGGGTTGGGTCAATTAGCCC Ipomoea batatas TGAGGAGCCAAGCTGTGACTCACAATGGGT Glu21Term ACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGACCCA 1750 GAA-TAA ACCCCACTTTTGATTATCCAGAAGTGGCACCCCCACAGACATGAG AAACAAAGTGTGAGGCAGTTATAGTCGCCAT CTTCTGGATAATCAAAA 1751 TTTTGATTATCCAGAAG 1752 Waxy starch CGACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGGGTGC 1753 GBSS CACTTCTGGAGAATGAAAAGTGGGGTTGGGTCAATTAGCCCTGAG Ipomoea batatas GAGCCAAGCTGTGACTCACAATGGGTTGAG Ser22Term CTCAACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATTGA 1754 TCA-TGA CCCAACCCCACTTTTCATTCTCCAGAAGTGGCACCCCCACAGACAT GAGAAACAAAGTGTGAGGCAGTTATAGTCG TGGAGAATGAAAAGTGG 1755 CCACTTTTCATTCTCCA 1756 Waxy starch ACTATAACTGCCTCACACTTTGTTTCTCATGTCTGTGGGGGTGCCA 1757 GBSS CTTCTGGAGAATCATAAGTGGGGTTGGGTCAATTAGCCCTGAGGA Ipomoea batatas GCCAAGCTGTGACTCACAATGGGTTGAGAC Lys23Term GTCTCAACCCATTGTGAGTCACAGCTTGGCTCCTCAGGGCTAATT 1758 AAA-TAA GACCCAACCCCACTTATGATTCTCCAGAAGTGGCACCCCCACAGA CATGAGAAACAAAGTGTGAGGCAGTTATAGT GAGAATCATAAGTGGGG 1759 CCCCACTTATGATTCTC 1760 Waxy starch CCTCACACTTTGTTTCTCATGTCTGTGGGGGTGCCACTTCTGGAGA 1761 G BSS ATCAAAAGTGGGGTAGGGTCAATTAGCCCTGAGGAGCCAAGCTGT Ipomoea batatas GACTCACAATGGGTTGAGACCTGTGAACAA Leu26Term TTGTTCACAGGTCTCAACCCATTGTGAGTCACAGCTTGGCTCCTCA 1762 TTG-TAG GGGCTAATTGACCCTACCCCACTTTTGATTCTCCAGAAGTGGCACC CCCACAGACATGAGAAACAAAGTGTGAGG AGTGGGGTAGGGTCAAT 1763 ATTGACCCTACCCCACT 1764 Waxy starch CATCGGCGATTGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACG 1765 GBSS GTGACGGGGTCTTAGGTGGTGTCGAGAAGCGCGTGCTTCAATTCC Astragalus CAGGGAAGAACAGAAGCCAAAGTGAATTCA membranaeus TGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATTGAAGCACGCG 1766 Tyr8Term CTTCTCGACACCACCTAAGACCCCGTCACCGTTGCCATTCTGTGA TAT-TAG GAGAGCAGTAAGGAGCAACAATCGCCGATG GGGTCTTAGGTGGTGTC 1767 GACACCACCTAAGACCC 1768 Waxy starch ATTGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACGGTGACGG 1769 GBSS GGTCTTATGTGGTGTAGAGAAGCGCGTGCTTCAATTCCCAGGGAA Astragalus GAACAGAAGCCAAAGTGAATTCACCTCAGAA membranaeus TTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATTGA 1770 Ser11Term AGCACGCGCTTCTCTACACCACATAAGACCCCGTCACCGTTGCCA TCG-TAG TTCTGTGAGAGAGCAGTAAGGAGCAACAAT TGTGGTGTAGAGAAGCG 1771 CGCTTCTCTACACCACA 1772 Waxy starch TGTTGCTCCTTACTGCTCTCTCACAGAATGGCAACGGTGACGGGG 1773 GBSS TCTTATGTGGTGTCGTGAAGCGCGTGCTTCAATTCCCAGGGAAGA Astragalus ACAGAAGCCAAAGTGAATTCACCTCAGAAGA membranaeus TCTTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTCCCTGGGAATT 1774 Arg12Term GAAGCACGCGCTTCACGACACCACATAAGACCCCGTCACCGTTGC AGA-TGA CATTCTGTGAGAGAGCAGTCAGGAGCAACA TGGTGTCGTGAAGCGCG 1775 CGCGCTTCACGACACCA 1776 Waxy starch ACTGCTCTCTCACAGAATGGCAACGGTGACGGGGTCTTATGTGGT 1777 GBSS GTCGAGAAGCGCGTGATTCAATTCCCAGGGAAGAACAGAAGCCAA Astragalus AGTGAATTCACCTCAGAAGATAAATCTGAAT membranaeus ATTGAGATTTATCTTCTGAGGTGAATTCACTTTGGCTTCTGTTCTTC 1778 Cys15Term CCTGGGAATTGAATCACGCGCTTCTCGACACCACATAAGACCCCG TGC-TGA TCACCGTTGCCATTCTGTGAGAGAGCAGT AGCGCGTGATTCAATTC 1779 GAATTGAATCACGCGCT 1780 Waxy starch CACAGAATGGCAACGGTGACGGGGTCTTATGTGGTGTCGAGAAG 1781 GBSS CGCGTGGTTCAATTCCTAGGGAAGAACAGAAGCCAAAGTGAATTC Astragalus ACCTCAGAAGATAAATCTCAATAGCCAAGCAT membranaeus ATGCTTGGCTATTGAGATTTATCTTCTGAGGTGAATTCACTTTGGCT 1782 Gln19Term TCTGTTCTTCCCTAGGAATTGAAGCACGCGCTTCTCGACACCACAT CAG-TAG AAGACCCCGTCACCGTTGCCATTCTGTG TCAATTCCTAGGGAAGA 1783 TCTTCCCTAGGAATTGA 1784 Waxy starch TGTAGCTTGGTAGATTCCCCTTTTTGTCGACCACACATCACATGGC 1785 GBSS AAGCATCACAGCTTGACACCACTTTGTGTCAAGAAGCCAAACTTCA Solanum tuberosum CTAGACACCAAATCAACCTTGTCACAGAT Ser7Term ATCTGTGACAAGGTTGATTTGGTGTCTAGTGAAGTTTGGCTTCTTG 1786 TCA-TGA ACACAAAGTGGTGTCAAGCTGTGATGCTTGCCATGTGATGTGTGG TCTACAAAAAGGGGAATCTACCAAGCTACA CACAGCTTGACACCACT 1787 AGTGGTGTCAAGCTGTG 1788 Waxy starch TCCCCTTTTTGTAGACCACACATCACATGGCAAGCATCACAGCTTC 1789 GBSS ACACCACTTTGTGTGAAGAAGCCAAACTTCACTAGACACCAAATCA Solanum tuberosum ACCTTGTCACAGATAGGACTCAGGAACCA Ser12Term TGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGTGTCTAGTG 1790 TCA-TGA AAGTTTGGCTTCTTCACACAAAGTGGTGTGAAGCTGTGATGCTTGC CATGTGATGTGTGGTCTACAAAAAGGGGA CTTTGTGTGAAGAAGCC 1791 GGCTTCTTCACACAAAG 1792 Waxy starch CCCTTTTTGTAGACCACACATCACATGGCAAGCATCACAGCTTCAC 1793 GBSS ACCACTTTGTGTCATGAAGCCAAACTTCACTAGACACCAAATCAAC Solanum tuberosum CTTGTCACAGATAGGACTCAGGAACCATA Arg13Term TATGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGTGTCTAG 1794 AGA-TGA TGAAGTTTGGCTTCATGACACAAAGTGGTGTGAAGCTGTGATGCTT GCCATGTGATGTGTGGTCTACAAAAAGGG TTGTGTCATGAAGCCAA 1795 TTGGCTTCATGACACAA 1796 Waxy starch TTGTAGACCACACATCACATGGCAAGCATCACAGCTTCACACCACT 1797 GBSS TTGTGTCAAGAAGCTAAACTTCACTAGACACCAAATCAACCTTGTC Solanum tuberosum ACAGATAGGACTCAGGAACCATACTCTGA Gln15Term TCAGAGTATGGTTCCTGAGTCCTATCTGTGACAAGGTTGATTTGGT 1798 CAA-TAA GTCTAGTGAAGTTTAGCTTCTTGACACAAAGTGGTGTGAAGCTGTG ATGCTTGCCATGTGATGTGTGGTCTACAA CAAGAAGCTAAACTTCA 1799 TGAAGTTTAGCTTCTTG 1800 Waxy starch CCACACATCACATGGCAAGCATCACAGCTTCACACCACTTTGTGTC 1801 GBSS AAGAAGCCAAACTTGACTAGACACCAAATCAACCTTGTCACAGATA Solanum tuberosum GGACTCAGGAACCATACTCTGACTCACAA Sen17Term TTGTGAGTCAGAGTCTGGTTCCTGAGTCCTATCTGTGACAAGGTTG 1802 TCA-TGA ATTTGGTGTCTAGTCAAGTTTGGCTTGTTGACACAAAGTGGTGTGA AGCTGTGATGCTTGCCATGTGATGTGTGG CCAAACTTGACTAGACA 1803 TGTCTAGTCAAGTTTGG 1804 Waxy starch GTCGATCACTCTTCTCTCACCGCCGAAACAGATTTTGACACAAAAA 1805 GBSS TGGCAACAATAACGTGATCTTCAATGCCGACGAGAACCGCGTGCT Pisum sativum TCAATTACCAAGGAAGATCAGCAGAGTCTA Gly6Term TAGACTCTGCTGATCTTCCTTGGTCATTGAAGCACGCGGTTCTCGT 1806 GGA-TGA CGGCATTGAAGATCACGTTATTGTTGCCATTTTTGTGTCAAAATCT GTTTCGGCGGTGAGAGAAGAGTGATCGAC CAATAACGTGATCTTCA 1807 TGAAGATCACGTTATTG 1808 Waxy starch ACTCTTCTCTCACCGCCGAAACAGATTTTGACACAAAAATGGCAAC 1809 GBSS AATAACGGGATCTTGAATGCCGACGAGAACCGCGTGCTTCAATTA Pisum sativum CCAAGGAAGATCAGCAGAGTCTAAACTGAA Ser8Term TTCAGTTTAGACTCTGCTGATCTTCCTTGGTCATTGAAGCACGCGG 1810 TCA-TGA TTCTCGTCGGCATTCAAGATCCCGTTATTGTTGCCATTTTTGTGTCA AAATCTGTTTCGGCGGTGAGAGAAGAGT GGGATCTTGAATGCCGA 1811 TCGGCATTCAAGATCCC 1812 Waxy starch ACCGCCGAAACAGATTTTGACACAAAAATGGCAACAATAACGGGA 1813 GBSS TCTTCAATGCCGACGTGAACCGCGTGCTTCAATTACCAAGGAAGA Pisum sativum TCAGCAGAGTCTAAACTGAATTTGCCTCAGA Arg12Term TCTGAGGCAAATTCAGTTTAGACTCTGCTGATCTTCCTTGGTCATT 1814 AGA-TGA GAAGCACGCGGTTCACGTCGGCATTGAAGATCCCGTTATTGTTGC CATTTTTGTGTCAAAATCTGTTTCGGCGGT TGCCGACGTGAACCGCG 1815 CGCGGTTCACGTCGGCA 1816 Waxy starch AGATTTTGACACAAAAATGGCAACAATAACGGGATCTTCAATGCCG 1817 GBSS ACGAGAACCGCGTGATTCAATTACCAAGGAAGATCAGCAGAGTCT Pisum sativum AAACTGAATTTGCCTCAGATACACTTCAAT Cys15Term ATTGAAGTGTCTCTGAGGCAAATTCAGTTTAGACTCTGCTGATCTT 1818 TGC-TGA CCTTGGTCATTGAATCACGCGGTTCTCGTCGGCATTGAAGATCCC GTTATTGTTGCCATTTTTGTGTCAAAATCT ACCGCGTGATTCAATTA 1819 TAATTGAATCACGCGGT 1820 Waxy starch CACAAAAATGGCAACAATAACGGGATCTTCAATGCCGACGAGAAC 1821 GBSS CGCGTGCTTCAATTAGCAAGGAAGATCAGCAGAGTCTAAACTGAA Pisum sativum TTTGCCTCAGATACACTTCAATAACAACCAA Tyr18Term TTGGTTGTTATTGAAGTGTATCTGAGGCAAATTCAGTTTAGACTCT 1822 TAC-TAG GCTGATCTTCCTTGCTAATTGAAGCACGCGGTTCTCGTCGGCATTG AAGATCCCGTTATTGTTGCCATTTTTGTG TTCAATTAGCAAGGAAG 1823 CTTCCTTGCTAATTGAA 1824 Waxy starch TCTACACCGGAGAGAGCACCATGGCAACTGTAATAGCTGCACATT 1825 GBSS TCGTTTCCAGGAGCTGACACTTGAGCATCCATGCATTAGAGACTAA Manihot esculenta GGCTAATAATTTGTCTCACACTGGACCCTG Ser14Term CAGGGTCCAGTGTGAGACAAATTATTAGCCTTAGTCTCTAATGCAT 1826 TCA-TGA GGATGCTCAAGTGTCAGCTCCTGGAAACGAAATGTGCAGCTATTA CAGTTGCCATGGTGCTCTCTCCGGTGTAGA CAGGAGCTGACACTTGA 1827 TCAAGTGTCAGCTCCTG 1828 Waxy starch CCGGAGAGAGCACCATGGCAACTGTAATAGCTGCACATTTCGTTT 1829 GBSS CCAGGAGCTCACACTAGAGCATCCATGCATTAGAGACTAAGGCTA Manihot esculenta ATAATTTGTCTCACACTGGACCCTGGACCCA Leu16Term TGGGTCCAGGGTCCAGTGTGAGACAAATTATTAGCCTTAGTCTCTA 1830 TTG-TAG ATGCATGGATGCTCTAGTGTGAGCTCCTGGAAACGAAATGTGCAG CTATTACAGTTGCCATGGTGCTCTCTCCGG CTCACACTAGAGCATCC 1831 GGATGCTCTAGTGTGAG 1832 Waxy starch TGGCAACTGTAATAGCTGCACATTTCGTTTCCAGGAGCTCACACTT 1833 GBSS GAGCATCCATGCATGAGAGACTAAGGCTAATAATTTGTCTCACACT Manihot esculenta GGACCCTGGACCCAAACTATCACTCCCAA Leu21Term TTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAGACAAATTA 1834 TTA-TGA TTAGCCTTAGTCTCTCATGCATGGATGCTCAAGTGTGAGCTCCTGG AAACGAAATGTGCAGCTATTACAGTTGCCA CCATGCATGAGAGACTA 1835 TAGTCTCTCATGCATGG 1836 Waxy starch GCAACTGTAATAGCTGCACATTTCGTTTCCAGGAGCTCACACTTGA 1837 GBSS GCATCCATGCATTATAGACTAAGGCTAATAATTTGTCTCACACTGG Manihot esculenta ACCCTGGACCCAAACTATCACTCCCAATG Glu22Term CATTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAGACAAAT 1838 GAG-TAG TATTAGCCTTAGTCTATAATGCATGGATGCTCAAGTGTGAGCTCCT GGAAACGAAATGTGCAGCTATTACAGTTGC ATGCATTATAGACTAAG 1839 CTTAGTCTATAATGCAT 1840 Waxy starch GTCATAGCTGCACATTTCGTTTCCAGGAGCTCACACTTGAGCATCC 1841 GBSS ATGCATTAGAGACTTAGGCTAATAATTTGTCTCACACTGGACCCTG Manihot esculenta GACCCAAACTATCACTCCCAATGGTTTAA Lys24Term TTAAACCATTGGGAGTGATAGTTTGGGTCCAGGGTCCAGTGTGAG 1842 AAG-TAG ACAAATTATTAGCCTAAGTCTCTAATGCATGGATGCTCAAGTGTGA GCTCCTGGAAACGAAATGTGCAGCTATTAC TAGAGACTTAGGCTAAT 1843 ATTAGCCTAAGTCTCTA 1844 Waxy starch ACAACTCCTCCGTCACCGGTATAAGCATGGCAACGGTATCGATGG 1845 GBSS CATCGTGCGTGGCGTGAAAAGGCGCGTGGAGTACAGAGACAAAA Phaseolus vulgaris GTGAAATCTTCGGGTCAGATGAGCCTGAACCG Ser12Term CGGTTCAGGCTCATCTGACCCGAAGATTTCACTTTTGTCTCTGTCC 1846 TCA-TGA TCCACGCGCCTTTTCACGCCACGCACGATGCCATCGATACCGTTG CCATGCTTATACCGGTGACGGAGGAGTTGT CGTGGCGTGAAAAGGCG 1847 CGCCTTTTCACGCCACG 1848 Waxy starch CACCGGTCTAAGCATGGCAACGGTATCGATGGCATCGTGCGTGGC 1849 GBSS GTCAAAAGGCGCGTGAAGTACAGAGACAAAAGTGAAATCTTCGGG Phaseolus vulgaris TCAGATGAGCCTGAACCGTCATGAATTGAAA Trp16Term TTTCAATTCATGACGGTTCAGGCTCATCTGACCCGAAGATTTCACT 1850 TGG-TGA TTTGTCTCTGTACTTCACGCGCCTTTTGACGCCACGCACGATGCCA TCGATACCGTTGGCATGCTTATACCGGTG GGCGCGTGAAGTACAGA 1851 TCTGTACTTCACGCGCC 1852 Waxy starch ATAAGCATGGCAACGGTCTCGATGGCATCGTGCGTGGCGTCAAAA 1853 GBSS GGCGCGTGGAGTACATAGACAAAAGTGAAATCTTCGGGTCAGATG Phaseolus vulgaris AGCCTGAACCGTCATGAATTGAAATACGATG Glu19Term CATCGTATTTCAATTCATGACGGTTCAGGCTCATCTGACCCGAAGA 1854 GAG-TAG TTTCACTTTTGTCTATGTACTCCACGCGCCTTTTGACGCCACGCAC GATGCCATCGATACCGTTGCCATGCTTAT GGAGTACATAGACAAAA 1855 TTTTGTCTATGTACTCC 1856 Waxy starch ATGGCAACGGTATCGATGGCATCGTGCGTGGGGTCAAAAGGCGC 1857 GBSS GTGGAGTACAGAGACATAAGTGAAATCTTCGGGTCAGATGAGCCT Phaseolus vulgaris GAACCGTCATGAATTGAAATACGATGGGTTGA Lys21Term TCAACCCATCGTATTTCAATTCATGACGGTTCAGGCTCATCTGACC 1858 AAA-TAA CGAAGATTTCACTTATGTCTCTGTACTCCACGCGCCTTTTGACGCC ACGCACGATGCCATCGATACCGTTGCCAT CAGAGACATAAGTGAAA 1859 TTTCACTTATGTCTCTG 1860 Waxy starch ACGGTATCGATGGCATCGTGCGTGGCGTCAAAAGGCGCGTGGAG 1861 GBSS TACAGAGACAAAAGTGTAATCTTCGGGTCAGATGAGCCTGAACCG Phaseolus vulgaris TCATGAATTGAAATACGATGGGTTGAGATCTC Lys23Term GAGATCTCAACCCATCGTATTTCAATTCATGACGGTTCAGGCTCAT 1862 AAA-TAA CTGACCCGAAGATTACACTTTTGTCTCTGTACTCCACGCGCCTTTT GACGCCACGCACGATGCCATCGATACCGT CAAAAGTGTAATCTTCG 1863 CGAAGATTACACTTTTG 1864 Waxy starch GCGCCTAGCTCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGG 1865 GBSS GTTCCATTCCTAATTAGTGTTCTTATCAAACAAACAGTGTTGGTTCA Triticum aestivum CTGAAACTGTCGCCTCACATCCAATTCCAG Tyr7Term CTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACCAACACTGTT 1866 TAT-TAG TGTTTGATAAGAACACTAATTAGGAATGGAACCCATTGGTGCAGCC TCTCAATGACGACCTTTTCGAGCTAGGCGC CCTAATTAGTGTTCTTA 1867 TAAGAACACTAATTAGG 1868 Waxy starch CCTAGCTCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTC 1869 GBSS CATTCCTAATTATTGATCTTATCAAACAAACAGTGTTGGTTCACTGA Triticum aestivum AACTGTCGCCTCACATCCAATTCCAGCAA Cys8Term TTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACCAACACT 1870 TGT-TGA GTTTGTTTGATAAGATCAATAATTAGGAATGGAACCCATTGGTGCA GCCTCTCAATGACGACCTTTTCGAGCTAGG AATTATTGATCTTATCA 1871 TGATAAGATCAATAATT 1872 Waxy starch TCGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTCCATTCC 1873 GBSS TAATTATTGTTCTTAGCAAACAAACAGTGTTGGTTCACTGAAACTGT Triticum aestivum CGCCTCACATCCAATTCCAGCAATCTTGT Tyr10Term ACAAGATTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAACC 1874 TAT-TAG AACACTGTTTGTTTGCTAAGAACAATAATTAGGAATGGAACCCATT GGTGCAGCCTCTCAATGACGACCTTTTCGA TGTTCTTAGCAAACAAA 1875 TTTGTTTGCTAAGAACA 1876 Waxy starch CGAAAAGGTCGTCATTGAGAGGCTGCACCAATGGGTTCCATTCCT 1877 GBSS AATTATTGTTCTTATTAAACAAACAGTGTTGGTTCACTGAAACTGTC Triticum aestivum GCCTCACATCCAATTCCAGCAATCTTGTA Gln11Term