Wireless information device with its transmission power lever adjustable

A wireless information device with its transmission power level adjustable, the drive voltage or power amplification factor associate circuit of the transmission device is adjusted depending on the communication signal strength required by the communication range and environment to select the drive voltage required by the operation of or the power amplification factor for transmission control of the transmission device, thus to avoid waste of electric power due to excessive strength of communication signal.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

[0001] (a) Field of the Invention

[0002] The present invention is related to a wireless information device with its transmission power level adjustable, and more particularly, to one that is designed to eliminate those defectives found with the conventional wireless data process and communication peripherals to be described later, essentially by allowing the user depending on the communication power desired to select the working drive voltage or power amplification factor as needed by the transmission device.

[0003] (b) Description of the Prior Art

[0004] The conventional wireless data process and communication peripherals, e.g. mouse, keyboard, scanner, microphone, speaker, wireless RC, wireless Internet connection device, wireless phone, wireless detection device or wireless alarm device, operate essentially by RF electromagnetic wave or ultrasonic wave wireless communication for achieving more convenient communication. Within, the recent blue tooth technology has become an index of the wireless communication. However, the stored power of the portable source of any of those wireless communication devices is limited; and both of their drive and transmission circuits operate so far at a fixed and single working voltage level which then varies depending on the strength of the signal. Under operating conditions feature variable distance between the transmission and the receiving devices and drastic fluctuating communication environment, and a fixed drive voltage or a fixed power amplification factor being used to emit signals, the power generated in case of shorter range of communication usually is larger than as needed, resulting in waste of electric power and shorter power supply in subsequent communication.

SUMMARY OF THE INVENTION

[0005] The primary purpose of the present invention is to provide a wireless information device with its transmission power level adjustable. Depending on the communication signal strength required by the communication range and environment, the drive voltage or power amplification factor associate circuit of the transmission device is adjusted to select the drive voltage required by the operation of or the power amplification factor for transmission control of the transmission device, thus to avoid waste of electric power due to excessive strength of communication signal.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is an equipotential block chart of a wireless information device of the present invention with its transmission power level adjustable.

[0007] FIG. 2 is a circuit block chart showing a voltage change over switch of the present invention.

[0008] FIG. 3 is a circuit block chart of a source voltage of the present invention comprised of a converter circuit device.

[0009] FIG. 4 is a schematic view showing a status of the source supply of the present invention at lower level stand-by voltage and higher transmission or receiving voltage.

[0010] FIG. 5 is a schematic view showing a source supply status of the present invention by manual operation in selecting various transmission voltage depending on the range of communication.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0011] Referring to FIG. 1 for an equipotential block chart of a wireless information device of the present invention with its transmission power level adjustable. Wherein, the present invention is essentially comprised of:

[0012] A transmission/receiving circuit device 101: related to an IC or solid status electronic device or mechanical-electronic device using RF electro magnetic wave, optical (e.g. infrared) or ultra sonic wave transmission means selected as desired to from in to relative transmission or receiving or transmission and receiving circuit device; or two or more than two communication means are provided at the same time;

[0013] An amplification circuit 102: to amplify electric signal received by the transmission/receiving circuit 101 for outputting to a local peripheral interface circuit 103, or to amplify electric signal of the local peripheral interface circuit 103 then output the signal to the transmission/receiving circuit 101 for transmission; or to provide said both amplification functions at the same time; characterized by that its transmission power may be adjusted by manual control of transmission drive voltage or amplification power factor, or both of the transmission and receiving circuits being provided with its transmission drive voltage or amplification power factor adjustable; and the amplification circuit 102 is an optional as required by system;

[0014] A local peripheral interface circuit 103: related to a dedicated circuit comprised of selected electronic circuit device depending on the function of the wireless data process or communication peripheral device to serve as an intermediate interface circuit between the transmission/receiving circuit device 101 or the amplification circuit 102 and an input device 104 or an output device 105; and the local peripheral interface circuit 103 is an optional as required by system;

[0015] An input device 104: comprised of a detector and its associate electronic and electro mechanical devices to convert one type of more than one type of optical, audio, thermal, electric, or mechanical displacement or static induction, or other physical or chemical changes into pulse or digital or analog electric signals for outputs to the local peripheral interface circuit 103, or for direct output to the amplification circuit 102; and the input device 104 is an optional as required by system;

[0016] An output device 105: comprised of mechano-electronic or solid state electronic device or display device and its associate mechanism to convert electric signal from the local peripheral interface circuit 103 or the amplification circuit 102 into a specific electric signal or into an output in the form of optical information, video information, audio information or mechanical displace or thermal state, or other physical or chemical output; and the output device 105 is an optional as required by system; and

[0017] A power supply 110: comprised of one or more than one DC battery 1100 including disposable primary battery, or dischargeable battery or battery capacitor, or super capacitor; characterized by that an output voltage control device 111 comprised of mechano-electronic device or solid state electronic device may be provided to execute control and adjustment of voltage setup by manual or as required by input or output status so to change its output voltage for linear or stepped voltage rise or drop.