TACAAGATTGCTGGAATTGGATGTGAGGCGACAGTTTCAGTGAAC 1878 CAA-TAA CAACACTGTTTGTTTAATAAGAACAATAATTAGGAATGGAACCCATT GGTGCAGCCTCTCAATGACGACCTTTTCG GTTCTTATTAAACAAAC 1879 GTTTGTTTAATAAGAAC 1880 Waxy starch AGGCTGCACCAATGGGTTCCATTCCTAATTATTGTTCTTATCAAACA 1881 GBSS AACAGTGTTGGTTGACTGAAACTGTCGCCTCACATCCAATTCCAGC Triticum aestivum AATCTTGTCACAATGAAGTTATGTTCCT Ser17Term AGGAACATAACTTCATTGTTACAAGATTGCTGGAATTGGATGTGAG 1882 TCA-TGA GCGACAGTTTCAGTCAACCAACACTGTTTGTTTGATAAGAACAATA ATTAGGAATGGAACCCATTGGTGCAGCCT TGTTGGTTGACTGAAAC 1883 GTTTCAGTCAACCAACA 1884 Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1885 GBSS CCGGCGTGCAGGTTTCTAGGGCGTGAGGCCCCGGAGCCCGGCG Triticum aestivum GATGCGGCTCTCGGCATGAGGACCGTCGGAGCTA Gln28Term TAGCTCCGACGGTCCTCATGCCGAGAGCCGCATCCGCCGGGCTC 1886 CAG-TAG CGGGGCCTCACGCCCTAGAAACCTGCACGCCGGAACCTGTCGGT GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG CAGGTTTCTAGGGCGTG 1887 CACGCCCTAGAAACCTG 1888 Waxy starch GGTTTCCAGGGCGTGAGGCCCCGGAGCCCGGCGGATGCGGCTCT 1889 GBSS CGGCATGAGGACCGTCTGAGCTAGCGCCGCCCCAACGCAAAGCC Triticum aestivum GGAAAGCGCACCGCGGGACCCGGCGGTGCCTCT Gly46Term AGAGGCACCGCCGGGTCCCGCGGTGCGCTTTCCGGCTTTGCGTT 1890 GGA-TGA GGGGCGGCGCTAGCTCAGACGGTCCTCATGCCGAGAGCCGCATC CGCCGGGCTCCGGGGCCTCACGCCCTGGAAACC GGACCGTCTGAGCTAGC 1891 GCTAGCTCAGACGGTCC 1892 Waxy starch CGGAGCCCGGCGGATGCGGCTCTCGGCATGAGGACCGTCGGAG 1893 GBSS CTAGCGCCGCCCCAACGTAAAGCCGGAAAGCGCACCGCGGGACC Triticum aestivum CGGCGGTGCCTCTCCATGGTGGTGCGCGCCACCG Gln53Term CGGTGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG 1894 CAA-TAA GTGCGCTTTCCGGCTTTACGTTGGGGCGGCGCTAGCTCCGACGG TCCTCATGCCGAGAGCCGCATCCGCCGGGCTCCG CCCCAACGTAAAGCCGG 1895 CCGGCTTTACGTTGGGG 1896 Waxy starch GCGGATGCGGCTCTCGGCATGAGGACCGTCGGAGCTAGCGCCGC 1897 GBSS CCCAACGCAAAGCCGGTAAGCGCACCGCGGGACCCGGCGGTGC Triticum aestivum CTCTCCATGGTGGTGCGCGCCACCGGCAGCGGCG Lys56Term CGCCGCTGCCGGTGGCGCGCACCACCATGGAGAGGCACCGCCG 1898 AAA-TAA GGTCCCGCGGTGCGCTTACCGGCTTTGCGTTGGGGCGGCGCTAG CTCCGACGGTCCTCATGCCGAGAGCCGCATCCGC AAAGCCGGTAAGCGCAC 1899 GTGCGCTTACCGGCTTT 1900 Waxy starch CTCTCCATGGTGGTGCGCGCCACCGGCAGCGGCGGCATGAACCT 1901 GBSS CGTGTTCGTCGGCGCCTAGATGGCGCCCTGGACCAAGACCGGCG Triticum aestivum GCCTCGGCGACGTCCTCGGGGGCCTCCCCCCAG Glu85Term CTGGGGGGAGGCCCCCGAGGACGTCGCCGAGGCCGCCGGTCTT 1902 GAG-TAG GCTCCAGGGCGCCATCTAGGCGCCGACGAACACGAGGTTCATGC CGCCGCTGCCGGTGGCGCGCACCACCATGGAGAG TCGGCGCCTAGATGGCG 1903 CGCCATCTAGGCGCCGA 1904 Waxy starch GTGGTCTCTCGCTGCAGGTAGCCACACCCTGCGCGCGCGATGGC 1905 GBSS GGCTCTGGTCACGTCGTAGCTCGCCACCTCCGGCACCGTCCTCG Triticum aestivum GCATCACCGACAGGTTCCGGCGTGCAGGTTTTC Gln8Term GAAAACCTGCACGCCGGAACCTGTCGGTGATGCCGAGGACGGTG 1906 CAG-TAG CCGGAGGTGGCGAGCTACGACGTGACCAGAGCCGCCATCGCGC GCGCAGGGTGTGGCTACCTGCAGCGAGAGACGAC TCACGTCGTAGCTCGCC 1907 GGCGAGCTACGACGTGA 1908 Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1909 GBSS CCGGCGTGCAGGTTTTTAGGGTGTGAGGCCCCGGAGCCCGGCAG Triticum aestivum ATGCGCCGCTCGGCATGAGGACTACCGGAGCGA Gln28Term TCGCTCCGGTCGTCCTCATGCCGAGCGGCGCATCTGCCGGGCTC 1910 GAG-TAG CGGGGCCTCACACCCTAAAAACCTGCACGCCGGAACCTGTCGGT GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG CAGGTTTTTAGGGTGTG 1911 CACACCCTAAAAACCTG 1912 Waxy starch CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGG 1913 GBSS AGCGAGCGCCGCCCCGTAGCAACAAAGCCGGAAAGCGCACCGCG Triticum aestivum GGACCCGGCGGTGCCTCTCCATGGTGGTGCGCG Lys52Term CGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTGCGC 1914 AAG-TAG TTTCCGGCTTTGTTGCTACGGGGCGGCGCTCGCTCCGGTAGTCCT CATGCCGAGCGGCGCATCTGCCGGGCTCCGGGG CCGCCCCGTAGCAACAA 1915 TTGTTGCTACGGGGCGG 1916 Waxy starch CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAG 1917 GBSS CGAGCGCCGCCCCGAAGTAACAAAGCCGGAAAGCGCACCGCGG Triticum aestivum GACCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA Gln53Term TGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTG 1918 CAA-TAA CGCTTTCCGGCTTTGTTACTTCGGGGCGGCGCTCGCTCCGGTAGT CCTCATGCCGAGCGGCGCATCTGCCGGGCTCCG CCCCGAAGTAACAAAGC 1919 GCTTTGTTACTTCGGGG 1920 Waxy starch AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAGCGAG 1921 GBSS CGCCGCCCCGAAGCAATAAAGCCGGAAAGCGCACCGCGGGACCC Triticum aestivum GGCGGTGCCTCTCCATGGTGGTGCGCGCCACGG Gln54Term CCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG 1922 CAA-TAA GTGCGCTTTCCGGCTTTATTGCTTCGGGGCGGCGCTCGCTCCGGT AGTCCTCATGCCGAGCGGCGCATCTGCCGGGCT CGAAGCAATAAAGCCGG 1923 CCGGCTTTATTGCTTCG 1924 Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1925 GBSS CCGGCGTGCAGGTTTCTAGGGCGTGAGGCCCCGGAACCCGGCG Triticum durum GATGCGGCCCTCGTCATGAGGACTATCGGAGCGA Gln28Term TCGCTCCGATAGTCCTCATGACGAGGGCCGCATCCGCCGGGTTC 1926 CAG-TAG CGGGGCCTCACGCCCTAGAAACCTGCACGCCGGAACCTGTCGGT GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG CAGGTTTCTAGGGCGTG 1927 CACGCCCTAGAAACCTG 1928 Waxy starch CCCCGGAACCCGGCGGATGCGGCCCTCGTCATGAGGACTATCGG 1929 GBSS AGCGAGCGCCGCCCCGTAGCAAAGCCGGAAAGCGCACCGCGGG Triticum durum AGCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA Lys52Term TGGCGCGCACCACCATGGAGAGGCACCGCCGGCTCCCGCGGTG 1930 AAG-TAG CGCTTTCCGGCTTTGCTACGGGGCGGCGCTCGCTCCGATAGTCCT CATGACGAGGGCCGCATCCGCCGGGTTCCGGGG CCGCCCCGTAGCAAAGC 1931 GCTTTGCTACGGGGCGG 1932 Waxy starch CGGAACCCGGCGGATGCGGCCCTCGTCATGAGGACTATCGGAGC 1933 GBSS GAGCGCCGCCCCGAAGTAAAGCCGGAAAGCGCACCGCGGGAGC Triticum durum CGGCGGTGCCTCTCCATGGTGGTGCGCGCCACGG Gln53Term CCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGCTCCCGCG 1934 CAA-TAA GTGCGCTTTCCGGCTTTACTTCGGGGCGGCGCTCGCTCCGATAGT CCTCATGACGAGGGCCGCATCCGCCGGGTTCCG CCCCGAAGTAAAGCCGG 1935 CCGGCTTTACTTCGGGG 1936 Waxy starch GCGGATGCGGCCCTCGTCATGAGGACTATCGGAGCGAGCGCCGC 1937 GBSS CCCGAAGCAAAGCCGGTAAGCGCACCGCGGGAGCCGGCGGTGC Triticum durum CTCTCCATGGTGGTGCGCGCCACGGGCAGCGGCG Lys56Term CGCCGCTGCCCGTGGCGCGCACCACCATGGAGAGGCACCGCCG 1938 AAA-TAA GCTCCCGCGGTGCGCTTACCGGCTTTGCTTCGGGGCGGGGCTCG CTCCGATAGTCCTCATGACGAGGGCCGCATCCGC AAAGCCGGTAAGCGCAC 1939 GTGCGCTTACCGGCTTT 1940 Waxy starch TATCGGAGCGAGCGCCGCCCCGAAGCAAAGCCGGAAAGCGCACC 1941 GBSS GCGGGAGCCGGCGGTGACTCTCCATGGTGGTGCGCGCCACGGG Triticum durum CAGCGGCGGCATGAACCTCGTGTTCGTCGGCGCC Cys64Term GGCGCCGACGAACACGAGGTTCATGCCGCCGCTGCCCGTGGCGC 1942 TGC-TGA GCACCACCATGGAGAGTCACCGCCGGCTCCCGCGGTGCGCTTTC CGGCTTTGCTTCGGGGCGGCGCTCGCTCCGATA CGGCGGTGACTCTCCAT 1943 ATGGAGAGTCACCGCCG 1944 Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTT 1945 GBSS CCGGCGTGCAGGTTTTTAGGGTGTGAGGCCCCGGAGCCCGGCAG Triticum turgidum ATGCGCCGCTCGGCATGAGGACTACCGGAGCGA Gln28Term TCGCTCCGGTAGTCCTCATGCCGAGCGGCGCATCTGCGGGGCTC 1946 CAG-TAG CGGGGCCTCACACCCTAAAAACGTGCACGCCGGAACCTGTCGGT GATGCCGAGGACGGTGCCGGAGGTGGCGAGCTG CAGGTTTTTAGGGTGTG 1947 CACACCCTAAAAACCTG 1948 Waxy starch CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGG 1949 GBSS AGCGAGCGCCGCCCCGTAGCAACAAAGCCGGAAAGCGCACCGCG Triticum turgidum GGACCCGGCGGTGCCTCTCCATGGTGGTGCGCG Lys52Term CGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTGCGC 1950 AAG-TAG TTTCCGGCTTTGTTGCTACGGGGCGGCGCTCGCTCCGGTAGTCCT CATGCCGAGCGGCGCATCTGCCGGGCTCCGGGG CCGCCCCGTAGCAACAA 1951 TTGTTGCTACGGGGCGG 1952 Waxy starch CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAG 1953 GBSS CGAGCGCCGCCCCGAAGTAACAAAGCCGGAAAGCGCACCGCGG Triticum turgidum GACCCGGCGGTGCCTCTCCATGGTGGTGCGCGCCA Gln53Term TGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCGGTG 1954 CAA-TAA CGCTTTCCGGCTTTGTTACTTCGGGGCGGCGCTCGCTCCGGTAGT CCTCATGCCGAGCGGCGCATCTGCCGGGCTCCG CCCCGAAGTAACAAAGC 1955 GCTTTGTTACTTCGGGG 1956 Waxy starch AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTACCGGAGCGAG 1957 GBSS CGCCGCCCCGAAGCAATAAAGCCGGAAAGCGCACCGCGGGACCC Triticum turgidum GGCGGTGCCTCTCCATGGTGGTGCGCGCCACGG Gln54Term CCGTGGCGCGCACCACCATGGAGAGGCACCGCCGGGTCCCGCG 1958 CAA-TAA GTGCGCTTTCCGGCTTTATTGCTTCGGGGCGGCGCTCGCTCCGGT AGTCCTCATGCCGAGCGGCGCATCTGCCGGGCT CGAAGCAATAAAGCCGG 1959 CCGGCTTTATTGCTTCG 1960 Waxy starch GATGCGCCGCTCGGCATGAGGACTACCGGAGCGAGCGCCGCCCC 1961 GBSS GAAGCAACAAAGCCGGTAAGCGCACCGCGGGACCCGGCGGTGC Triticum turgidum CTCTCCATGGTGGTGCGCGCCACGGGCAGCGCCG Lys57Term CGGCGCTGCCCGTGGCGCGCACCACCATGGAGAGGCACCGCCG 1962 AAA-TAA GGTCCCGCGGTGCGCTTACCGGCTTTGTTGCTTCGGGGCGGCGC TCGCTCCGGTAGTCCTCATGCCGAGCGGCGCATC AAAGCCGGTAAGCGCAC 1963 GTGCGCTTACCGGCTTT 1964 Waxy starch CAGCTCGCCACCTCCGCCACCGTCCTCGGCATCACCGACAGGTTC 1965 GBSS CGCCATGCAGGTTTCTAGGGCGTGAGGCCCCGGAGCCCGGCAGA Aegilops speltoides TGCGCCGCTCGGCATGAGGACTGTCGGAGCGA Gln28Term TCGCTCCGACAGTCCTCATGCCGAGCGGCGCATCTGCCGGGCTC 1966 CAG-TAG CGGGGCCTCACGCCCTAGAAACCTGCATGGCGGAACCTGTCGGT GATGCCGAGGACGGTGGCGGAGGTGGCGAGCTG CAGGTTTCTAGGGCGTG 1967 CACGCCCTAGAAACCTG 1968 Waxy starch GGTTTCCAGGGCGTGAGGCCCCGGAGCCCGGCAGATGCGCCGCT 1969 GBSS CGGCATGAGGACTGTCTGAGCGAGCGCCGCCCCGAAGCAACAAA Aegilops speltoides GCCGGAAAGCGCACCGCGGGACCCGGCGGTGCC Gly46Term GGCACCGCCGGGTCCCGCGGTGCGCTTTCCGGCTTTGTTGCTTC 1970 GGA-TGA GGGGCGGCGCTCGCTCAGACAGTCCTCATGCCGAGCGGCGCATC TGCCGGGCTCCGGGGCCTCACGCCCTGGAAACC GGACTGTCTGAGCGAGC 1971 GCTCGCTCAGACAGTCC 1972 Waxy starch CCCCGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGG 1973 GBSS AGCGAGCGCCGCCCCGTAGCAACAAAGCCGGAAAGCGCACCGCG Aegilops speltoides GGACCCGGCGGTGCCTCTCGATGGTGGTGCGCG Lys52Term CGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCGGTGCGCT 1974 AAG-TAG TTCCGGCTTTGTTGCTACGGGGCGGCGCTCGCTCCGACAGTCCTC ATGCCGAGCGGCGCATCTGCCGGGCTCCGGGG CCGCCCCGTAGCAACAA 1975 TTGTTGCTACGGGGCGG 1976 Waxy starch CGGAGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGGAG 1977 GBSS CGAGCGCCGCCCCGAAGTAACAAAGCCGGAAAGCGCACCGCGG Aegilops speltoides GACCCGGCGGTGCCTCTCGATGGTGGTGCGCGCCA Gln53Term TGGCGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCGGTG 1978 CAA-TAA CGCTTTCCGGCTTTGTTACTTCGGGGCGGCGCTCGCTCCGACAGT CCTCATGCCGAGCGGCGCATCTGCCGGGCTCCG CCCCGAAGTAACAAAGC 1979 GCTTTGTTACTTCGGGG 1980 Waxy starch AGCCCGGCAGATGCGCCGCTCGGCATGAGGACTGTCGGAGCGAG 1981 GBSS CGCCGCCCCGAAGCAATAAAGCCGGAAAGCGCACCGCGGGACCC Aegilops speltoides GGCGGTGCCTCTCGATGGTGGTGCGCGCCACCG Gln54Term CGGTGGCGCGCACCACCATCGAGAGGCACCGCCGGGTCCCGCG 1982 CAA-TAA GTGCGCTTTCCGGCTTTATTGCTTCGGGGCGGCGCTCGCTCCGAC AGTCCTCATGCCGAGCGGCGCATCTGCCGGGCT CGAAGCAATAAAGCCGG 1983 CCGGCTTTATTGCTTCG 1984 Waxy starch AGTGCAGAGATCTTCCACAGCAACAGCTAGACAACCACCATGTCG 1985 GBSS GCTCTCACCACGTCCTAGCTCGCCACCTCGGCCACCGGCTTCGG Oryza glaberrima CATCGCTGACAGGTCGGCGCCGTCGTCGCTGC Gln8Term GCAGCGACGACGGCGCCGACCTGTCAGCGATGCCGAAGCCGGT 1986 GAG-TAG GGCCGAGGTGGCGAGCTAGGACGTGGTGAGAGCCGACATGGTG GTTGTCTAGCTGTTGCTGTGGAAGATCTCTGCACT CCACGTCCTAGCTCGCC 1987 GGCGAGCTAGGACGTGG 1988 Waxy starch TCCACAGCAACAGCTAGACAACCACCATGTCGGCTCTCACCACGT 1989 GBSS CCCAGCTCGCCACCTAGGCCACCGGCTTCGGCATCGCTGACAGG Oryza glaberrima TCGGCGCCGTCGTCGCTGCTCCGCCACGGGTT Ser12Term AACCCGTGGCGGAGCAGCGACGACGGCGCCGACCTGTCAGCGAT 1990 TCG-TAG GCCGAAGCCGGTGGCCTAGGTGGCGAGCTGGGACGTGGTGAGA GCCGACATGGTGGTTGTCTAGCTGTTGCTGTGGA CGCCACCTAGGCCACCG 1991 CGGTGGCCTAGGTGGCG 1992 Waxy starch CGGCTCTCACCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTC 1993 GBSS GGCATCGCTGACAGGTAGGCGCCGTCGTCGCTGCTCCGCCACGG Oryza glaberrima GTTCCAGGGCCTCAAGCCCCGCAGCCCCGCCGG Ser22Term CCGGCGGGGCTGCGGGGCTTGAGGCCCTGGAACCCGTGGCGGA 1994 TCG-TAG GCAGCGACGACGGCGCCTACCTGTCAGCGATGCCGAAGCCGGTG GCCGAGGTGGCGAGCTGGGACGTGGTGAGAGCCG TGACAGGTAGGCGCCGT 1995 ACGGCGCCTACCTGTCA 1996 Waxy starch CCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCT 1997 GBSS GACAGGTCGGCGCCGTAGTCGCTGCTCCGCCACGGGTTCCAGGG Oryza glaberrima CCTCAAGCCCCGCAGCCCCGCCGGCGGCGACGC Ser25Term GCGTCGCCGCCGGCGGGGCTGCGGGGCTTGAGGCCCTGGAACC 1998 TCG-TAG CGTGGCGGAGCAGCGACTACGGCGCCGACCTGTCAGCGATGCCG AAGCCGGTGGCCGAGGTGGCGAGCTGGGACGTGG GGCGCCGTAGTCGCTGC 1999 GCAGCGACTACGGCGCC 2000 Waxy starch CGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCTGAC 2001 GBSS AGGTCGGCGCCGTCGTAGCTGCTCCGCCACGGGTTCCAGGGCCT Oryza glaberrima CAAGCCCCGCAGCCCCGCCGGCGGCGACGCGAC Ser26Term GTCGCGTCGCCGCCGGCGGGGCTGCGGGGCTTGAGGCCCTGGA 2002 TCG-TAG ACCCGTGGCGGAGCAGCTACGACGGCGCCGACCTGTCAGCGATG CCGAAGCCGGTGGCCGAGGTGGCGAGCTGGGACG GCCGTCGTAGCTGCTCC 2003 GGAGCAGCTACGACGGC 2004 Waxy starch TCCACAGCAAGAGCTAAACAGCCGACCGTGTGCACCACCATGTCG 2005 GBSS GCTGTCACCACGTCCTAGCTCGCCACCTCGGCCACCGGCTTCGG Oryza sativa CATCGCCGACAGGTCGGCGCCGTCGTCGCTGG Gln8Term GCAGCGACGACGGCGCCGACCTGTCGGCGATGCCGAAGCCGGT 2006 CAG-TAG GGCCGAGGTGGCGAGCTAGGACGTGGTGAGAGCCGACATGGTG GTGCACACGGTCGGCTGTTTAGCTCTTGCTGTGGA CCACGTCCTAGCTCGCC 2007 GGCGAGCTAGGACGTGG 2008 Waxy starch CTAAACAGCCGACCGTGTGCACCACCATGTCGGCTCTCACCACGT 2009 GBSS CCCAGCTCGCCACCTAGGCCACCGGCTTCGGCATCGCCGACAGG Oryza sativa TCGGCGCCGTCGTCGCTGCTTCGCCACGGGTT Ser12Term AACCCGTGGCGAAGCAGCGACGACGGCGCCGACCTGTCGGCGAT 2010 TCG-TAG GCCGAAGCCGGTGGCCTAGGTGGCGAGCTGGGACGTGGTGAGA GCCGACATGGTGGTGCACACGGTCGGCTGTTTAG CGCCACCTAGGCCACCG 2011 CGGTGGCCTAGGTGGCG 2012 Waxy starch CGGCTCTCACCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTC 2013 GBSS GGCATCGCCGACAGGTAGGCGCCGTCGTCGCTGCTTCGCCACGG Oryza sativa GTTCCAGGGCCTCAAGCCCCGTAGCCCAGCCGG Ser22Term CCGGCTGGGCTACGGGGCTTGAGGCCCTGGAACCCGTGGCGAA 2014 TCG-TAG GGAGCGACGACGGCGCCTACCTGTCGGCGATGCCGAAGCCGGTG GCCGAGGTGGCGAGCTGGGACGTGGTGAGAGCCG CGACAGGTAGGCGCCGT 2015 ACGGCGCCTACCTGTCG 2016 Waxy starch CCACGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCC 2017 GBSS GACAGGTCGGCGCCGTAGTCGCTGCTTCGCCACGGGTTCCAGGG Oryza sativa CCTCAAGCCCCGTAGCCCAGCCGGCGGGGACGC Ser25Term GCGTCCCCGCCGGCTGGGCTACGGGGCTTGAGGCCCTGGAACCC 2018 TCG-TAG GTGGCGAAGCAGCGACTACGGCGCCGACCTGTCGGCGATGCCGA AGCCGGTGGCCGAGGTGGCGAGCTGGGACGTGG GGCGCCGTAGTCGCTGC 2019 GCAGCGACTACGGCGCC 2020 Waxy starch CGTCCCAGCTCGCCACCTCGGCCACCGGCTTCGGCATCGCCGAC 2021 GBSS AGGTCGGCGCCGTCGTAGCTGCTTCGCCACGGGTTCCAGGGCCT Oryza sativa CAAGCCCCGTAGCCCAGCCGGCGGGGACGCATC Ser26Term GATGCGTCCCCGCCGGCTGGGCTACGGGGCTTGAGGCCCTGGAA 2022 TCG-TAG CCCGTGGCGAAGCAGCTACGACGGCGCCGACCTGTCGGCGATGC CGAAGCCGGTGGCCGAGGTGGCGAGCTGGGACG GCCGTCGTAGCTGCTTC 2023 GAAGCAGCTACGACGGC 2024 Waxy starch GTCTCTCACTGCAGGTAGCCACACCCTGTGCGCGGCGCCATGGC 2025 GBSS GGCTCTGGCCACGTCCTAGCTCGCCACCTCCGGCACCGTCCTCG Hordeum vulgare GCGTCACCGACAGATTCCGGCGTCCAGGTTTTC Gln8Term GAAAACCTGGACGCCGGAATCTGTCGGTGACGCCGAGGACGGTG 2026 GAG-TAG CCGGAGGTGGCGAGCTAGGACGTGGCCAGAGCCGGCATGGCGC CGCGCACAGGGTGTGGCTACCTGCAGTGAGAGAC CCACGTCCTAGCTCGCC 2027 GGCGAGCTAGGACGTGG 2028 Waxy starch ATGGCGGCTCTGGCCACGTCCCAGCTCGCCACGTCCGGCACCGT 2029 GBSS CCTCGGCGTCACCGACTGATTCCGGCGTCCAGGTTTTGAGGGCCT Hordeum vulgare CAGGCCCCGGAACCCGGCGGATGCGGCGCTTG Arg21Term CAAGCGCGGCATCCGCCGGGTTCCGGGGCCTGAGGCCGTGAAAA 2030 AGA-TGA CCTGGACGCCGGAATCAGTCGGTGACGCCGAGGACGGTGCCGG AGGTGGCGAGCTGGGACGTGGCCAGAGCCGCCAT TCACCGACTGATTCCGG 2031 CCGGAATCAGTCGGTGA 2032 Waxy starch CAGCTCGCCACCTCCGGCACCGTCCTCGGCGTCACCGACAGATT 2033 GBSS CCGGCGTCCAGGTTTTTAGGGCCTCAGGCCCCGGAACCCGGCGG Hordeum vulgare ATGCGGCGCTTGGTCTGAGGACTATCGGAGCAA Gln28Term TTGCTCCGATAGTCCTCATACCAAGCGCCGCATCCGCCGGGTTCC 2034 CAG-TAG GGGGCCTGAGGCCCTAAAAACCTGGACGCCGGAATCTGTCGGTG ACGCCGAGGACGGTGCCGGAGGTGGCGAGCTG CAGGTTTTTAGGGCCTC 2035 GAGGCCCTAAAAACCTG 2036 Waxy starch GGTTTTCAGGGCCTCAGGCCGCGGAACCCGGCGGATGCGGCGCT 2037 GBSS TGGTATGAGGACTATCTGAGCAAGCGCCGCCCCGAAGCAAAGGC Hordeum vulgare GGAAAGCGGACCGCGGGAGCCGGCGGTGCCTCT Gly46Term AGAGGCACCGCCGGCTCCCGCGGTGCGCTTTCCGGCTTTGCTTC 2038 GGA-TGA GGGGCGGCGCTTGCTCAGATAGTCCTCATACCAAGCGCCGCATC CGCCGGGTTCCGGGGCCTGAGGCCCTGAAAACC GGACTATCTGAGCAAGC 2039 GCTTGCTCAGATAGTCC 2040 Waxy starch CCCCGGAACCCGGCGGATGCGGCGCTTGGTATGAGGACTATCGG 2041 GBSS AGCAAGCGCCGCCCCGTAGCAAAGCCGGAAAGCGCACCGCGGG Hordeum vulgare AGCCGGCGGTGCCTCTCCGTGGTGGTGAGCGCCA Lys52Term TGGCGCTCACCACCACGGAGAGGCACCGCCGGCTCCCGCGGTGC 2042 AAG-TAG GCTTTGCGGCTTTGCTACGGGGCGGCGCTTGCTCCGATAGTCCTC ATACCAAGCGCCGCATCCGCCGGGTTCCGGGG CCGCCCCGTAGCAAAGC 2043 GCTTTGCTACGGGGCGG 2044 Waxy starch ACGTCTTTTCTCTCTCTCCTACGCAGTGGATTAATCGGCATGGCGG 2045 GBSS CTCTGGCCACGTCGTAGCTCGTCGCAACGCGGGCCGGCCTGGGC Zea mays GTCCCGGACGCGTCCACGTTCCGCCGCGGCG Gln8Term CGCCGCGGCGGAACGTGGACGCGTCCGGGACGCCCAGGCCGGC 2046 GAG-TAG GCGCGTTGCGACGAGCTACGACGTGGCCAGAGCCGCCATGCCGA TTAATCCACTGCGTAGGAGAGAGAGAAAAGACGT CCACGTCGTAGCTCGTC 2047 GACGAGCTACGACGTGG 2048 Waxy starch GTCGCAACGCGCGCCGGCCTGGGCGTCCCGGACGCGTCCACGTT 2049 GBSS CCGCCGCGGCGCCGCGTAGGGCCTGAGGGGGGCCCGGGCGTCG Zea mays GCGGGGGCGGACACGCTCAGCATGCGGACCAGCG Gln30Term CGCTGGTCCGCATGCTGAGCGTGTCCGCCGCCGCCGACGCCCGG 2050 CAG-TAG GCCCCCCTCAGGCCCTACGCGGCGCCGCGGCGGAACGTGGACG CGTCCGGGACGCCCAGGCCGGCGCGCGTTGCGAC GCGCCGCGTAGGGCCTG 2051 CAGGCCCTACGCGGCGC 2052 Waxy starch TCCCGGACGCGTCCACGTTCCGCCGCGGCGCCGCGCAGGGCCT 2053 GBSS GAGGGGGGCCCGGGCGTAGGCGGCGGCGGACACGCTCAGCATG Zea mays CGGACCAGCGCGCGCGCGGCGCCCAGGCACCAGCA Ser38Term TGCTGGTGCCTGGGCGCCGCGCGCGCGCTGGTCCGCATGCTGAG 2054 TCG-TAG CGTGTCCGCCGCCGCCTACGCCCGGGCCCCCCTCAGGCCCTGCG CGGCGCCGCGGCGGAACGTGGACGCGTCCGGGA CCGGGCGTAGGCGGCGG 2055 CCGCCGCCTACGCCCGG 2056 Waxy starch GCGTCGGCGGCGGCGGACACGCTCAGCATGCGGACCAGCGCGC 2057 GBSS GCGCGGCGCCCAGGCACTAGCAGCAGGCGCGCCGCGGGGGCAG Zea mays GTTCCCGTCGCTCGTCGTGTGCGCCAGCGCCGGCA Ser57Term TGCCGGCGCTGGCGCACACGACGAGCGACGGGAACCTGCCCCC 2058 GAG-TAG GCGGCGCGCCTGCTGCTAGTGCCTGGGCGCCGCGCGCGCGCTG GTCCGCATGCTGAGCGTGTCCGCCGCCGCCGACGC CCAGGCACTAGCAGCAG 2059 CTGCTGCTAGTGCCTGG 2060 Waxy starch TCGGCGGCGGCGGACACGCTCAGCATGCGGACCAGCGCGCGCG 2061 GBSS CGGCGCCCAGGCACCAGTAGCAGGCGCGCCGCGGGGGCAGGTT Zea mays CCCGTCGCTCGTCGTGTGCGCCAGCGCCGGCATGA Gln58Term TCATGCCGGGGCTGGCGCACACGACGAGCGACGGGAACCTGCCC 2062 CAG-TAG CCGCGGCGCGCCTGCTACTGGTGCCTGGGCGCCGCGCGCGCGC TGGTCCGCATGCTGAGCGTGTCCGCCGCCGCCGA GGCACCAGTAGCAGGCG 2063 CGCCTGCTACTGGTGCC 2064
EXAMPLE 11 Altering Fatty Acid Content of Plants[0143] Improved means to manipulate fatty acid compositions, from biosynthetic or natural plant sources, are needed. For example, oils containing reduced saturated fatty acids are desired for dietary reasons and oils containing increased saturated fatty acids are also needed as alternatives to current sources of highly saturated oil products, such as tropical oils or chemically hydrogenated oils. It would therefore be advantageous to influence directly the production and composition of fatty acids in crop plants.
[0144] Higher plants synthesize fatty acids, primarily palmitic, stearic and oleic acids, in the plastids (i.e., chloroplasts, proplastids, or other related organelles) as part of the Fatty Acid Synthase (FAS) complex. Fatty acid synthesis is the result of the three enzymatic activities: acyl-ACP elongase, acyl-ACP desaturase and acyl-ACP thioesterases specific for each of palmitoyl-, stearoyl- and oleoyl-ACP.
[0145] A variety of enzymes have been identified that influence the relative levels of saturated vs. unsaturated fatty acids in plants. For example, the enzymes stearoyl-acyl carrier protein (stearoyl-ACP) desaturase, oleoyl desaturase and linoleate desaturase produce unsaturated fatty acids from saturated precursors. Similarly, relative enzymatic activities of the various acyl-ACP thioesterases influences the relative acyl-chain composition of the resultant fatty acids. Consequently a reduction or an increase of the activity of these enzymes can alter the properties of oils produced in a plant. In fact, specific targeting of particular enzymatic activities can results in altered levels of particular fatty acids.
[0146] The attached tables disclose exemplary oligonucleotides base sequences which can be used to generate site-specific mutations in plant genes encoding proteins involved in fatty acid biosynthesis. 24 TABLE 22 Oligonucleotides to produce plants with reduced palmitate Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Reduced palmitate TTTGGTGGCAGTGTCTTTGAACGCTTCATCTCCTCGTCATGGTGGC 2065 Acyl-ACP-thioesterase CACCTCTGCTACGTAGTCATTCTTTCCTGTACCATCTTCTTCACTTG Arabidopsis thaliana ATCCTAATGGAAAAGGCAATAAGATTGG Ser8Term CCAATCTTATTGCCTTTTCCATTAGGATCAAGTGAAGAAGATGGTA 2066 TCG-TAG CAGGAAAGAATGACTACGTCGCAGAGGTGGCCACCATGACGAGG AGATGAAGCGTTCAAAGACACTGCCACCAAA TGCTACGTAGTCATTCT 2067 AGAATGACTACGTAGCA 2068 Reduced palmitate GGTGGCAGTGTCTTTGAACGCTTCATCTCCTCGTCATGGTGGCCA 2069 Acyl-ACP-thioesterase CCTCTGCTACGTCGTGATTCTTTCCTGTACCATCTTCTTCACTTGAT Arabidopsis thaliana CCTAATGGAAAAGGCAATAAGATTGGGTC Ser9Term GACCCAATCTTATTGCCTTTTCCATTAGGATCAAGTGAAGAAGATG 2070 TCA-TGA GTACAGGAAAGAATCACGACGTAGCAGAGGTGGCCACCATGACG AGGAGATGAAGCGTTCAAAGACACTGCCACC TACGTCGTGATTCTTTC 2071 GAAAGAATCACGACGTA 2072 Reduced palmitate ATCTCCTCGTCATGGTGGCCACCTCTGCTACGTCGTCATTCTTTCC 2073 Acyl-ACP-thioesterase TGTACCATCTTCTTGACTTGATCCTAATGGAAAAGGCAATAAGATT Arabidopsis thaliana GGGTCTACGAATCTTGCTGGACTCAATTC Ser17Term GAATTGAGTCCAGCAAGATTCGTCGACCCAATCTTATTGCCTTTTC 2074 TCA-TGA CATTAGGATCAAGTCAAGAAGATGGTCCAGGAAAGAATGACGACG TAGCAGAGGTGGCCACCATGACGAGGAGAT ATCTTCTTGACTTGATC 2075 GATCAAGTCAAGAAGAT 2076 Reduced palmitate GTGGCCACCTCTGCTACGTCGTCATTCTTTCCTGTACCATCTTCTT 2077 Acyl-AGP-thioesterase CACTTGATCCTAATTGAAAAGGCAATAAGATTGGGTCTACGAATCT Arabidopsis thaliana TGCTGGACTCAATTCTGCACCTAACTCTG Gly22Term CAGAGTTAGGTGCAGAATTGAGTCCAGCAAGATTCGTCGACCCAA 2078 GGA-TGA TCTTATTGCCTTTTCAATTAGGATCAAGTGAAGAAGATGGTCCAGG AAAGAATGACGACGTAGCAGAGGTGGCCAC ATCCTAATTGAAAAGGC 2079 GCCTTTTCAATTAGGAT 2080 Reduced palmitate GCTTGAATTTGTGATCTGATTGGTTAATTGTGGCCACAATGGTTGC 2081 Acyl-ACP-thioesterase TACTGCCGCCACGTGATCATTCTTTCCGTTGACTTCCCCTTCTGGG Garcinia mangostana GATGCCAAATCGGGCAATCCCGGAAAAGG Ser8Term CCTTTTCCGGGATTGCCCGATTTGGCATCCCCAGAAGGGGAAGTC 2082 TCA-TGA AACGGAAAGAATGATCACGTGGCGGCAGTAGCAACCATTGTGGCC ACAATTAACCAATCAGATCACAAATTCAAGC CGCCACGTGATCATTCT 2083 AGAATGATCACGTGGCG 2084 Reduced palmitate TGAATTTGTGATCTGATTGGTTAATTGTGGCCACAATGGTTGCTAC 2085 Acyl-ACP-thioesterase TGCCGCCACGTCATGATTCTTTCCGTTGACTTCCCCTTCTGGGGAT Garcinia mangostana GCCAAATCGGGCAATCCCGGAAAAGGGTC Ser9Term GACCCTTTTCCGGGATTGCCCGATTTGGCATCCCCAGAAGGGGAA 2086 TCA-TGA GTCAACGGAAAGAATCATGACGTGGCGGCAGTAGCAACCATTGTG GCCACAATTAACCAATCAGATCACAAATTCA CACGTCATGATTCTTTC 2087 GAAAGAATCATGACGTG 2088 Reduced palmitate CTGATTGGTTAATTGTGGCCACAATGGTTGCTACTGCCGCCACGT 2089 Acyl-ACP-thioesterase CATCATTCTTTCCGTAGACTTCCCCTTCTGGGGATGCCAAATCGGG Garcinia mangostana CAATCCCGGAAAAGGGTCGGTGAGTTTTGG Leu13Term CCAAAACTCACCGACCCTTTTCCGGGATTGCCCGATTTGGCATCC 2090 TTG-TAG CCAGAAGGGGAAGTCTACGGAAAGAATGATGACGTGGCGGCAGT AGCAACCATTGTGGCCACAATTAACCAATCAG CTTTCCGTAGACTTCCC 2091 GGGAAGTCTACGGAAAG 2092 Reduced palmitate ATGGTTGCTACTGCCGCCACGTCATCATTCTTTCCGTTGACTTCCC 2093 Acyl-ACP-thioesterase CTTCTGGGGATGCCTAATCGGGCAATCCCGGAAAAGGGTCGGTG Garcinia mangostana AGTTTTGGGTCAATGAAGTCGAAATCCGCGG Lys21Term CCGCGGATTTCGACTTCATTGACCCAAAACTCACCGACCCTTTTCC 2094 AAA-TAA GGGATTGCCCGATTAGGCATCCCCAGAAGGGGAAGTCAACGGAA AGAATGATGACGTGGCGGCAGTCGCAACCAT GGGATGCCTAATCGGGC 2095 GCCCGATTAGGCATCCC 2096 Reduced palmitate GGGATTTCAGCACGAAATTGAAGTTGTTTTTAAAAACCATGGTTGC 2097 Acyl-ACP-thioesterase TACTGCTGTGACATAGGCGTTTTTCCCAGTCACTTCTTCACCTGAC Gossypium hirsutum TCCTCTGACTCGAAAAACAAGAAGCTCGG Ser8Term CCGAGCTTCTTGTTTTTCGAGTCAGAGGAGTCAGGTGAAGAAGTG 2098 TCG-TAG ACTGGGAAAAACGCCTATGTCACAGCAGTAGCAACCATGGTTTTTA AAAACAACTTCAATTTCGTGCTGAAATCCC TGTGACATAGGCGTTTT 2099 AAAACGCCTATGTCACA 2100 Reduced palmitate TGTTTTTAAAAACCATGGTTGCTACTGCTGTGACATCGGCGTTTTT 2101 Acyl-ACP-thioesterase CCCAGTCACTTCTTGACCTGACTCCTCTGACTCGAAAAACAAGAAG Gossypium hirsutum CTCGGAAGCATCAAGTCGAAGCCATCGGT Ser16Term ACCGATGGCTTCGACTTGATGCTTCCGAGCTTCTTGTTTTTCGAGT 2102 TCA-TGA CAGAGGAGTCAGGTCAAGAAGTGACTGGGAAAAACGCCGATGTCA CAGCAGTAGCAACCATGGTTTTTAAAAACA CACTTCTTGACCTGACT 2103 AGTCAGGTCAAGAAGTG 2104 Reduced palmitate TTGCTACTGCTGTGACATCGGCGTTTTTCCCAGTCACTTCTTCACC 2105 Acyl-ACP-thioesterase TGACTCCTCTGACTAGAAAAACAAGAAGCTCGGAAGCATCAAGTC Gossypium hirsutum GAAGCCATCGGTTTCTTCTGGAAGTTTGCA Ser22Term TGCAAACTTCCAGAAGAAACCGATGGCTTCGACTTGATGCTTCCG 2106 TCG-TAG AGCTTCTTGTTTTTCTAGTCAGAGGAGTCAGGTGAAGAAGTGACTG GGAAAAACGCCGATGTCACAGCAGTCGCAA CTCTGACTAGAAAAACA 2107 TGTTTTTCTAGTCAGAG 2108 Reduced palmitate GCTACTGCTGTGACATCGGCGTTTTTCCCAGTCACTTCTTCACCTG 2109 Acyl-ACP-thioesterase ACTCCTCTGACTCGTAAAACAAGAAGCTCGGAAGCATCAAGTCGA Gossypium hirsutum AGCCATCGGTTTGTTCTGGAAGTTTGCAAG Lys23Term CTTGCAAACTTCCAGAAGAAACCGATGGCTTCGACTTGATGCTTCC 2110 AAA-TAA GAGCTTCTTGTTTTACGAGTCAGAGGAGTCAGGTGAAGAAGTGAC TGGGAAAAACGCCGATGTCACAGCAGTAGC CTGACTCGTAAAACAAG 2111 CTTGTTTTAGGAGTCAG 2112 Reduced palmitate CTCCCGCTCGTTGAAAGACAATGGTGGCTACCGCTGCAAGCTCTG 2113 Acyl-ACP-thioesterase CATTCTTCCCCGTGTAGTCCCCGGTCACCTCCTCTAGACCAGGAA Cuphea hookeriana AGCCCGGAAATGGGTCATCGAGCTTCAGCCC Ser14Term GGGCTGAAGCTCGATGACCCATTTCCGGGCTTTCCTGGTCTAGAG 2114 TCG-TAG GAGGTGACCGGGGACTACACGGGGAAGAATGCAGAGCTTGCAGC GGTAGCCACCATTGTCTTTCAACGAGCGGGAG CCCCGTGTAGTCCCCGG 2115 CCGGGGACTACACGGGG 2116 Reduced palmitate ATGGTGGCTACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCC 2117 Acyl-ACP-thioesterase CCGGTCACCTCCTCTTGACCAGGAAAGCCCGGAAATGGGTCATCG Cuphea hookeriana AGCTTCAGCCCCATCAAGCCCAAATTTGTCG Arg21Term CGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATGACCCATTTC 2118 AGA-TGA CGGGCTTTCCTGGTCAAGAGGAGGTGACCGGGGACGACACGGG GAAGAATGCAGAGCTTGCAGCGGTAGCCACCAT CCTCCTCTTGACCAGGA 2119 TCCTGGTCAAGAGGAGG 2120 Reduced palmitate GCTACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCCCCGGTC 2121 Acyl-ACP-thioesterase ACCTCCTCTAGACCATGAAAGCCCGGAAATGGGTCATCGAGCTTC Cuphea hookeriana AGCCCCATCAAGCCCAAATTTGTCGCCAATG Gly23Term CATTGGCGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATGACC 2122 GGA-TGA CATTTCCGGGCTTTCATGGTCTAGAGGAGGTGACCGGGGACGAC ACGGGGAAGAATGCAGAGCTTGCAGCGGTAGC CTAGACCATGAAAGCCC 2123 GGGCTTTCATGGTCTAG 2124 Reduced palmitate ACCGCTGCAAGCTCTGCATTCTTCCCCGTGTCGTCCCCGGTCACC 2125 Acyl-ACP-thioesterase TCCTCTAGACCAGGATAGCCCGGAAATGGGTCATGGAGCTTCAGC Cuphea hookeriana CCCATCAAGCCCAAATTTGTCGCCAATGGCG Lys24Term CGCCATTGGCGACAAATTTGGGCTTGATGGGGCTGAAGCTCGATG 2126 AAG-TAG ACCCATTTCCGGGCTATCCTGGTCTAGAGGAGGTGACCGGGGAC GACACGGGGAAGAATGCAGAGCTTGCAGCGGT GACCAGGATAGCCCGGA 2127 TCCGGGCTATCCTGGTC 2128 Reduced palmitate GCCACCGCTGCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGAC 2129 Acyl-ACP-thioesterase ACCTCCTCTAGGCCGTGAAAGCTGGGAAATGGGTCATCGAGCTTG Cuphea lanceolata AGCCCCCTCAAGCCCAAATTTGTCGCCAATG Gly23Term CATTGGCGACAAATTTGGGCTTGAGGGGGCTCAAGCTCGATGACC 2130 GGA-TGA CATTTCCGAGCTTTCACGGCCTAGAGGAGGTGTCCGGGGACGGC AGGGGGAAGAATGCAGAACTTGCAGCGGTGGC CTAGGCCGTGAAAGCTC 2131 GAGCTTTCACGGCCTAG 2132 Reduced palmitate ACCGCTGCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGACACC 2133 Acyl-ACP-thioesterase TCCTCTAGGCCGGGATAGCTCGGAAATGGGTCATCGAGCTTGAGC Cuphea lanceolata CCCCTCAAGCCCAAATTTGTCGCCAATGCCG Lys24Term CGGCATTGGCGACAAATTTGGGCTTGAGGGGGCTCAAGCTCGAT 2134 AAG-TAG GACCCATTTCCGAGCTATCCCGGCCTAGAGGAGGTGTCCGGGGA CGGCAGGGGGAAGAATGCAGAACTTGCAGCGGT GGCCGGGATAGCTCGGA 2135 TCCGAGCTATCCCGGCC 2136 Reduced palmitate GCAAGTTCTGCATTCTTCCCCCTGCCGTCCCCGGACACCTCCTCT 2137 Acyl-ACP-thioesterase AGGCCGGGAAAGCTCTGAAATGGGTCATCGAGCTTGAGCCCCCT Cuphea lanceolata CAAGCCCAAATTTGTCGCCAATGCCGGGTTGA Gly26Term TCAACCCGGCATTGGCGACAAATTTGGGGTTGAGGGGGCTCAAGC 2138 GGA-TGA TCGATGACCCATTTCAGAGCTTTCCCGGCCTAGAGGAGGTGTCCG GGGACGGCAGGGGGAAGAATGCAGAACTTGC GAAAGCTCTGAAATGGG 2139 CCCATTTCAGAGCTTTC 2140 Reduced palmitate CATTCTTCCCCCTGCCGTCCCCGGACACCTCCTCTAGGCCGGGAA 2141 Acyl-ACP-thioesterase AGCTCGGAAATGGGTGATCGAGCTTGAGCCCCCTCAAGCCCAAAT Cuphea lanceolata TTGTCGCCAATGCCGGGTTGAAGGTTAAGGC Ser29Term GCCTTAACCTTCAACCCGGCATTGGCGACAAATTTGGGCTTGAGG 2142 TCA-TGA GGGCTCAAGCTCGATCACCCATTTCCGAGCTTTCCCGGCCTAGAG GAGGTGTCCGGGGACGGCAGGGGGAAGAATG AAATGGGTGATCGAGCT 2143 AGCTCGATCACCCATTT 2144 Reduced palmitate CGTTTAAGTGGATCGGACATTTAAGTGTTTTAATCATGGTAGCTAT 2145 Acyl-ACP-thioesterase GAGTGCTACTGCGTAGCTGTTTCCGGTTTCTTCCCCAAAACCTCAC Helianthus annuus TCTGGAGCCAAGACATCTGATAAGCTTGG Ser9Term CCAAGCTTATCAGATGTCTTGGCTCCAGAGTGAGGTTTTGGGGAA 2146 TCG-TAG GAAACCGGAAACAGCTACGCAGTCGCACTCATAGCTACCATGATT AAAACACTTAAATGTCCGATCCACTTAAACG TACTGCGTAGCTGTTTC 2147 GAAACAGCTACGCAGTA 2148 Reduced palmitate AGTGTTTTAATCATGGTCGCTATGAGTGCTACTGCGTCGCTGTTTC 2149 Acyl-ACP-thioesterase CGGTTTCTTCCCCATAACCTCACTCTGGAGCCAAGACATCTGATAA Helianthus annuus GCTTGGAGGTGAACCAGGTAGTGTTGCTG Lys17Term CAGCAACACTACCTGGTTCACCTCCAAGCTTATCAGATGTCTTGGC 2150 AAA-TAA TCCAGAGTGAGGTTATGGGGAAGAAACCGGAAACAGCGACGCAG TAGCACTCATAGCTACCATGATTAAAACACT CTTCCCCATAACCTCAC 2151 GTGAGGTTATGGGGAAG 2152 Reduced palmitate ATGGTAGCTATGAGTGCTACTGCGTCGCTGTTTCCGGTTTCTTCCC 2153 Acyl-ACP-thioesterase CAAAACCTCACTCTTGAGCCAAGACATCTGATAAGCTTGGAGGTG Helianthus annuus AACCAGGTAGTGTTGCTGTGCGCGGAATCA Gly21Term TGATTCCGCGCACAGCAACACTACCTGGTTCACCTCCAAGCTTATC 2154 GGA-TGA AGATGTCTTGGCTCAAGAGTGAGGTTTTGGGGAAGAAACCGGAAA CAGCGACGCAGTAGCACTCATAGCTACCAT CTCACTCTTGAGCCAAG 2155 CTTGGCTCAAGAGTGAG 2156 Reduced palmitate GCTATGAGTGCTACTGCGTCGCTGTTTCCGGTTTCTTCCCCAAAAC 2157 Acyl-ACP-thioesterase CTCACTCTGGAGCCTAGACATCTGATAAGCTTGGAGGTGAACCAG Helianthus annuus GTAGTGTTGCTGTGCGCGGAATCAAGACAA Lys23Term TTGTCTTGATTCCGCGCACAGCAACACTACCTGGTTCACCTCCAAG 2158 AAG-TAG CTTATCAGATGTCTAGGCTCCAGAGTGAGGTTTTGGGGAAGAAAC CGGAAACAGCGACGCAGTCGCACTCATAGC CTGGAGCCTAGACATCT 2159 AGATGTCTAGGCTCCAG 2160 Reduced palmitate ATGGTGGCTGCTGCAGCAAGTTCTGCATGCTTCCCTGTTCCATCC 2161 Acyl-ACP-thioesterase CCAGGAGCCTCCCCTTAACCTGGGAAGTTAGGCAACTGGTCATCG Cuphea palustris AGTTTGAGCCCTTCCTTGAAGCCCAAGTCAA Lys21Term TTGACTTGGGCTTCAAGGAAGGGCTCAAACTCGATGACCAGTTGC 2162 AAA-TAA CTAACTTCCCAGGTTAAGGGGAGGCTCCTGGGGATGGAACAGGG AAGCATGCAGAACTTGCTGCAGCAGCCACCAT CCTCCCCTTAACCTGGG 2163 CCCAGGTTAAGGGGAGG 2164 Reduced palmitate GCTGCAGCAAGTTCTGCATGCTTCCCTGTTCCATCCCCAGGAGCC 2165 Acyl-ACP-thioesterase TCCCCTAAACCTGGGTAGTTAGGCAACTGGTCATCGAGTTTGAGC Cuphea palustris CCTTCCTTGAAGCCCAAGTCAATCCCCAATG Lys24Term CATTGGGGATTGACTTGGGCTTCAAGGAAGGGCTCAAACTCGATG 2166 AAG-TAG ACCAGTTGCCTAACTACCCAGGTTTAGGGGAGGCTCCTGGGGATG GAACAGGGAAGCATGCAGAACTTGCTGCAGC AACCTGGGTAGTTAGGC 2167 GCCTAACTACCCAGGTT 2168 Reduced palmitate TGCATGCTTCCCTGTTCCATCCCCAGGAGCCTCCCCTAAACCTGG 2169 Acyl-ACP-thioesterase GAAGTTAGGCAACTGATCATCGAGTTTGAGCCCTTCCTTGAAGCC Cuphea palustris CAAGTCAATCCCCAATGGCGGATTTCAGGTT Trp28Term AACCTGAAATCCGCCATTGGGGATTGACTTGGGCTTCAAGGAAGG 2170 TGG-TGA GCTCAAACTCGATGATCAGTTGCCTAACTTCCCAGGTTTAGGGGA GGCTCCTGGGGATGGAACAGGGAAGCATGCA GGCAACTGATCATCGAG 2171 CTCGATGATCAGTTGCC 2172 Reduced palmitate CATGCTTCCCTGTTCCATCCCCAGGAGCCTCCCCTAAACCTGGGA 2173 Acyl-ACP-thioesterase AGTTAGGCAACTGGTGATCGAGTTTGAGCCCTTCCTTGAAGCCCA Cuphea palustris AGTCAATCCCCAATGGCGGATTTCAGGTTAA Ser29Term TTAACCTGAAATCCGCCATTGGGGATTGACTTGGGCTTCAAGGAA 2174 TCA-TGA GGGCTCAAACTCGATCACCAGTTGCCTAACTTCCCAGGTTTAGGG GAGGCTCCTGGGGATGGAACAGGGAAGCATG CAACTGGTGATCGAGTT 2175 AACTCGATCACCAGTTG 2176 Reduced paimitate ATGGTGGCTGCCGCAGCAAGTTCTGCATTCTTCTCCGTTCCAACC 2175 Acyl-ACP-thioesterase CCGGGAATCTCCCCTTAACCCGGGAAGTTCGGTAATGGTGGCTTT Cuphea hookeriana CAGGTTAAGGCAAACGCCAATGCCCATCCTA Lys21Term TAGGATGGGCATTGGCGTTTGCCTTAACCTGAAAGCCACCATTAC 2178 AAA-TAA CGAACTTCCCGGGTTAAGGGGAGATTCCCGGGGTTGGAACGGAG AAGAATGCAGAACTTGCTGCGGCAGCCACCAT TCTCCCCTTAACCCGGG 2179 CCCGGGTTAAGGGGAGA 2180 Reduced palmitate GCCGCAGCAAGTTCTGCATTCTTCTCCGTTCCAACCCCGGGAATC 2181 Acyl-ACP-thioesterase TCCCCTAAACCCGGGTAGTTCGGTAATGGTGGCTTTCAGGTTAAG Cuphea hookeriana GCAAACGCCAATGCCCATCCTAGTCTAAAGT Lys24Term ACTTTAGACTAGGATGGGCATTGGCGTTTGCCTTAACCTGAAAGC 2182 AAG-TAG CACCATTACCGAACTACCCGGGTTTAGGGGAGATTCCCGGGGTTG GAACGGAGAAGAATGCAGAACTTGCTGCGGC AACCCGGGTAGTTCGGT 2183 ACCGAACTACCCGGGTT 2184 Reduced palmitate TTCTCCGTTCCAACCCCGGGAATCTCCCCTAAACCCGGGAAGTTC 2185 Acyl-ACP-thioesterase GGTAATGGTGGCTTTTAGGTTAAGGCAAACGCCAATGCCCATCCT Cuphea hookeriana AGTCTAAAGTCTGGCAGCCTCGAGACTGAAG Gln31Term CTTCAGTCTCGAGGCTGCCAGACTTTAGACTAGGATGGGCATTGG 2186 CAG-TAG CGTTTGCCTTAACCTAAAAGCCACCATTACCGAACTTCCCGGGTTT AGGGGAGATTCCCGGGGTTGGAACGGAGAA GTGGCTTTTAGGTTAAG 2187 CTTAACCTAAAAGCCAC 2188 Reduced palmitate GTTCCAACCCCGGGAATCTCCCCTAAACCCGGGAAGTTCGGTAAT 2189 Acyl-ACP-thioesterase GGTGGCTTTCAGGTTTAGGCAAACGCCAATGCCCATCCTAGTCTA Cuphea hookeriana AAGTCTGGCAGCCTCGAGACTGAAGATGACA Lys33Term TGTCATCTTCAGTCTCGAGGCTGCCAGACTTTAGACTAGGATGGG 2190 AAG-TAG CATTGGCGTTTGCCTAAACCTGAAAGCCACCATTACCGAACTTCCC GGGTTTAGGGGAGATTCCCGGGGTTGGAAC TTCAGGTTTAGGCAAAC 2191 GTTTGCCTAAACCTGAA 2192 Reduced palmitate ATGTTGAAGCTCTCGTGTAATGCGACTGATAAGTTACAGACCCTCT 2193 Acyl-ACP-thioesterase TCTCGCATTCTCATTAACCGGATCCGGCACACCGGAGAACCGTCT Brassica rapa CCTCCGTGTCGTGCTCTCATCTGAGGAAAC Gln21Term GTTTCCTCAGATGAGAGCACGACACGGAGGAGACGGTTCTCCGGT 2194 CAA-TAA GTGCCGGATCCGGTTAATGAGAATGCGAGAAGAGGGTCTGTAACT TATCAGTCGCATTACACGAGAGCTTCAACAT ATTCTCATTAACCGGAT 2195 ATCCGGTTAATGAGAAT 2196 Reduced palmitate GCGACTGATAAGTTACAGACCCTCTTCTCGCATTCTCATCAACCGG 2197 Acyl-ACP-thioesterase ATCCGGCACACCGGTGAACCGTCTCCTCCGTGTCGTGCTCTCATC Brassica rapa TGAGGAAACCGGTTCTCGATCCTTTGCGAG Arg28Term CTCGCAAAGGATCGAGAACCGGTTTCCTCAGATGAGAGCACGACA 2198 AGA-TGA CGGAGGAGACGGTTCACCGGTGTGCCGGATCCGGTTGATGAGAA TGCGAGAAGAGGGTCTGTAACTTATCAGTCGC CACACCGGTGAACCGTC 2199 GACGGTTCACCGGTGTG 2200 Reduced palmitate CCCTCTTCTCGCATTCTCATCAACCGGATCCGGCACACCGGAGAA 2201 Acyl-ACP-thioesterase CCGTCTCCTCCGTGTAGTGCTCTCATCTGAGGAAACCGGTTCTCG Brassica rapa ATCCTTTGCGAGCGATCGTATCTGCTGATCA Ser24Term TGATCAGCAGATACGATCGCTCGCAAAGGATCGAGAACCGGTTTC 2202 TCG-TAG CTCAGATGAGAGCACTACACGGAGGAGACGGTTCTCCGGTGTGC CGGATCCGGTTGATGAGAATGCGAGAAGAGGG CTCCGTGTAGTGCTCTC 2203 GAGAGCACTACACGGAG 2204 Reduced palmitate CTTCTCGCATTCTCATCAACCGGATCCGGCACACCGGAGAACCGT 2205 Acyl-ACP-thioesterase CTCCTCCGTGTCGTGATCTCATCTGAGGAAACCGGTTCTCGATCC Brassica rapa TTTGCGAGCGATCGTATCTGCTGATCAAGGA Cys25Term TCCTTGATCAGCAGATACGATCGCTCGCAAAGGATCGAGAACCGG 2206 TGC-TGA TTTCCTCAGATGAGATCACGACACGGAGGAGACGGTTCTCCGGTG TGCCGGATCCGGTTGATGAGAATGCGAGAAG GTGTCGTGATCTCATCT 2207 AGATGAGATCACGACAC 2208 Reduced palmitate ATTCTTCTTCTATAAACCAAAACCTCAGGAACCATAAAAAAAAAAGG 2209 Acyl-ACP-thioesterase GCATCAAAAATGTAGAAGCTTTCGTGTAATGTGACTAACAACTTAC Brassica napus ACACCTTCTCCTTCTTCTCCGATTCCTC Leu2Term GAGGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTTGTTAGTCACA 2210 TTG-TAG TTACACGAAAGCTTCTACATTTTTGATGCCCTTTTTTTTTTATGGTTC CTGAGGTTTTGGTTTATAGAAGAAGAAT AAAAATGTAGAAGCTTT 2211 AAAGCTTCTACATTTTT 2212 Reduced palmitate TCTTCTTCTATAAACCAAAACCTCAGGAACCATAAAAAAAAAAGGG 2213 Acyl-ACP-thioesterase CATCAAAAATGTTGTAGCTTTCGTGTAATGTGACTAACAACTTACAC Brassica napus ACCTTCTCCTTCTTCTCCGATTCCTCCC Lys3Term GGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTTGTTAGTCA 2214 AAG-TAG CATTACACGAAAGCTACAACATTTTTGATGCCCTTTTTTTTTTATGG TTCCTGAGGTTTTGGTTTATAGAAGAAGA AAATGTTGTAGCTTTCG 2215 CGAAAGCTACAACATTT 2216 Reduced palmitate CTATAAACCAAAACCTCAGGAACCATAAAAAAAAAAGGGCATCAAA 2217 Acyl-ACP-thioesterase AATGTTGAAGCTTTAGTGTAATGTGACTAACAACTTACACACCTTCT Brassica napus CCTTCTTCTCCGATTCCTCCCTTTTCAT Ser5Term ATGAAAAGGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTAAGTT 2218 TCG-TAG GTTAGTCACATTACACTAAAGCTTCAACATTTTTGATGCCCTTTTTT TTTTATGGTTCCTGAGGTTTTGGTTTATAG GAAGCTTTAGTGTAATG 2219 CATTACACTAAAGCTTC 2220 Reduced palmitate AAACCAAAACCTCAGGAACCATAAAAAAAAAAGGGCATCAAAAATG 2221 Acyl-ACP-thioesterase TTGAAGCTTTCGTGAAATGTGACTAACAACTTACACACCTTCTCCTT Brassica napus CTTCTCCGATTCCTCCCTTTTCATCCCG Cys6Term CGGGATGAAAAGGGAGGAATCGGAGAAGAAGGAGAAGGTGTGTA 2222 TGT-TGA AGTTGTTAGTCACATTTCACGAAAGCTTCAACATTTTTGATGCCCTT TTTTTTTTATGGTTCCTGAGGTTTTGGTTT CTTTCGTGAAATGTGAC 2223 GTCACATTTCACGAAAG 2224
[0147] 25 TABLE 23 Oligonucleotides to produce plants with increased stearate Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Increased stearate GGGAGAGCTCTAGCTCTGTAGAAAAGAAGGATTCATTCATCATATC 2225 stearoyl-ACP CAGAAATGGCTCTATAGTTTAACCCTTTGGTGGCATCTCAGCCTTA desaturase CAAATTCCCTTCCTCGACTCGTCCGCCAA Arabidopsis thaliana TTGGCGGACGAGTCGAGGAAGGGAATTTGTAAGGCTGAGATGCC 2226 Lys4 Term ACCAAAGGGTTAAACTATAGAGCCATTTCTGGATATGATGAATGAA AAG-TAG TCCTTCTTTTCTACAGAGCTAGAGCTCTCCC TGGCTCTATAGTTTAAC 2227 GTTAAACTATAGAGCCA 2228 Increased stearate CTCTGTAGAAAAGAAGGATTCATTCATCATATCCAGAAATGGCTCT 2229 stearoyl-ACP AAAGTTTAACCCTTAGGTGGCATCTCAGCCTTACAAATTCCCTTCC desaturase TCGACTCGTCCGCCAACTCCTCTTTCAG Arabidopsis thaliana CTGAAAGAAGGAGTTGGCGGACGAGTCGAGGAAGGGAATTTGTA 2230 Leu8 Term AGGCTGAGATGCCACCTAAGGGTTAAACTTTAGAGCCATTTCTGG TTG-TAG ATATGATGAATGAATCCTTCTTTTCTACAGAG TAACCCTTAGGTGGCAT 2231 ATGCCACCTAAGGGTTA 2232 Increased stearate AGAAGGATTCATTCATCATATCCAGAAATGGCTCTAAAGTTTAACC 2233 stearoyl-ACP CTTTGGTGGCATCTTAGCCTTACAAATTCCCTTCCTCGACTCGTCC desaturase GCCAACTCCTTCTTTCAGATCTCCCAAGT Arabidopsis thaliana ACTTGGGAGATCTGAAAGAAGGAGTTGGCGGACGAGTCGAGGAA 2234 Gln12 Term GGGAATTTGTAAGGCTAAGATGCCACCAAAGGGTTAAACTTTAGA CAG-TAG GCCATTTCTGGATATGATGAATGAATCCTTCT TGGCATCTTAGCCTTAC 2235 GTAAGGCTAAGATGCCA 2236 Increased stearate TCATTCATCATATCCAGAAATGGCTCTAAAGTTTAACCCTTTGGTG 2237 stearoyl-ACP GCATCTCAGCCTTAGAAATTCCCTTCCTCGACTCGTCCGCCAACTC desaturase CTTCTTTCAGATCTCCCAAGTTCCTCTGC Arabidopsis thaliana GCAGAGGAACTTGGGAGATCTGAAAGAAGGAGTTGGCGGACGAG 2238 Phe14 Term TCGAGGAAGGGAATTTCTAAGGCTGAGATGCCACCAAAGGGTTAA TAC-TAG ACTTTAGAGCCATTTCTGGATATGATGAATGA CAGCCTTAGAAATTCCC 2239 GGGAATTTCTAAGGCTG 2240 Increased stearate GAGAGCTCGCTCGTGTCTGAAAGAACATCAAACCTCGTATCAAAAA 2241 stearoyl-ACP AAAGAAAATGGCATAGAAGCTTAACCCTTTGGCATCTCAGCCTTAC desaturase AAACTCCCTTCCTCGGCTCGTCCGCCAAT Brassica napus ATTGGCGGACGAGCCGAGGAAGGGAGTTTGTAAGGCTGAGATGC 2242 Leu3 Term CAAAGGGTTAAGCTTCTATGCCATTTTCTTTTTTTTGATACGAGGTT TTG-TAG TGATGTTCTTTCAGACACGAGCGAGCTCTC AATGGCATAGAAGCTTA 2243 TAAGCTTCTATGCCATT 2244 Increased stearate GAGCTCGCTCGTGTCTGAAAGAACATCAAACCTCGTATCAAAAAAA 2245 stearoyl-ACP AGAAAATGGCATTGTAGCTTAACCCTTTGGCATCTCAGCCTTACAA desaturase ACTCCCTTCCTCGGCTCGTCCGCCAATCT Brassica napus AGATTGGCGGACGAGCCGAGGAAGGGAGTTTGTAAGGCTGAGAT 2246 Lys4 Term GCCAAAGGGTTAAGCTACAATGCCATTTTCTTTTTTTTGATACGAG AAG-TAG GTTTGATGTTCTTTCAGACACGAGCGAGCTC TGGCATTGTAGCTTAAC 2247 GTTAAGCTACAATGCCA 2248 Increased stearate TCTGAAAGAACATCAAACCTCGTATCAAAAAAAAGAAAATGGCATT 2249 stearoyl-ACP GAAGCTTAACCCTTAGGCATCTCAGCCTTACAAACTCCCTTCCTCG desaturase GCTCGTCCGCCAATCTCTACTCTCAGATC Brassica napus GATCTGAGAGTAGAGATTGGCGGACGAGCCGAGGAAGGGAGTTT 2250 Leu8 Term GTAAGGCTGAGATGCCTAAGGGTTAAGCTTCAATGCCATTTTCTTT TTG-TAG TTTTTGATACGAGGTTTGATGTTCTTTCAGA TAACCCTTAGGCATCTC 2251 GAGATGCCTAAGGGTTA 2252 Increased stearate AACATCAAACCTCGTATCAAAAAAAAGAAAATGGCATTGAAGCTTA 2253 stearoyl-ACP ACCCTTTGGCATCTTAGCCTTACAAACTCCCTTCCTCGGCTCGTCC desaturase GCCAATCTCTACTCTCAGATCTCCCAAGT Brassica napus ACTTGGGAGATCTGAGAGTAGAGATTGGCGGACGAGCCGAGGAA 2254 Gln11 Term GGGAGTTTGTAAGGCTAAGATGCCAAAGGGTTAAGCTTCAATGCC CAG-TAG ATTTTCTTTTTTTTGATACGAGGTTTGATGTT TGGCATCTTAGCCTTAC 2255 GTAAGGCTAAGATGCCA 2256 Increased stearate AACCAAAAGAAAAGGTAAGAAAAAAAACAATGGCTCTCAAGCTCA 2257 stearoyl-ACP ATCCTTTCCTTTCTTAAACCCAAAAGTTACCTTCTTTCGCTCTTCCA desaturase CCAATGGCCAGTACCAGATCTCCTAAGT Ricinus communis ACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAGCGAAAGAAG 2258 Gln27 Term GTAACTTTTGGGTTTAAGAAAGGATTGAGCTTGAGAGCCAT CAA-TAA TGTTTTTTTTCTTACCTTTTTCTTTTGGTT TCCTTTCTTAAACCCAA 2259 TTGGGTTTAAGAAAGGA 2260 Increased stearate AAGAAAAAGGTAAGAAAAAAAACAATGGCTCTCAAGCTCAATCCTT 2261 stearoyl-ACP TCCTTTCTCAAACCTAAAAGTTACCTTCTTTCGCTCTTCCACCAATG desaturase GCCAGTACCAGATCTCCTAAGTTCTACA Ricinus communis TGTAGAACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAGCGA 2262 Gln29 Term AAGAAGGTAACTTTTAGGTTTGAGAAAGGAAAGGATTGAGCTTGA CAA-TAA GAGCCATTGTTTTTTTTCTTACCTTTTTCTT CTCAAACCTAAAAGTTA 2263 TAACTTTTAGGTTTGAG 2264 Increased stearate AAAAAGGTAAGAAAAAAAACAATGGCTCTCAAGCTCAATCCTTTCC 2265 stearoyl-ACP TTTCTCAAACCCAATAGTTACCTTCTTTCGCTCTTCCACCAATGGCC desaturase AGTACCAGATCTCCTAAGTTCTACATGG Ricinus communis CCATGTAGAACTTAGGAGATCTGGTACTGGCCATTGGTGGAAGAG 2266 Lys30 TermCGAAAGAAGGTAACTATTGGGTTTGAGAAAGGAAAGGATTGAGCT AAG-TAG TGAGAGCCATTGTTTTTTTTCTTACCTTTTT AAACCCAATAGTTACCT 2267 AGGTAACTATTGGGTTT 2268 Increased stearate TCTCAAACCCAAAAGTTACCTTCTTTCGCTCTTCCACCAATGGCCA 2269 stearoyl-ACP GTACCAGATCTCCTTAGTTCTACATGGCCTCTACCCTCAAGTCTGG desaturase TTCTAAGGAAGTTGAGAATCTCAAGAAGC Ricinus communis GCTTCTTGAGATTCTCAACTTCCTTAGAACCAGACTTGAGGGTAGA 2270 Lys46 Term GGCCATGTAGAACTAAGGAGATCTGGTACTGGCCATTGGTGGAG AAG-TAG AGCGAAAGAAGGTAACTTTTGGGTTTGAGA GATCTCCTTAGTTCTAC 2271 GTAGAACTAAGGAGATC 2272 Increased stearate TCTTCTGATTCATTTAATCTTTACTCATCAATGGCTCTGAGACTGAA 2273 stearoyl-ACP CCCTATCCCCACCTAAACCTTCTCCCTCCCCCAAATGGCCAGTCTC desaturase AGATCTCCCAGGTTCCGCATGGCCTCTA Glycine max TAGAGGCCATGCGGAACCTGGGAGATCTGAGACTGGCCATTTGG 2274 Gln11 Term GGGAGGGAGAAGGTTTAGGTGGGGATAGGGTTCAGTCTCAGAGC CAA-TAA CATTGATGAGTAAAGATTAAATGAATCAGAAGA TCCCCACCTAAACCTTC 2275 GAAGGTTTAGGTGGGGA 2276 Increased stearate CTTTACTCATCAATGGCTCTGAGACTGAACCCTATCCCCACCCAAA 2277 stearoyl-ACP CCTTCTCCCTCCCCTAAATGGCCAGTCTCAGATCTCCCAGGTTCC desaturase GCATGGCCTCTACCCTCCGCTCCGGTTCCA Glycine max TGGAACCGGAGCGGAGGGTAGAGGCCATGCGGAACCTGGGAGAT 2278 Gln17 Term CTGAGACTGGCCATTTAGGGGAGGGAGAAGGTTTGGGTGGGGAT CAA-TAA AGGGTTCAGTCTCAGAGCCATTGATGAGTAAAG CCCTCCCCTAAATGGCC 2279 GGCCATTTAGGGGAGGG 2280 Increased stearate GCTCTGAGACTGAACCCTATCCCCACCCAAACCTTCTCCCTCCCC 2281 stearoyl-ACP CAAATGGCCAGTCTCTGATCTCCCAGGTTCCGCATGGCCTCTACC desaturase CTCCGCTCCGGTTCCAAAGAGGTTGAAAATA Glycine max TATTTTCAACCTCTTTGGAACCGGAGCGGAGGGTAGAGGCCATGC 2282 Arg22 Term GGAACCTGGGAGATCAGAGACTGGCCATTTGGGGGAGGGAGAAG AGA-TGA GTTTGGGTGGGGATAGGGTTCAGTCTCAGAGC CCAGTCTCTGATCTCCC 2283 GGGAGATCAGAGACTGG 2284 Increased stearate CAAATGGCCAGTCTCAGATCTCCCAGGTTCCGCATGGCCTCTACC 2285 stearoyl-ACP CTCCGCTCCGGTTCCTAAGAGGTTGAAAATATTAAGAAGCCATTCA desaturase CTCCTCCCAGAGAAGTGCATGTTCAAGTAA Glycine max TTACTTGAACATGCACTTCTCTGGGAGGAGTGAATGGCTTCTTAAT 2286 Lys37 Term ATTTTCAACCTCTTAGGAACCGGAGCGGAGGGTAGAGGCCATGCG AAA-TAA GAACCTGGGAGATCTGAGACTGGCCATTTG CCGGTTCCTAAGAGGTT 2287 AACCTCTTAGGAACCGG 2288 Increased stearate CAACAAGCACACACAAGAACAACATCAACAATGGCGATTCGCATC 2289 stearoyl-ACP AATACGGCGACGTTTTAATCAGACCTGTACCGTTCATTCGCGTTTC desaturase CTCAACCGAAACCTCTCAGATCTCCCAAAT Helianthus annuus ATTTGGGAGATCTGAGAGGTTTCGGTTGAGGAAACGCGAATGAAC 2290 Gln11 Term GGTACAGGTCTGATTAAAACGTCGCCGTATTGATGCGAATCGCCA CAA-TAA TTGTTGATGTTGTTCTTGTGTGTGCTTGTTG CGACGTTTTAATCAGAC 2291 GTCTGATTAAAACGTCG 2292 Increased stearate AAGCACACACAAGAAGCAACATCAACAATGGCGATTCGCATCAATAC 2293 stearoyl-ACP GGCGACGTTTCAATGAGACCTGTACCGTTCATTCGCGTTTCCTCAA desaturase CCGAAACCTCTCAGATCTCCCAAATTCGC Helianthus annuus GCGAATTTGGGAGATCTGAGAGGTTTCGGTTGAGGAAACGCGAAT 2294 Ser12 Term GAACGGTACAGGTCTCATTGAAACGTCGCCGTATTGATGCGAATC TCA-TGA GCCATTGTTGATGTTGTTCTTGTGTGTGCTT GTTTCAATGAGACCTGT 2295 ACAGGTCTCATTGAAAC 2296 Increased stearate AAGAACAACATCAACAATGGCGATTCGCATCAATACGGCGACGTTT 2297 stearoyl-ACP CAATCAGACCTGTAGCGTTCATTCGCGTTTCCTCAACCGAAACCTC desaturase TCAGATCTCCCAAATTCGCCATGGCTTCC Helianthus annuus GGAAGCCATGGCGAATTTGGGAGATCTGAGAGGTTTCGGTTGAGG 2298 Tyr15 Term AAACGCGAATGAACGCTACAGGTCTGATTGAAACGTCGCCGTATT TAC-TAG GATGCGAATCGCCATTGTTGATGTTGTTCTT GACCTGTAGCGTTCATT 2299 AATGAACGCTACAGGTC 2300 Increased stearate CAACATCAACAATGGCGATTCGCATCAATACGGCGACGTTTCAATC 2301 stearoyl-ACP AGACCTGTACCGTTGATTCGCGTTTCCTCAACCGAAACCTCTCAGA desaturase TCTCCCAAATTCGCCATGGCTTCCACCAT Helianthus annuus ATGGTGGAAGCCATGGCGAATTTGGGAGATCTGAGAGGTTTCGGT 2302 Ser17 Term TGAGGAAACGCGAATCAACGGTACAGGTCTGATTGAAACGTCGCC TCA-TGA GTATTGATGCGAATCGCCATTGTTGATGTTG GTACCGTTGATTCGCGT 2303 ACGCGAATCAACGGTAC 2304 Increased stearate ACACACAACACACACTCAATCACACACACATCATCATCTTCTTCATC 2305 stearoyl-ACP AACGATGGCGCTTTGAATGAGTCCGGTGACGCTTCAACGGGAGAT desaturase ATATCCTTCATACACTTTTCATCAATCGA Helianthus annuus TCGATTGATGAAAAGTGTATGAAGGATATATCTCCCGTTGAAGCGT 2306 Arg4 Term CACCGGACTCATTCAAAGCGCCATCGTTGATGAAGAAGATGATGA CGA-TGA TGTGTGTGTGATTGAGTGTGTGTTGTGTGT TGGCGCTTTGAATGAGT 2307 ACTCATTCAAAGCGCCA 2308 Increased stearate ACACACACATCATCATCTTCTTCATCAACGATGGCGCTTCGAATGA 2309 stearoyl-ACP GTCCGGTGACGCTTTAACGGGAGATATATCCTTCATACACTTTTCA desaturase TCAATCGAAAAATCTCAGATCTCCTAAAT Helianthus annuus ATTTAGGAGATCTGAGATTTTTCGATTGATGAAAAGTGTATGAAGG 2310 Gln11 Term ATATATCTCCCGTTAAAGCGTCACCGGACTCATTCGAAGCGCCATC CAA-TAA GTTGATGAAGAAGATGATGATGTGTGTGT TGACGCTTTAACGGGAG 2311 CTCCCGTTAAAGCGTCA 2312 Increased stearate ACATCATCATCTTCTTCATCAACGATGGCGCTTCGAATGAGTCCGG 2313 stearoyl-ACP TGACGCTTCAACGGTAGATATATCCTTCATACACTTTTCATCAATCG desaturase AAAAATCTCAGATCTCCTAAATTCGCGA Helianthus annuus TCGCGAATTTAGGAGATCTGAGATTTTTCGATTGATGAAAAGTGTA 2314 Glu13 Term TGAAGGATATATCTACCGTTGAAGCGTCACCGGACTCATTCGAAG GAG-TAG CGCCATCGTTGATGAAGAAGATGATGATGT TTCAACGGTAGATATAT 2315 ATATATCTACCGTTGAA 2316 Increased stearate ATCTTCTTCATCAACGATGGCGCTTCGAATGAGTCCGGTGACGCTT 2317 stearoyl-ACP CAACGGGAGATATAGCCTTCATACACTTTTCATCAATCGAAAAATC desaturase TCAGATCTCCTAAATTCGCGATGGCTTCC Helianthus annuus GGAAGCCATCGCGAATTTAGGAGATCTGAGATTTTTCGATTGATGA 2318 Tyr15 Term AAAGTGTATGAAGGCTATATCTCCCGTTGAAGCGTCACCGGACTC TAT-TAG ATTCGAAGCGCCATCGTTGATGAAGAAGAT GAGATATAGCCTTCATA 2319 TATGAAGGCTATATCTC 2320 Increased stearate AACTCAGCCAGCTTGCCCCCAAACAACAGCGCAGAAAAACCTTCA 2321 stearoyl-ACP ACAACAATGGCTCTCTAGCTCAACCCAGTCACCACCTTCCCTTCAA desaturase CACGCTCCCTCAACAACTTCTCCTCCAGAT Linum usitatissimum ATCTGGAGGAGAAGTTGTTGAGGGAGCGTGTTGAAGGGAAGGTG 2322 Lys4 Term GTGACTGGGTTGAGCTAGAGAGCCATTGTTGTTGAAGGTTTTTCT AAG-TAG GCGCTGTTGTTTGGGGGCAAGCTGGCTGAGTT TGGCTCTCTAGCTCAAC 2323 GTTGAGCTAGAGAGCCA 2324 Increased stearate GCGCAGAAAAACCTTCAACAACAATGGCTCTCAAGCTCAACCCAG 2325 stearoyl-ACP TCACCACCTTCCCTTGAACACGCTCCCTCAACAACTTCTCCTCCAG desaturase ATCTCCTCGCACCTTTCTCATGGCTGCTTC Linum usitatissimum GAAGCAGCCATGAGAAAGGTGCGAGGAGATCTGGAGGAGAAGTT 2326 Ser13 Term GTTGAGGGAGCGTGTTCAAGGGAAGGTGGTGACTGGGTTGAGCT TCA-TGA TGAGAGCCATTGTTGTTGAAGGTTTTTCTGCGC CTTCCCTTGAACACGCT 2327 AGCGTGTTCAAGGGAAG 2328 Increased stearate CTCAAGCTCAACCCAGTCACCACCTTCCCTTCAACACGCTCCCTCA 2329 stearoyl-ACP ACAACTTCTCCTCCTGATCTCCTCGCACCTTTCTCATGGCTGCTTC desaturase CACTTTCAATTCCACCTCCACCAAGTAAG Linum usitatissimum CTTACTTGGTGGAGGTGGAATTGAAAGTGGAAGCAGCCATGAGAA 2330 Arg23 Term AGGTGCGAGGAGATCAGGAGGAGAAGTTGTTGAGGGAGCGTGTT AGA-TGA GAAGGGAAGGTGGTGACTGGGTTGAGCTTGAG TCTCCTCCTGATCTCCT 2331 AGGAGATCAGGAGGAGA 2332 Increased stearate TCCTCCAGATCTCCTCGCACCTTTCTCATGGCTGCTTCCACTTTCA 2333 stearoyl-ACP ATTCCACCTCCACCTAGTAAGCATCTCCTCCTCCTCGGAATCTCCG desaturase CCGATTTCTTTTAAGCGATTGATCGTAGA Linum usitatissimum TCTACGATCAATCGCTTAAAAGAAATCGGCGGAGATTCCGAGGAG 2334 Lys411 Term GAGGAGATGCTTACTAGGTGGAGGTGGAATTGAAAGTGGAAGCA AAG-TAG GCCATGAGAAAGGTGCGAGGAGATCTGGAGGA CCTCCACCTAGTAAGCA 2335 TGCTTACTAGGTGGAGG 2336 Increased stearate ATGGCACTGAAACTTTGCTTTCCACCCCACAAGATGCCTTCCTTCC 2337 stearoyl-ACP CCGATGCTCGTATCTGATCTCACAGGGTTTTCATGGCTTCAACTAT desaturase TCATTCTCCTTCTATGGAGGTCGGAAAAG Olea europaeap CTTTCCGACCTCCATAGAAGGAGAATGAATAGTTGAAGCCATGAA 2338 Arg21 Term AACCCTGTGAGATCAGATACGAGCATCGGGGAAGGAAGGCATCTT AGA-TGA GTGGGGTGGAAAGCAAAGTTTCAGTGCCAT CTCGTATCTGATCTCAC 2339 GTGAGATCAGATACGAG 2340 Increased stearate CCCACAAGATGCCTTCCTTCCCCGATGCTCGTATCAGATCTCACAG 2341 stearoyl-ACP GGTTTTCATGGCTTGAACTATTCATTCTCCTTCTATGGAGGTCGGA desaturase AAAGTTAAAAAGCCTTTCACGCCTCCACG Olea europaeap CGTGGAGGCGTGAAAGGCTTTTTAACTTTTCCGACCTCCATAGAA 2342 Ser29 Term GGAGAATGAATAGTTCAAGCCATGAAAACCCTGTGAGATCTGATAC TCA-TGA GAGCATCGGGGAAGGAAGGCATCTTGTGGG CATGGCTTGAACTATTC 2343 GAATAGTTCAAGCCATG 2344 Increased stearate GATGCTCGTATCAGATCTCACAGGGTTTTCATGGCTTCAACTATTC 2345 stearoyl-ACP ATTCTCCTTCTATGTAGGTCGGAAAAGTTAAAAAGCCTTTCACGCC desaturase TCCACGAGAGGTACATGTTCAAGTAACCC Olea europaeap GGGTTACTTGAACATGTACCTCTCGTGGAGGCGTGAAAGGCTTTT 2346 Glu37 Term TAACTTTTCCGACCTACATGAAGGAGAATGAATAGTTGAAGCCAT GAG-TAG GAAAACCCTGTGAGATCTGATACGAGCATC CTTCTATGTAGGTCGGA 2347 TCCGACCTACATAGAAG 2348 Increased stearate CGTATCAGATCTCACAGGGTTTTCATGGCTTCAACTATTCATTCTC 2349 stearoyl-ACP CTTCTATGGAGGTCTGAAAAGTTAAAAAGCCTTTCACGCCTCCACG desaturase AGAGGTACATGTTCAAGTAACCCATTCCT Olea europaeap AGGAATGGGTTACTTGAACATGTACCTCTCGTGGAGGCGTGAAAG 2350 Gly39 Term GCTTTTTAACTTTTCAGACCTCCATAGAAGGAGAATGAATAGTTGA GGA-TGA AGCCATGAAAACCCTGTGAGATCTGATACG TGGAGGTCTGAAAAGTT 2351 AACTTTTCAGACCTCCA 2352 Increased stearate TTCTCGTTTTTGTCGTCCCCTCTGCTCTCTCTCTCTATCAGGCACG 2353 stearoyl-ACP GAGAAATGGCACTGTAACTCAGTCCAGTCATGTTTCAATCTCAGAA desaturase GCTTCCATTTCTTGCCTCCTATCCGCCTT Persea americana AAGGCGGATAGGAGGCAAGAAATGGAAGCTTCTGAGATTGAAACA 2354 Lys4 Term TGACTGGACTGAGTTACAGTGCCATTTCTCCGTGCCTGATAGAGA AAA-TAA GAGAGAGCAGAGGGGACGACAAAAACGAGAA TGGCACTGTAACTCAGT 2355 ACTGAGTTACAGTGCCA 2356 Increased stearate CTGCTCTCTCTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCA 2357 stearoyl-ACP GTCCAGTCATGTTTTAATCTCAGAAGCTTCCATTTCTTGCCTCCTAT desaturase CCGCCTTCCAATCTCAGATCTCCGAGGG Persea americana CCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAGGCAAGAAAT 2358 Gln11 Term GGAAGCTTCTGAGATTAAAACATGACTGGACTGAGTTTCAGTGCC CAA-TAA ATTTCTCCGTGCCTGATAGAGAGAGAGAGCAG TCATGTTTTAATCTCAG 2359 CTGAGATTAAAACATGA 2360 Increased stearate TCTCTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCAGTCCA 2361 stearoyl-ACP GTCATGTTTCAATCTTAGAAGCTTCCATTTCTTGCCTCCTATCCGCC desaturase TTCCAATCTCAGATCTCCGAGGGTTTTCA Persea americana TGAAAACCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAGGCAA 2362 Gln13 Term GAAATGGAAGCTTCTAAGATTGAAACATGACTGGACTGAGTTTCAG CAG-TAG TGCCATTTCTCCGTGCCTGATAGAGAGAGA TTCAATCTTAGAAGCTT 2363 AAGCTTCTAAGATTGAA 2364 Increased stearate CTCTCTATCAGGCACGGAGAAATGGCACTGAAACTCAGTCCAGTC 2365 stearoyl-ACP ATGTTTCAATCTCAGTAGCTTCCATTTCTTGCCTCCTATCCGCCTTC desaturase CAATCTCAGATCTCCGAGGGTTTTCATGG Persea americana CCATGAAAACCCTCGGAGATCTGAGATTGGAAGGCGGATAGGAG 2366 Lys14 Term GCAAGAAATGGAAGCTACTGAGATTGAAACATGACTGGACTGAGT AAG-TAG TTCAGTGCCATTTCTCCGTGCCTGATAGAGAG AATCTCAGTAGCTTCCA 2367 TGGAAGCTACTGAGATT 2368 Increased stearate CCCCGAGATCTCGCTGCCGCTGCTCATGGCGTTCGCGGCGTCCC 2369 stearoyl-ACP ACACCGCATCGCCGTAGTCCTGCGGCGGCGTGGCGCAGAGGAG desaturase GAGCAATGGGATGTCGAAGATGGTGGCCATGGCC Oryza sativa GGCCATGGCCACCATCTTCGACATCCCATTGCTCCTCCTCTGCGC 2370 Tyr12 Term CACGCCGCCGCAGGACTACGGCGATGCGGTGTGGGACGCCGCG TAC-TAG AACGCCATGAGCAGCGGCAGCGAGATCTCGGGG TCGCCGTAGTCCTGCGG 2371 CCGCAGGACTACGGCGA 2372 Increased stearate CTGCTCATGGCGTTCGCGGCGTCCCACACCGCATCGCCGTACTCC 2373 stearoyl-ACP TGCGGCGGCGTGGCGTAGAGGAGGAGCAATGGGATGTCGAAGAT desaturase GGTGGCCATGGCCTCCACCATCAACAGGGTCA Oryza sativa TGACCCTGTTGATGGTGGAGGCCATGGCCACCATCTTCGACATCC 2374 Gln19 Term CATTGCTCCTCCTCTACGCCACGCCGCCGCAGGAGTACGGCGAT CAG-TAG GCGGTGTGGGACGCCGCGAACGCCATGAGCAG GCGTGGCGTAGAGGAGG 2375 CCTCCTCTACGCCACGC 2376 Increased stearate CCCACACCGCATCGCCGTACTCCTGCGGCGGCGTGGCGCAGAGG 2377 stearoyl-ACP AGGAGCAATGGGATGTAGAAGATGGTGGCCATGGCCTCCACCAT desaturase CAACAGGGTCAAGACTGCTAAGAAGCCCTACAC Oryza sativa GTGTAGGGCTTCTTAGCAGTCTTGACCCTGTTGATGGTGGAGGCC 2378 Ser26 Term ATGGCCACCATCTTCTACATCCCATTGCTCCTCCTCTGCGCCACGC TCG-TAG CGCCGCAGGAGTACGGCGATGCGGTGTGGG TGGGATGTAGAAGATGG 2379 CCATCTTCTACATCCCA 2380 Increased stearate CACACCGCATCGCCGTACTCCTGCGGCGGCGTGGCGCAGAGGAG 2381 stearoyl-ACP GAGCAATGGGATGTCGTAGATGGTGGCCATGGCCTCCACCATCAA desaturase CAGGGTCAAGACTGCTAAGAAGCCCTACACTC Oryza sativa GAGTGTAGGGCTTCTTAGCAGTCTTGACCCTGTTGATGGTGGAGG 2382 Lys27 Term CCATGGCCACCATCTACGACATCCCATTGCTCCTCCTCTGCGCCA AAG-TAG CGCCGCCGCAGGAGTACGGCGATGCGGTGTG GGATGTCGTAGATGGTG 2383 CACCATCTACGACATCC 2384 Increased stearate TTCTCTCTCTAGGTTGAGCGGTTACCAACAGAAGCACTTAGGAGA 2385 stearoyl-ACP GAGAAGCAATGGCGTAGAAGCTTCACCACACGGCCTTCAATCCTT desaturase CCATGGCGGTTACCTCTTCGGGACTTCCTCG Simmondsia chinensis CGAGGAAGTCCCGAAGAGGTAACCGCCATGGAAGGATTGAAGGC 2386 Leu3 Term CGTGTGGTGAAGCTTCTACGCCATTGCTTCTCTCTCCTAAGTGCTT TTG-TAG CTGTTGGTAACCGCTCAACCTAGAGAGAGAA AATGGCGTAGAAGCTTC 2387 GAAGCTTCTACGCCATT 2388 Increased stearate CTCTCTCTAGGTTGAGCGGTTACCAACAGAAGCACTTAGGAGAGA 2389 stearoyl-ACP GAGCAATGGCGTTGTAGCTTCACCACACGGCCTTCAATCCTTCC desaturase ATGGCGGTTACCTCTTCGGGACTTCCTCGAT Simmondsia chinensis ATCGAGGAAGTCCCGAAGAGGTAACCGCCATGGAAGGATTGAAG 2390 Lys4 Term GCCGTGTGGTGAAGCTACAACGCCATTGCTTCTCTCTCCTAAGTG AAG-TAG CTTCTGTTGGTAACCGCTCAACCTAGAGAGAG TGGCGTTGTAGCTTCAC 2391 GTGAAGCTACAACGCCA 2392 Increased stearate AAGCAATGGCGTTGAAGCTTCACCACACGGCCTTCAATCCTTCCAT 2393 stearoyl-ACP GGCGGTTACCTCTTAGGGACTTCCTCGATCGTATCACCTCAGATCT desaturase CACCGCGTTTTCATGGCTTCTTCTACAAT Simmondsia chinensis ATTGTAGAAGAAGCCATGAAAACGCGGTGAGATCTGAGGTGATAC 2394 Ser19 Term GATCGAGGAAGTCCCTAAGAGGTAACCGCCATGGAAGGATTGAAG TCG-TAG GCCGTGTGGTGAAGCTTCAACGCCATTGCTT TACCTCTTAGGGACTTC 2395 GAAGTCCCTAAGAGGTA 2396 Increased stearate GCAATGGCGTTGAAGCTTCACCACACGGCCTTCAATCCTTCCATG 2397 stearoyl-ACP GCGGTTACCTCTTCGTGACTTCCTCGATCGTATCACCTCAGATCTC desaturase ACCGCGTTTTCATGGCTTCTTCTACAATTG Simmondsia chinensis CAATTGTAGAAGAAGCCATGAAAACGCGGTGAGATCTGAGGTGAT 2398 Gly20 Term ACGATCGAGGAAGTCACGAAGAGGTAACCGCCATGGAAGGATTG GGA-TGA AAGGCCGTGTGGTGAAGCTTCAACGCCATTGC CCTCTTCGTGACTTCCT 2399 AGGAAGTCACGAAGAGG 2400 Increased stearate TGGCTCTGAATCTCAACCCCGTTTCCACACCATTTCAGTGTCGTCG 2401 stearoyl-ACP ATTGCCGTCTTTCTGACCTCGTCAAACGCCTTCTCGCAGATCTCCC desaturase AAATTCTTCATGGCTTCCACTCTCAGCAG Spinacia oleracea CTGCTGAGAGTGGAAGCCATGAAGAATTTGGGAGATCTGCGAGAA 2402 Ser21 Term GGCGTTTGACGAGGTCAGAAAGACGGCAATCGACGACACTGAAAT TCA-TGA GGTGTGGAAACGGGGTTGAGATTCAGAGCCA GTCTTTCTGACCTCGTC 2403 GACGAGGTCAGAAAGAC 2404 Increased stearate AATCTCAACCCCGTTTCCACACCATTTCAGTGTCGTCGATTGCCGT 2405 stearoyl-ACP CTTTCTCACCTCGTTAAACGCCTTCTCGCAGATCTCCCAAATTCTT desaturase CATGGCTTCCACTCTCAGCAGCTCTTCTC Spinacia oleracea GAGAAGAGCTGCTGAGAGTGGAAGCCATGAAGAATTTGGGAGATC 2406 Gln24 Term TGCGAGAAGGCGTTTAACGAGGTGAGAAAGACGGCAATCGACGA CAA-TAA CACTGAAATGGTGTGGAAACGGGGTTGAGATT CACCTCGTTAAACGCCT 2407 AGGCGTTTAACGAGGTG 2408 Increased stearate TCCACACCATTTCAGTGTCGTCGATTGCCGTCTTTCTCACCTCGTC 2409 stearoyl-ACP AAACGCCTTCTCGCTGATCTCCCAAATTCTTCATGGCTTCCACTCT desaturase CAGCAGCTCTTCTCCTAAGGAAGCGGAAA Spinacia oleracea TTTCCGCTTCCTTAGGAGAAGAGCTGCTGAGAGTGGAAGCCATGA 2410 Arg29 Term AGAATTTGGGAGATCAGCGAGAAGGCGTTTGACGAGGTGAGAAA AGA-TGA GACGGCAATCGACGACACTGAAATGGTGTGGA CTTCTCGCTGATCTCCC 2411 GGGAGATCAGCGAGAAG 2412 Increased stearate TTTCAGTGTCGTCGATTGCCGTCTTTCTCACCTCGTCAAACGCCTT 2413 stearoyl-ACP CTCGCAGATCTCCCTAATTCTTCATGGCTTCCACTCTCAGCAGCTC desaturase TTCTCCTAAGGAAGCGGAAAGCCTGAAGA Spinacia oleracea TCTTCAGGCTTTCCGCTTCCTTAGGAGAAGAGCTGCTGAGAGTGG 2414 Lys32 Term AAGCCATGAAGAATTAGGGAGATCTGCGAGAAGGCGTTTGACGAG AAA-TAA GTGAGAAAGACGGCAATCGACGACACTGAAA GATCTCCCTAATTCTTC 2415 GAAGAATTAGGGAGATC 2416 Increased stearate AAATAGTCGAGGTGAAAAACAGAGCATCAACAATGGCACTGAATAT 2417 stearoyl-ACP CAATGGGGTGTCGTGAAAATCTCACAAAATGTTACCATTTCCTTGT desaturase TCTTCAGCCAGATCTGAGCGAGTTTTCAT Solanum tuberosum ATGAAAACTCGCTCAGATCTGGCTGAAGAACAAGGAAATGGTAAC 2418 Leu10 Term ATTTTGTGAGATTTTCACGACACCCCATTGATATTCAGTGCCATTGT TTA-TGA TGATGCTCTGTTTTTCACCTCGACTATTT GGTGTCGTGAAAATCTC 2419 GAGATTTTCACGACACC 2420 Increased stearate ATAGTCGAGGTGAAAACAGAGCATCAACAATGGCACTGAATATCA 2421 stearoyl-ACP ATGGGGTGTCGTTATAATCTCACAAAATGTTACCATTTCCTTGTTCT desaturase TCAGCCAGATCTGAGCGAGTTTTCATGG Solanum tuberosum CCATGAAAACTCGCTCAGATCTGGCTGAAGAACAAGGAAATGGTA 2422 Lys11 Term ACATTTTGTGAGATTATAACGACACCCCATTGATATTCAGTGCCATT AAA-TAA GTTGATGCTCTGTTTTTCACCTCGACTAT TGTCGTTATAATCTCAC 2423 GTGAGATTATAACGACA 2424 Increased stearate GTGAAAAACAGAGCATCAACAATGGCACTGAATATCAATGGGGTG 2425 stearoyl-ACP TCGTTAAAATCTCACTAAATGTTACCATTTCCTTGTTCTTCAGCCAG desaturase ATCTGAGCGAGTTTTCATGGCTTCAACCA Solanum tuberosum TGGTTGAAGCCATGAAAACTCGCTCAGATCTGGCTGAAGAACAAG 2426 Lys14 Term GAAATGGTAACATTTAGTGAGATTTTAACGACACCCCATTGATATT AAA-TAA CAGTGCCATTGTTGATGCTCTGTTTTTCAC AATCTCACTAAATGTTA 2427 TAACATTTAGTGAGATT 2428 Increased stearate ACAGAGCATCAACAATGGCACTGAATATCAATGGGGTGTCGTTAAA 2429 stearoyl-ACP ATCTCACAAAATGTGACCATTTCCTTGTTCTTCAGCCAGATCTGAG desaturase CGAGTTTTCATGGCTTCAACCATTCATCG Solanum tuberosum CGATGAATGGTTGAAGCCATGAAAACTCGCTCAGATCTGGCTGAA 2430 Leu16 Term GAACAAGGAAATGGTCACATTTTGTGAGATTTTAACGACACCCCAT TTA-TGA TGATATTCAGTGCCATTGTTGATGCTCTGT CAAAATGTGACCATTTC 2431 GAAATGGTCACATTTTG 2432 Increased stearate TGGCTCTGAGGCTGAACCCTAACCCTTCACAGAAGCTCTTTCTCTC 2433 stearoyl-ACP TCCTTCTTCATCATGATCTTCTTCTTCTTCATCGTTCTCGCTTCCTC desaturase AAATGGCTAGCCTCAGATCTCCAAGGTT Arachis hypogaea AACCTTGGAGATCTGAGGCTAGCCATTTGAGGAAGCGAGAACGAT 2434 Ser21 Term GAAGAAGAAGAAGATCATGATGAAGAAGGAGAGAGAAAGAGCTTC TCA-TGA TGTGAAGGGTTAGGGTTCAGCCTCAGAGCCA TTCATCATGATCTTCTT 2435 AAGAAGATCATGATGAA 2436 Increased stearate ACCCTAACCCTTCACAGAAGCTCTTTCTCTCTCCTTCTTCATCATCA 2437 stearoyl-ACP TCTTCTTCTTCTTGATCGTTCTCGCTTCCTCAAATGGCTAGCCTCA desaturase GTCTCCAAGGTTCCGCATGGCCTCCAC Arachis hypogaea GTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCTAGCCATTTGA 2438 Ser26 Term GGAAGCGAGAACGATCAAGAAGAAGAAGATGATGATGAAGAAGGA TCA-TGA GAGAGAAAGAGCTTCTGTGAAGGGTTAGGGT TTCTTCTTGATCGTTCT 2439 AGAACGATCAAGAAGAA 2440 Increased stearate CTAACCCTTCACAGAAGCTCTTTCTCTCTCCTTCTTCATCATCATCT 2441 stearoyl-ACP TCTTCTTCTTCATAGTTCTCGCTTCCTCAAATGGCTAGCCTCAGAT desaturase CTCCAAGGTTCCGCATGGCCTCCACCCT Arachis hypogaea AGGGTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCTAGCCAT 2442 Ser27 Term TTGAGGAAGCGAGAACTATGAAGAAGAAGAAGATGATGATGAAGA TCG-TAG AGGAGAGAGAAAGAGCTTCTGTGAAGGGTTAG TTCTTCATAGTTCTCGC 2443 GCGAGAACTATGAAGAA 2444 Increased stearate CTTCACAGAAGCTCTTTCTCTCTCCTTCTTCATCATCATCTTCTTCT 2445 stearoyl-ACP TCTTCATCGTTCTAGCTTCCTCAAATGGCTAGCCTCAGATCTCCAA desaturase GGTTCCGCATGGCCTCCACCCTCCGCAC Arachis hypogaea GTGCGGAGGGTGGAGGCCATGCGGAACCTTGGAGATCTGAGGCT 2446 Ser29 Term AGCCATTTGAGGAAGCTAGAACGATGAAGAAGAAGAAGATGATGA TCG-TAG TGAAGAAGGAGAGAGAAAGAGCTTCTGTGAAG ATCGTTCTAGCTTCCTC 2447 GAGGAAGCTAGAACGAT 2448 Increased stearate AAAGTTAAAAGCCGTCCAAAACCCAAACCAGGAAAGGCAAACGAA 2449 stearoyl-ACP AAGAAAAAATGGCTTAGAATTTTAATGCCATCGCCTCGAAATCTCA desaturase GAAGCTCCCTTGCTTTGCTCTTCCACCAAA Gossypium hirsutum TTTGGTGGAAGAGCAAAGCAAGGGAGCTTCTGAGATTTCGAGGCG 2450 Leu3 Term ATGGCATTAAAATTCTAAGCCATTTTTTCTTTTCGTTTGCCTTTCCT TTG-TAG GGTTTGGGTTTTGGACGGCTTTTAACTTT AATGGCTTAGAATTTTA 2451 TAAAATTCTAAGCCATT 2452 Increased stearate CCCAAACCAGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTT 2453 stearoyl-ACP TAATGCCATCGCCTAGAAATCTCAGAAGCTCCCTTGCTTTGCTCTT desaturase CCACCAAAGGCCACCCTTAGATCTCCCAA Gossypium hirsutum TTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAAAGCAAGG 2454 Ser1-Term GAGCTTCTGAGATTTCTAGGCGATGGCATTAAAATTCAAAGCCATT TCG-TAG TTTTCTTTTCGTTTGCCTTTCCTGGTTTGGG CATCGCCTAGAAATCTC 2455 GAGATTTCTAGGCGATG 2456 Increased stearate CAAACCAGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTTTA 2457 stearoyl-ACP ATGCCATCGCCTCGTAATCTCAGAAGCTCCCTTGCTTTGCTCTTCC desaturase ACCAAAGGCCACCCTTAGATCTCCCAAGT Gossypium hirsutum ACTTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAAAGCAAG 2458 Lys11 Term GGAGCTTCTGAGATTACGAGGCGATGGCATTAAAATTCAAAGCCAA AAA-TAA TTTTTTCTTTTCGTTTGCCTTTCCTGGTTTG TCGCCTCGTAATCTCAG 2459 CTGAGATTACGAGGCGA 2460 Increased stearate AGGAAAGGCAAACGAAAAGAAAAAATGGCTTTGAATTTTAATGCCA 2461 stearoyl-ACP TCGCCTCGAAATCTTAGAAGCTCCCTTGCTTTGCTCTTCCACCAAA desaturase GGCCACCCTTAGATCTCCCAAGTTTTCCA Gossypium hirsutum TGGAAAACTTGGGAGATCTAAGGGTGGCCTTTGGTGGAAGAGCAA 2462 Gln13 Term AGCAAGGGAGCTTCTAAGATTTCGAGGCGATGGCATTAAAATTCA CAG-TAG AAGCCATTTTTTCTTTTCGTTTGCCTTTCCT CGAAATCTTAGAAGCTC 2463 GAGCTTCTAAGATTTCG 2464
[0148] 26 TABLE 24 Oligonucleotides to produce plants with reduced linolenic acid Phenotype, Gene, Plant & Targeted SEQ ID Alteration Altering Oligos NO: Reducing linolenic acid AATAGAACGACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGC 2465 omega-3 fatty acid TCCAATGGCGAGCTAGGTTTTATCAGAATGTGGTTTTAGACCTCTC desaturase CCCAGATTCTACCCTAAACACACAACCTC Arabidopsis thaliana GAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAGGTCTAAAACCA 2466 Ser4 Term CATTCTGATAAAACCTAGCTCGCCATTGGAGCCTCTTCCCAAGAAG TCG-TAG AAAAGAGGAAAAAGTCTCTGTCGTTCTATT GGCGAGCTTGGTTTTAT 2467 ATAAAACCAAGCTCGCC 2468 Reducing linolenic acid ACGACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAAT 2469 omega-3 fatty acid GGCGAGCTCGGTTTGATCAGAATGTGGTTTTAGACCTCTCCCCAG desaturase ATTCTACCCTAAACACACAACCTCTTTTGC Arabidopsis thaliana GCAAAAGAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAGGTCTA 2470 Leu6 Term AAACCACATTCTGATCAAACCGAGCTCGCCATTGGAGCCTCTTCCC TTA-TGA AAGAAGAAAAGAGGAAAAAGTCTCTGTCGT CTCGGTTTGATCAGAAT 2471 ATTCTGATCAAACCGAG 2472 Reducing linolenic acid ACAGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAATGGC 2473 omega-3 fatty acid GAGCTCGGTTTTATGAGAATGTGGTTTTAGACCTCTCCCCAGATTC desaturase TACCCTAAACACACAACCTCTTTTGCCTC Arabidopsis thaliana GAGGCAAAAGAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAGGT 2474 Ser7 Term CTAAAACCACATTCTCATAAAACCGAGCTCGCCATTGGAGCCTCTT TCA-TGA CCAAGAAGAAAAGAGGAAAAAGTCTCTGT GGTTTTATGAGAATGTG 2475 CACATTCTCATAAAACC 2476 Reducing linolenic acid AGAGACTTTTTCCTCTTTTCTTCTTGGGAAGAGGCTCCAATGGCGA 2477 omega-3 fatty acid GCTCGGTTTTATCATAATGTGGTTTTAGACCTCTCCCCAGATTCTA desaturase CCCTAAACACACAACCTCTTTTGCCTCTA Arabidopsis thaliana TAGAGGCAAAAGAGGTTGTGTGTTTAGGGTAGAATCTGGGGAGAG 2478 Glu8 Term GTCTAAAACCACATTATGATAAAACCGAGCTCGCCATTGGAGCCTC GAA-TAA TTCCCAAGAAGAAAAGAGGAAAAAGTCTCT TTTTATCATAATGTGGT 2479 ACCACATTATGATAAAA 2480 Reducing linolenic acid TCATCATCTTCTTCTTCTGGGGAGAGAGAGAGAGCAAAAGAGCTC 2481 omega-3 fatty acid TAGCAATGGCGAACTAGGTCTTATCCGAATGTGGCATAAGACCTC desaturase TCCCCAGAATCTACACCACACCCAGATCCAC Brassica juncea GTGGATCTGGGTGTGGTGTAGATTCTGGGGAGAGGTCTTATGCCA 2482 Leu4 Term CATTCGGATAAGACCTAGTTCGCCATTGCTAGAGCTCTTTTGCTCT TTG-TAG CTCTCTCTCCCCAGAAGAAGAAGATGATGA GGCGAACTAGGTCTTAT 2483 ATAAGACCTAGTTCGCC 2484 Reducing linolenic acid TCTTCTTCTTCTGGGGAGAGAGAGAGAGCAAAAGAGCTCTAGCAA 2485 omega-3 fatty acid TGGCGAACTTGGTCTGATCCGAATGTGGCATAAGACCTCTCCCCA desaturase GAATCTACACCACACCCAGATCCACTTTCCT Brassica juncea AGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGGGGAGAGGTCTT 2486 Leu6 Term ATGCCACATTCGGATCAGACCAAGTTCGCCATTGCTAGAGCTCTTT TTA-TGA TGCTCTCTCTCTCTCCCCAGAAGAAGAAGA CTTGGTCTGATCCGAAT 2487 ATTCGGATCAGACCAAG 2488 Reducing linolenic acid TTCTTCTGGGGAGAGAGAGAGAGCAAAAGAGCTCTAGCAATGGCG 2489 omega-3 fatty acid AACTTGGTCTTATCCTAATGTGGCATAAGACCTCTCCCCAGAATCT desaturase ACACCACACCCAGATCCACTTTCCTCTCCA Brassica juncea TGGAGAGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGGGGAGA 2490 Glu8 Term GGTCTTATGCCACATTAGGATAAGACCAAGTTCGCCATTGCTAGA GAA-TAA GCTCTTTTGCTCTCTCTCTCTCCCCAGAAGAA TCTTATCCTAATGTGGC 2491 GCCACATTAGGATAAGA 2492 Reducing linolenic acid CTGGGGAGAGAGAGAGAGCAAAAGAGCTCTAGCAATGGCGAACT 2493 omega-3 fatty acid TGGTCTTATCCGAATGAGGCATAAGACCTCTCCCCAGAATCTACAC desaturase CACACCCAGATCCACTTTCCTCTCCAACACC Brassica juncea GGTGTTGGAGAGGAAAGTGGATCTGGGTGTGGTGTAGATTCTGG 2494 Cys9 Term GGAGAGGTCTTATGCCTCATTCGGATAAGACCAAGTTCGCCATTG TGT-TGA CTAGAGCTCTTTTGCTCTCTCTCTCTCCCCAG TCCGAATGAGGCATAAG 2495 CTTATGCCTCATTCGGA 2496 Reducing linolenic acid ATAACAGAATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAA 2497 omega-3 fatty acid TGGCTGCTGGTTGAGTATTATCAGAATGTGGTTTAAGGCCTCTCCC desaturase AAGAATCTACTCACGACCCAGAATTGGT Ricinus communis ACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGCCTTAAACC 2498 Trp5 Term ACATTCTGATAATACTCAACCAGCAGCCATTGAAAACCCAGAAGCT TGG-TGA AAAAATGCAAGAATTCAGCAATTCTGTTAT GCTGGTTGAGTATTATC 2499 GATAATACTCAACCAGC 2500 Reducing linolenic acid AGAATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCT 2501 omega-3 fatty acid GCTGGTTGGGTATGATCAGAATGTGGTTTAAGGCCTCTCCCAAGA desaturase ATCTACTCACGACCCAGAATTGGTTTTAC Ricinus communis GTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGCCTT 2502 Leu7 Term AAACCACATTCTGATCATACCCAACCAGCAGCCATTGAAAACCCAG TTA-TGA AAGCTAAAAATGCAAGAATTCAGCAATTCT TTGGGTATGATCAGAAT 2503 ATTCTGATCATACCCAA 2504 Reducing linolenic acid ATTGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCTGCT 2505 omega-3 fatty acid GGTTGGGTATTATGAGAATGTGGTTTAAGGCCTCTCCCAAGAATCT desaturase ACTCACGACCCAGAATTGGTTTTACATC Ricinus communis GATGTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGGGAGAGGC 2506 Ser8 Term CTTAAACCACATTCTCATAATACCCAACCAGCAGCCATTGAAAACC TCA-TGA CAGAAGCTAAAAATGCAAGAATTCAGCAAT GGTATTATGAGAATGTG 2507 CACATTCTCATAATACC 2508 Reducing linolenic acid TGCTGAATTCTTGCATTTTTAGCTTCTGGGTTTTCAATGGCTGCTG 2509 omega-3 fatty acid GTTGGGTATTATCATAATGTGGTTTAAGGCCTCTCCCAAGAATCTA desaturase CTCACGACCCAGAATTGGTTTTACATCGA Ricinus communis TCGATGTAAAACCAATTCTGGGTCGTGAGTAGATTCTTGFGGAGAG 2510 Glu9 Term CGCCTTAAACCACATTATGATAATACCCAACCAGCAGCCATTGAAAA GAA-TAA CCCAGAAGCTAAAAATGCAAGAATTCAGCA TATTATCATAATGTGGT 2511 ACCACATTATGATAATA 2512 Reducing linolenic acid GCAAGTTGGTTTTATCAGAATGTGGTCTTAGACCACTCCCAAGAA 2513 omega-3 fatty acid TCTACCCTAAGCCCTGAACTGGGGCAGCCACTTCTGCCTCCTCTC desaturase ACATTAAGTTGAGAATTTCACGTACAGATC Nicotiana tabacum GATCTGTACGTGAAATTCTCAACTTAATGTGAGAGGAGGCAGAAGT 2514 Arg22 Term GGCTGCCCCAGTTCAGGGCTTAGGGTAGFATTCTTGGGAGTGGTCT AGA-TGA AAGACCACATTCTGATAAAACCCAACTTGC CTAAGCCCTGAACTGGG 2515 CCCAGTTCAGGGCTTAG 2516 Reducing linolenic acid CTCCCAAGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCT 2517 omega-3 fatty acid GCCTCCTCTCACATTTAGTTGAGAATTTCACGTACAGATCTGAGTG desaturase GTTCTGCAATTTCTTTGTCTAATACTAAT Nicotiana tabacum TATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCTGTACG 2518 Lys34 Term TGAAATTCTCAACTAAATGTGAGAGGAGGCAGAAGTGGCTGCCCC AAG-TAG AGTTCTGGGCTTAGGGTAGATTCTTGGGAG CTCACATTTAGTTGAGA 2519 TCTCAACTAAATGTGAG 2520 Reducing linolenic acid CAAGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCTGCCT 2521 omega-3 fatty acid CCTCTCACATTAAGTAGAGAATTTCACGTACAGATCTGAGTGGTTC desaturase TGCAATTTCTTTGTCTAATACTAATAAAGA Nicotiana tabacum TCTTTATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCTGT 2522 Leu35 Term ACGTGAAATTCTCTACTTAATGTGAGAGGAGGCAGAAGTGGCTGC TTG-TAG CCCAGTTCTGGGCTTAGGGTAGATTCTTG CATTAAGTAGAGAATTT 2523 AAATTCTCTACTTAATG 2524 Reducing linolenic acid AGAATCTACCCTAAGCCCAGAACTGGGGCAGCCACTTCTGCCTCC 2525 omega-3 fatty acid TCTCACATTAAGTTGTGAATTTCACGTACAGATCTGAGTGGTTCTG desaturase CAATTTCTTTGTCTAATACTAATAAAGAGA Nicotiana tabacum TCTCTTTATTAGTATTAGACAAAGAAATTGCAGAACCACTCAGATCT 2526 Arg36 Term GTACGTGAAATTCACAACTTAATGTGAGAGGAGGCAGAAGTGGCT AGA-TGA GCCCCAGTTCTGGGCTTAGGGTAGATTCT TTAAGTTGTGAATTTCA 2527 TGAAATTCACAACTTAA 2528 Reducing linolenic acid GCGAGTTGGGTTTTATCAGAATGTGGTCTGAGGCCACTCCCGAGG 2529 omega-3 fatty acid GTCTATCCTAAGCCATGAACTGGCCACCCTTTGTTGAATTCCAATC desaturase CCACAAAGCTGAGATTTTCAAGAACAGATC Sesamum indicum GATCTGTTCTTGAAAATCTCAGCTTTGTGGGATTGGAATTCAACAA 2530 Arg22 Term AGGGTGGCCAGTTCATGGCTTAGGATAGACCCTCGGGAGTGGCC AGA-TGA TCAGACCACATTCTGATAAAACCCAACTCGC CTAAGCCATGAACTGGC 2531 GCCAGTTCATGGCTTAG 2532 Reducing linolenic acid CAGAATGTGGTCTGAGGCCACTCCCGAGGGTCTATCCTAAGCCAA 2533 omega-3 fatty acid GAACTGGCCACCCTTAGTTGAATTCCAATCCCACAAAGCTGAGATT desaturase TTCAAGAACAGATCTTGGAAATGGTTCTTC Sesamum indicum GAAGAACCATTTCCAAGATCTGTTCTTGAAAATCTCAGCTTTGTGG 2534 Leu27 Term GATTGGAATTCAACTAAGGGTGGCCAGTTCTTGGCTTAGGATAGA TTG-TAG CCCTCGGGAGTGGCCTCAGACCACATTCTG CCACCCTTAGTTGAATT 2535 AATTCAACTAAGGGTGG 2536 Reducing linolenic acid AATGTGGTCTGAGGCCACTCCCGAGGGTCTATCCTAAGCCAAGAA 2537 omega-3 fatty acid CTGGCCACCCTTTGTAGAATTCCAATCCCACAAAGCTGAGATTTTC desaturase AAGAACAGATCTTGGAAATGGTTCTTCATT Sesamum indicum AATGAAGAACCATTTCCAAGATCTGTTCTTGAAAATCTCAGCTTTGT 2538 Leu28 Term GGGATTGGAATTCTACAAAGGGTGGCCAGTTCTTGGCTTAGGATA TTG-TAG GACCCTCGGGAGTGGCCTCAGACCACATT CCCTTTGTAGAATTCCA 2539 TGGAATTCTACAAAGGG 2540 Reducing linolenic acid CTCCCGAGGGTCTATCCTAAGCCAAGAACTGGCCACCCTTTGTTG 2541 omega-3 fatty acid AATTCCAATCCCACATAGCTGAGATTTTCAAGAACAGATCTTGGAA desaturase ATGGTTCTTCATTCTGTTTGTCGAGTGGGA Sesamum indicum TCCCACTCGACAAACAGAATGAAGAACCATTTCCAAGATCTGTTCT 2542 Lys34 Term TGAAAATCTCAGCTATGTGGGATTGGAATTCAACAAAGGGTGGCC AAG-TAG AGTTCTTGGCTTAGGATAGACCCTCGGGAG ATCCCACATAGCTGAGA 2543 TCTCAGCTATGTGGGAT 2544 Reducing linolenic acid CATCAGAGCGGCGATACCTAAGCATTGCTGGGTTAAGAATCCATG 2545 omega-3 fatty acid GAAGTCTATGAGTTAGGTCGTCAGAGAGCTAGCCATCGTGTTCGC desaturase ACTAGCTGCTGGAGCTGCTTACCTCAACAAT Brassica napus ATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGAACACGATGGC 2546 Tyr3 Term TAGCTCTCTGACGACCTAACTCATAGACTTCCATGGATTCTTAACC TAC-TAG CAGCAATGCTTAGGTATCGCCGCTCTGATG ATGAGTTAGGTCGTCAG 2547 CTGACGACCTAACTCAT 2548 Reducing linolenic acid GCGGCGATACCTAAGCATTGCTGGGTTAAGAATCCATGGAAGTCT 2549 omega-3 fatty acid ATGAGTTACGTCGTCTGAGAGCTAGCCATCGTGTTCGCACTAGCT desaturase GCTGGAGCTGCTTACCTCAACAATTGGCTTG Brassica napus CAAGCCAATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGAACA 2550 Arg6 Term CGATGGCTAGCTCTCAGACGACGTAACTCATAGACTTCCATGGAT AGA-TGA CTTAACCCAGCAATGCTTAGGTATCGCCGC ACGTCGTCTGAGAGCTA 2551 TAGCTCTCAGACGACGT 2552 Reducing linolenic acid GCGATACCTAAGCATTGCTGGGTTAAGAATCCATGGAAGTCTATGA 2553 omega-3 fatty acid GTTACGTCGTCAGATAGCTAGCCATCGTGTTCGCACTAGCTGCTG desaturase GAGCTGCTTACCTCAACAATTGGCTTGTTT Brassica napus AAACAAGCCAATTGTTGAGGTAAGCAGCTCCAGCAGCTAGTGCGA 2554 Glu7 Term ACACGATGGCTAGCTATCTGACGACGTAACTCATAGACTTCCATG GAG-TAG GATTCTTAACCCAGCAATGCTTAGGTATCGC TCGTCAGATAGCTAGCC 2555 GGCTAGCTATCTGACGA 2556 Reducing linolenic acid CCATGGAAGTCTATGAGTTACGTCGTCAGAGAGCTAGCCATCGTG 2557 omega-3 fatty acid TTCGCACTAGCTGCTTGAGCTGCTTACCTCAACAATTGGCTTGTTT desaturase GGCCTCTCTATTGGATTGCTCAAGGAACCA Brassica napus TGGTTCCTTGAGCAATCCAATAGAGAGGCCAAACAAGCCAATTGTT 2558 Gly17 Term GAGGTAAGCAGCTCAAGCAGCTAGTGCGAACACGATGGCTAGCT GGA-TGA CTCTGACGACGTAACTCATAGACTTCCATGG TAGCTGCTTGAGCTGCT 2559 AGCAGCTCAAGCAGCTA 2560 Reducing linolenic acid GCAAGTTGGGTTCTATCAGAATGTGGTCTTAGACCACTACCAAGAA 2561 omega-3 fatty acid TATACCCAAAGCCCTGAATAGGGTCTTCTTCCGTTTGCGCCACCAA desaturase TTTAAATCTGAGAAGAATTTCACCTTCAC Solanum tuberosum GTGAAGGTGAAATTCTTCTCAGATTTAAATTGGTGGCGCAAACGGA 2562 Arg22 Term AGAAGACCCTATTCAGGGCTTTGGGTATATTCTTGGTAGTGGTCTA AGA-TGA AGACCACATTCTGATAGAACCCAACTTGC CAAAGCCCTGAATAGGG 2563 CCCTATTCAGGGCTTTG 2564 Reducing linolenic acid TGGTCTTAGACCACTACCAAGAATATACCCAAAGCCCAGAATAGG 2565 omega-3 fatty acid GTCTTCTTCCGTTTGAGCCACCAATTTAAATCTGAGAAGAATTTCA desaturase CCTTCACCTATACGAACAGATCGGAATTGT Solanum tuberosum ACAATTCCGATCTGTTCGTATAGGTGAAGGTGAAATTCTTCTCAGA 2566 Cys29 Term TTTAAATTGGTGGCTCAAACGGAAGAAGACCCTATTCTGGGCTTTG TGC-TGA GGTATATTCTTGGTAGTGGTCTAAGACCA TCCGTTTGAGCCACCAA 2567 TTGGTGGCTCAAACGGA 2568 Reducing linolenic acid CACTACCAAGAATATACCCAAAGCCCAGAATAGGGTCTTCTTCCGT 2569 omega-3 fatty acid TTGCGCCACCAATTGAAATCTGAGAAGAATTTCACCTTCACCTATA desaturase CGAACAGATCGGAATTGTTGGGCATTGAG Solanum tuberosum CTCAATGCCCAACAATTCCGATCTGTTCGTATAGGTGAAGGTGAAA 2570 Leu33 Term TTCTTCTCAGATTTCAATTGGTGGCGCAAACGGAAGAAGACCCTAT TTA-TGA TCTGGGTTTGGGTATATTCTTGGTAGTG CACCAATTGAAATCTGA 2571 TCAGATTTCAATTGGTG 2572 Reducing linolenic acid AGAATATACCCAAAGCCCAGAATAGGGTCTTCTTCCGTTTGCGCCA 2573 omega-3 fatty acid CCAATTTAAATCTGTGAAGAATTTCACCTTCACCTATACGAACAGAT desaturase CGGAATTGTTGGGCATTGAGGGTAAGTG Solanum tuberosum CACTTACCCTCAATGCCCAACAATTCCGATCTGTTCGTATAGGTGA 2574 Arg36 Term AGGTGAAATTCTTCACAGATTTAAATTGGTGGCGCAAACGGAAGAA AGA-TGA GACCCTATTCTGGGCTTTGGGTATATTCT TAAATCTGTGAAGAATT 2575 AATTCTTCACAGATTTA 2576 Reducing linolenic acid CTCTTTATTATCCTCCTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACC 2577 omega-3 fatty acid TATGGCAAGTTGAGTGATTTCAGAATGTGGGCTAAGGCCACTTCC desaturase AAGAATCTATGCCAGGCCCAGAAGTGGA Petroselinum crispum TCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTGGCCTTAGCCC 2578 Trp4 Term ACATTCTGAAATCACTCAACTTGCCATAGGTGACTCAGAACTCAAA TGG-TGA AAAAACAAAGAAGAGGAGGATAATAAAGAG GCAAGTTGAGTGATTTC 2579 GAAATCACTCAACTTGC 2580 Reducing linolenic acid TATCCTCCTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACCTATGGCA 2581 omega-3 fatty acid AGTTGGGTGATTTGAGAATGTGGGCTAAGGCCACTTCCAAGAATC desaturase TATGCCAGGCCCAGAAGTGGAGCTTCATG Petroselinum crispum CATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTGGC 2582 Ser7 Term CTTAGCCCACATTCTCAAATCACCCAACTTGCCATAGGTGACTCAG TCA-TGA AACTCAAAAAAAACAAAGAAGAGGAGGATA GGTGATTTGAGAATGTG 2583 CACATTCTCAAATCACC 2584 Reducing linolenic acid TCCTCCTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACCTATGGCAAG 2585 omega-3 fatty acid TTGGGTGATTTCATAATGTGGGCTAAGGCCACTTCCAAGAATCTAT desaturase GCCAGGCCCAGAAGTGGAGCTTCATGTT Petroselinum crispum AACATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGGAAGTG 2586 Glu8 Term GCCTTAGCCCACATTATGAAATCACCCAACTTGCCATAGGTGACTC GAA-TAA AGAACTCAAAAAAAACAAAGAAGAGGAGGA TGATTTCATAATGTGGG 2587 CCCACATTATGAAATCA 2588 Reducing linolenic acid CTCTTCTTTGTTTTTTTTGAGTTCTGAGTCACCTATGGCAAGTTGGG 2589 omega-3 fatty acid TGATTTCAGAATGAGGGCTAAGGCCACTTCCAAGAATCTATGCCA desaturase GGCCCAGAAGTGGAGCTTCATGTTTCAAC Petroselinum crispum GTTGAAACATGAAGCTCCACTTCTGGGCCTGGCATAGATTCTTGG 2590 Cys9 Term AAGTGGCCTTAGCCCTCATTCTGAAATCACCCAACTTGCCATAGGT TGT-TGA GACTCAGAACTCAAAAAAAACAAAGAAGAG TCAGAATGAGGGCTAAG 2591 CTTAGCCCTCATTCTGA 2592 Reducing linolenic acid ATGAAGCAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTA 2593 omega-3 fatty acid ATGGTTTTCATGCTTAAGAAGAAGAAGAAGAAGAGGATTTCGACTT desaturase AAGCAATCCTCCTCCATTCAATATTGGTC Vernicia fordii GACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATCCTCTTC 2594 Lys21 Term TTCTTCTTCTTCTTAAGCATGAAAACCATTAACGCCATTTAGAATTG AAA-TAA GGGTGTCTTTGTACTGTTGCTGCTTCAT TTCATGCTTAAGAAGAA 2595 TTCTTCTTAAGCATGAA 2596 Reducing linolenic acid AAGCAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATG 2597 omega-3 fatty acid GTTTTCATGCTAAATAAGAAGAAGAAGAAGAGGATTTCGACTTAAG desaturase CAATCCTCCTCCATTCAATATTGGTCAGA Vernicia fordii TCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATCCTC 2598 Glu22 Term TTCTTCTTCTTCTTATTTAGCATGAAAACCATTAACGCCATTTAGAA GAA-TAA TTGGGGTGTCTTTGTACTGTTGCTGCTT ATGCTAAATAAGAAGAA 2599 TTCTTCTTATTTAGCAT 2600 Reducing linolenic acid CAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATGGTT 2601 omega-3 fatty acid TTCATGCTAAAGAATAAGAAGAAGAAGAGGATTTCGACTTAAGCAA desaturase TCCTCCTCCATTCAATATTGGTCAGATCC Vernicia fordii GGATCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATC 2602 Glu23 Term CTCTTCTTCTTCTTATTCTTTAGCATGAAAACCATTAACGCCATTTA GAA-TAA GAATTGGGGTGTCTTTGTACTGTTGCTG CTAAAGAATAAGAAGAA 2603 TTCTTCTTATTCTTTAG 2604 Reducing linolenic acid CAGCAACAGTACAAAGACACCCCAATTCTAAATGGCGTTAATGGTT 2605 omega-3 fatty acid TTCATGCTAAAGAATAAGAAGAAGAAGAGGATTTCGACTTAAGCAA desaturase TCCTCCTCCATTCAATATTGGTCAGATCC Vernicia fordii GGATCTGACCAATATTGAATGGAGGAGGATTGCTTAAGTCGAAATC 2606 Glu24 Term CTCTTCTTCTTCTTATTCTTTAGCATGAAAACCATTAACGCCATTTA GAA-TAA GAATTGGGGTGTCTTTGTACTGTTGCTG CTAAAGAATAAGAAGAA 2607 TTCTTCTTATTCTTTAG 2608 Reducing linolenic acid GGTCCAAGCACAGCCTCTACAACATGTTGGTAATGGTGCAGGGAA 2609 omega-3 fatty acid AGAAGATCAAGCTTAGTTTGATCCAAGTGCTCCACCACCCTTCAAG desaturase ATTGCAAATATCAGAGCAGCAATTCCAAAA Glycine max TTTTGGAATTGCTGCTCTGATATTTGCAATCTTGAAGGGTGGTGGA 2610 Tyr21 Term GCACTTGGATCAAACTAAGCTTGATCTTCTTTCCCTGCACCATTAC TAT-TAG CAACATGTTGTAGAGGCTGTGCTTGGACC CAAGCTTAGTTTGATCC 2611 GGATCAAACTAAGCCTG 2612 Reducing linolenic acid GGTAATGGTGCAGGGAAAGAAGATCAAGCTTATTTTGATCCAAGT 2613 omega-3 fatty acid GCTCCACCACCCTTCTAGATTGCAAATATCAGAGCAGCAATTCCAA desaturase AACATTGCTGGGAGAAGAACACATTGAGAT Glycine max ATCTCAATGTGTTCTTCTCCCAGCAATGTTTTGGAATTGCTGCTCT 2614 Lys31 Term GATATTTGCAATCTAGAAGGGTGGTGGAGCACTTGGATCAAAATAA AAG-TAG GCTTGATCTTCTTTCCCTGCACCATTACC CACCCTTCTAGATTGCA 2615 TGCAATCTAGAAGGGTG 2616 Reducing linolenic acid AAAGAAGATCAAGCTTATTTTGATCCAAGTGCTCCACCACCCTTCA 2617 omega-3 fatty acid AGATTGCAAATATCTGAGCAGCAATTCCAAAACATTGCTGGGAGAA desaturase GAACACATTGAGATCTCTGAGTTATGTTC Glycine max GAACATAACTCAGAGATCTCAATGTGTTCTTCTCCCAGCAATGTTTT 2618 Arg36 Term GGAATTGCTGCTCAGATATTTGCAATCTTGAAGGGTGGTGGAGCA AGA-TGA CTTGGATCAAAATAAGCTTGATCTTCTTT CAAATATCTGAGCAGCA 2619 TGCTGCTCAGATATTTG 2620 Reducing linolenic acid TATTTTGATCCAAGTGCTCCACCACCCTTCAAGATTGCAAATATCA 2621 omega-3 fatty acid GAGCAGCAATTCCATAACATTGCTGGGAGAAGAACACATTGAGAT desaturase CTCTGAGTTATGTTCTGAGGGATGTGTTGG Glycine max CCAACACATCCCTCAGAACATAACTCAGAGATCTCAATGTGTTCTT 2622 Leu41 Term CTCCCAGCAATGTTATGGAATTGCTGCTCTGATATTTGCAATCTTG AAA-TAA AAGGGTGGTGGAGCACTTGGATCAAAATA CAATTCCATAACATTGC 2623 GCAATGTTATGGAATTG 2624 Reducing linolenic acid CATCCACCCGCACCCGCACCCGCCCCGCTGACGGCGGCAATGGC 2625 omega-3 fatty acid CCGGCTCGTGCTCTCCTAGTGCTCGGGCCTCGCGCCCGTCCGCC desaturase GCCTGCGCGCCGGCCGGGGCGCCATTGCGGCGC Zea mays GCGCCGCAATGGCGCCCCGGCCGGCGCGCAGGCGGCGGACGG 2626 Glu8 Term GCGCGAGGCCCGAGCACTAGGAGAGCACGAGCCGGGCCATTGC GAG-TAG CGCCGTCAGCGGGGCGGGTGCGGGTGCGGGTGGATG TGCTCTCCTAGTGCTCG 2627 CGAGCACTAGGAGAGCA 2628 Reducing linolenic acid ACCCGCACCCGCACCCGCCCCGCTGACGGCGGCAATGGCCCGG 2629 omega-3 fatty acid CTCGTGCTCTCCGAGTGATCGGGCCTCGCGCCCGTCCGCCGCCT desaturase GCGCGCCGGCCGGGGCGCCATTGCGGCGCGGTCA Zea mays TGACCGCGCCGCAATGGCGCCCCGGCCGGCGCGCAGGCGGCGG 2630 Cys9 Term ACGGGCGCGAGGCCCGATCACTCGGAGAGCACGAGCCGGGCCA TGC-TGA TTGCCGCCGTCAGCGGGGCGGGTGCGGGTGCGGGT TCCGAGTGATCGGGCCT 2631 AGGCCCGATCACTCGGA 2632 Reducing linolenic acid CCGCACCCGCACCCGCCCCGCTGACGGCGGCAATGGCCCGGCT 2633 omega-3 fatty acid CGTGCTCTCCGAGTGCTAGGGCCTCGCGCCCGTCCGCCGCCTGC desaturase GCGCCGGCCGGGGCGCCATTGCGGCGCGGTCACC Zea mays GGTGACCGCGCCGCAATGGCGCCCCGGCCGGCGCGCAGGCGGC 2634 Ser10 Term GGACGGGCGCGAGGCCCTAGCACTCGGAGAGCACGAGCCGGGC TCG-TAG CATTGCCGCCGTCAGCGGGGCGGGTGCGGGTGCGG CGAGTGCTAGGGCCTCG 2635 CGAGGCCCTAGCACTCG 2636 Reducing linolenic acid GCTCGGGCCTCGCGCCCGTCCGCCGCCTGCGCGCCGGCCGGGG 2637 omega-3 fatty acid CGCCATTGCGGCGCGGTGACCCCCCGCGCTCTCCGCGGCGCCG desaturase CGCCGTCGTCCCGCGTCCGCGTCCATCCACCGCGA Zea mays TCGCGGTGGATGGACGCGGACGCGGGACGACGGCGCGGCGCCG 2638 Ser29 Term CGGAGAGCGCGGGGGGTCACCGCGCCGCAATGGCGCCCCGGCC TCA-TGA GGCGCGCAGGCGGCGGACGGGCGCGAGGCCCGAGC GGCGCGGTGACCCCCCG 2639 CGGGGGGTCACCGCGCC 2640 Reducing linolenic acid CCCCCTCCCCCACGCACACGCACAGATCCATCCGCGGCCATGGC 2641 omega-3 fatty acid CCCCGCAATGAGGCCGTAGCAGGAGGCGAGCTGCAAGGCCACCG desaturase AGGACCACCGCTCCGAGTTCGACGCCGCCAAGC Triticum aestivum GCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGTGGCCTTG 2642 Glu8 Term CAGCTCGCCTCCTGCTACGGCCTCATTGCGGGGGCCATGGCCGC GAG-TAG GGATGGATCTGTGCGTGTGCGTGGGGGAGGGGG TGAGGCCGTAGCAGGAG 2643 CTCCTGCTACGGCCTCA 2644 Reducing linolenic acid CCTCCCCCACGCACACGCACAGATCCATCCGCGGCCATGGCCCC 2645 omega-3 fatty acid CGCAATGAGGCCGGAGTAGGAGGCGAGCTGCAAGGCCACCGAG desaturase GACCACCGCTCCGAGTTCGACGCCGCCAAGCCGC Triticum aestivum GCGGCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGTGGCC 2646 Gln9 Term TTGCAGCTCGCCTCCTACTCCGGCCTCATTGCGGGGGCCATGGC CAG-TAG CGCGGATGGATCTGTGCGTGTGCGTGGGGGAGG GGCCGGAGTAGGAGGCG 2647 CGCCTCCTACTCCGGCC 2648 Reducing linolenic acid CCCCCACGCACACGCACAGATCCATCCGCGGCCATGGCCCCCGC 2649 omega-3 fatty acid AATGAGGCCGGAGCAGTAGGCGAGCTGCAAGGCCACCGAGGACC desaturase ACCGCTCCGAGTTCGACGCCGCCAAGCCGCCGC Triticum aestivum GCGGCGGCTTGGCGGCGTCGAACTCGGAGCGGTGGTCCTCGGT 2650 Glu10 Term GGCCTTGCAGCTCGCCTACTGCTCCGGCCTCATTGCGGGGGCCA GAG-TAG TGGCCGCGGATGGATCTGTGCGTGTGCGTGGGGG CGGAGCAGTAGGCGAGC 2651 GCTCGCCTACTGCTCCG 2652 Reducing linolenic acid ACGCACAGATCCATCCGCGGCCATGGCCCCCGCAATGAGGCCGG 2653 omega-3 fatty acid AGCAGGAGGCGAGCTGAAAGGCCACCGAGGACCACCGCTCCGA desaturase GTTCGACGCCGCCAAGCCGCCGCCCTTCCGCATC Triticum aestivum GATGCGGAAGGGCGGCGGCTTGGCGGCGTCGAACTCGGAGCGG 2654 Cys13 TermTGGTCCTCGGTGGCCTTTCAGCTCGCCTCCTGCTCCGGCCTCATT TGC-TGA GCGGGGGCCATGGCCGCGGATGGATCTGTGCGT GCGAGCTGAAAGGCCAC 2655 GTGGCCTTTCAGCTCGC 2656 Reducing linolenic acid CTTCACAAATCACAAATCGGAATCAGATCCACCACGACACCCCGG 2657 omega-3 fatty acid CGGCAATGGCGGCGTAGGCGACCCAGGAGGCCGACTGCAAGGC desaturase TTCCGAGGACGCCCGTCTCTTCTTCGACGCCGC Oryza sativa GCGGCGTCGAAGAAGAGACGGGCGTCCTCGGAAGCCTTGCAGTC 2658 Ser4 Term GGCCTCCTGGGTCGCCTACGCCGCCATTGCCGCCGGGGTGTCGT TCG-TAG GGTGGATCTGATTCCGATTTGTGATTTGTGAAG GGCGGCGTAGGCGACCC 2659 GGGTCGCCTACGCCGCC 2660 Reducing linolenic acid ATCACAAATCGGAATCAGATCCACCACGACACCCCGGCGGCAATG 2661 omega-3 fatty acid GCGGCGTCGGCGACCTAGGAGGCCGACTGCAAGGCTTCCGAGGA desaturase CGCCCGTCTCTTCTTCGACGCCGCCAAGCCCC Oryza sativa GGGGCTTGGCGGCGTCGAAGAAGAGACGGGCGTCCTCGGAAGC 2662 Gln7 Term CTTGCAGTCGGCCTCCTAGGTCGCCGACGCCGCCATTGCCGCCG CAG-TAG GGGTGTCGTGGTGGATCTGATTCCGATTTGTGAT CGGCGACCTAGGAGGCC 2663 GGCCTCCTAGGTCGCCG 2664 Reducing linolenic acid ACAAATCGGAATCAGATCCACCACGACACCCCGGCGGCAATGGC 2665 omega-3 fatty acid GGCGTCGGCGACCCAGTAGGCCGACTGCAAGGCTTCCGAGGACG desaturase CCCGTCTCTTCTTCGACGCCGCCAAGCCCCCGC Oryza sativa GCGGGGGCTTGGCGGCGTCGAAGAAGAGACGGGCGTCCTCGGA 2666 Glu8 Term AGCCTTGCAGTCGGCCTACTGGGTCGCCGACGCCGCCATTGCCG GAG-TAG CCGGGGTGTCGTGGTGGATCTGATTCCGATTTGT CGACCCAGTAGGCCGAC 2667 GTCGGCCTACTGGGTCG 2668 Reducing linolenic acid TCAGATCCACCACGACACCCCGGCGGCAATGGCGGCGTCGGCGA 2669 omega-3 fatty acid CCCAGGAGGCCGACTGAAAGGCTTCCGAGGACGCCCGTCTCTTC desaturase TTCGACGCCGCCAAGCCCCCGCCCTTCCGCATC Oryza sativa GATGCGGAAGGGCGGGGGCTTGGCGGCGTCGAAGAAGAGACGG 2670 Cys10 Term GCGTCCTCGGAAGCCTTTCAGTCGGCCTCCTGGGTCGCCGACGC TGC-TGA CGCCATTGCCGCCGGGGTGTCGTGGTGGATCTGA GCCGACTGAAAGGCTTC 2671
Claims
1. An oligonucleotide for targeted alteration of genetic sequence, comprising a single-stranded oligonucleotide having a DNA domain, said DNA domain having at least one mismatch with respect to the genetic sequence to be altered, and further comprising chemical modifications of the oligonucleotide, said chemical modifications selected from the group consisting of an o-methyl modification, an LNA modification including LNA derivatives and analogs, two or more phosphorothioate linkages on a terminus, and a combination of any two or more of these modifications.
2. The oligonucleotide according to claim one that comprises two or more phosphorothioate linkages on at least the 3′ terminus.
3. The oligonucleotide according to claim one that comprises a 2′-O-methyl analog.
4. The oligonucleotide according to claim one that comprises an LNA nucleotide, including an LNA derivative or analog.
5. The oligonucleotide according to claim one that comprises a combination of at least two modifications selected from the group of a phosphorothioate linkage, a 2′-O-methyl analog, a locked nucleotide analog and a ribonucleotide.
6. The oligonucleotide according to any one of claims 1 to 5 that comprises at least one unmodified ribonucleotide.
7. The oligonucleotide according to any one of claims 1 to 6, wherein the sequence of said oligonucleotide is selected from the group consisting of SEQ ID NOS: 1-2672.
8. A method of targeted alteration of genetic material, comprising combining the target genetic material with an oligonucleotide according to any one of claims 1 to 7 in the presence of purified proteins.
9. A method of targeted alteration of genetic material, comprising administering to a cell extract an oligonucleotide of any one of claims 1 to 7.
10. A method of targeted alteration of genetic material, comprising administering to a cell an oligonucleotide of any one of claims 1 to 7.
11. A method of targeted alteration of genetic sequence in callus, comprising administering to the callus an oligonucleotide of any one of claims 1 to 7.
12. A method of targeted alteration of genetic sequence, comprising combining target genetic material with an oligonucleotide according to any one of claims 1 to 7, said target genetic material being a non-transcribed DNA strand of a duplex DNA.
13. The genetic material obtained by any one of the methods of claim 8, 9 or claim 10.
14. A cell comprising the genetic material of claim 13.
15. A plant organism comprising the cell according to claim 14.
16. A plant or plant part produced by the method of claim 11.
17. A method of determining whether an oligonucleotide is optimized for targeted alteration of a genetic sequence, which comprises:
- (a) comparing the efficiency of alteration of a targeted genetic sequence by an oligonucleotide of any one of claims 1 to 7 with the efficiency of alteration of the same targeted genetic sequence by a second oligonucleotide, said second oligonucleotide selected from the group of an oligonucleotide that lacks the mismatch, a fully modified phosphorothiolated oligonucleotide, a fully modified 2′-O-methylated oligonucleotide and a chimeric double-stranded double hairpin containing RNA and DNA nucleotides.
18. The method of claim 17 in which the alteration is produced in a plant cell extract.
19. The method of claim 17 in which the alteration is produced in a cell.
20. A kit comprising the oligonucleotide according to any one of claims 1 to 7 and a second oligonucleotide selected from the group of an oligonucleotide that lacks the mismatch, a fully modified phosphorothiolated oligonucleotide, a fully modified 2-O-methylated oligonucleotide and a chimeric double stranded double hairpin containing RNA and DNA nucleotides.
Type: Application
Filed: Nov 26, 2002
Publication Date: Dec 25, 2003
Inventors: Eric B. Kmiec (Landenberg, PA), Howard B. Gamper (Philadelphia, PA), Michael C. Rice (Newtown, PA), Jungsup Kim (Jeju-do)
Application Number: 10307005
International Classification: A61K048/00; C07H021/04; C12N015/85;