[0018] Said output voltage control device 111 adapted to the power supply 110 includes:

[0019] (1) A solid state or mechano-electronic switch 1101 to execute control and adjustment of voltage in series or in parallel with at least two DC batteries 1100: as illustrated in FIG. 2 for a circuit block chart showing a voltage change over switch of the present invention in case of a power supply comprised of a plurality of battery is used, the mechano-electronic or solid state switch 1101 is further provided to switch series or parallel connection status of the batteries by manual, or to execute control and adjustment of the voltage setup depending on the input or output status so to change its output voltage, thus to further change its drive voltage of associate transmission or receiving circuit provided by the switch 1101, or to execute switch in series or in parallel by operating the switch 1101 when dischargeable batteries are used for the control and adjustment of charging voltage of its matching dischargeable battery; or

[0020] (2) A voltage rise/drop control circuit comprised of converter 1103: as illustrated in FIG. 3 for a circuit block chart of a source voltage of the present invention comprised of a converter circuit device, wherein, the converter 1103 comprised of a solid state switch device and its associate circuit device is provided to convert DC voltage into a one-way or two-way pulse voltage, which is then verified for DC output through voltage rise or drop by means of an AC adapter, and finally, a mechano-electronic or solid state switch 1102 is used to execute control and adjustment of voltage setup by manual switching or as required by input or output status; or

[0021] (3) A chopper voltage control circuit: comprised of a solid state switch device and its associate circuit device to execute chopper control for the DC voltage thus to change its average output voltage.

[0022] Control and operation methods for the wireless information device with its transmission power level adjustable of the present invention include:

[0023] 1. The output voltage from the power supply 110 is controlled and adjusted to the power supply status featuring lower voltage VL during stand-by time TS and higher voltage VH during transmission or receiving time TW by operation and control of the transmission/receiving circuit device 101 or by the local peripheral interface circuit 103 or the input device 104 as illustrated in FIG. 4 for a schematic view showing a status of the source supply of the present invention at lower level stand-by voltage and higher transmission or receiving voltage; or

[0024] 2. A lower driver voltage VL is selected for transmission or receiving function in SD status upon approaching a communication range by manual control and operation while a higher drive voltage VH is selected for transmission or receiving function in LD status upon leaving away the communication range for a longer distance as illustrated in FIG. 5 for a schematic view showing a source supply status of the present invention by manual operation in selecting various transmission voltage depending on the range of communication; or

[0025] 3. The drive voltage is upgraded by manual to function as a booster for transmission power; or

[0026] 4. The amplification ratio of the amplification circuit 102 is controlled and adjusted for a smaller value upon approaching the communication range; and for a greater value upon leaving away from the communication range by manual control and operation; or

[0027] 5. The selected source voltage is controlled and adjusted by manual depending on the length and environment of the communication range; or

[0028] 6. The amplification circuit 102 is selected to provide a fixed amplification ratio while being selected by the power supply 110 to provide the function of control and adjustment of the drive voltage; or

[0029] 7. The amplification circuit 102 is selected to provide the function of control and adjustment of the drive voltage while the power supply 110 is selected to provide a fixed drive voltage; or

[0030] 8. The amplification circuit 102 is selected to provide the function of control and adjustment of the drive voltage while the power supply 110 is provided at the same time with the function of control and adjustment of the drive voltage; and both of the amplification circuit 102 and the power supply 110 may be controlled and operated separately from each other or in synchronized ratio by a preset interaction relation; or

[0031] 9. The amplification ratio of the amplification circuit 102 is controlled and adjusted for a lower driver voltage and a smaller value upon approaching the communication range; and for a higher voltage and a greater value upon leaving away from the communication range by manual control and operation.

[0032] As disclosed, the wireless information device with its transmission power level adjustable of the present invention for providing the following advantages:

[0033] To reduce the interference upon EM environment by the transmission power resulted from excessive strength of the communication signal; and

[0034] To save power consumption for longer stand by time and operation time.

[0035] Therefore, the present invention is innovative with precise and well defined function, therefore a patent is duly filed accordingly.

Claims

1. A wireless information device with its transmission power level adjustable, wherein, depending on the communication signal strength required by the communication range and environment, the drive voltage or power amplification factor associate circuit of the transmission device is adjusted to select the drive voltage required by the operation of or the power amplification factor for transmission control of the transmission device, thus to avoid waste of electric power due to excessive strength of communication signal, is essentially comprised of:

A transmission/receiving circuit device 101: related to an IC or solid status electronic device or mechanical-electronic device using RF electro magnetic wave, optical (e.g. infrared) or ultra sonic wave transmission means selected as desired to from into relative transmission or receiving or transmission and receiving circuit device; or two or more than two communication means are provided at the same time;
An amplification circuit 102: to amplify electric signal received by the transmission/receiving circuit 101 for outputting to a local peripheral interface circuit 103, or to amplify electric signal of the local peripheral interface circuit 103 then output the signal to the transmission/receiving circuit 101 for transmission; or to provide said both amplification functions at the same time; characterized by that its transmission power may be adjusted by manual control of transmission drive voltage or amplification power factor, or both of the transmission and receiving circuits being provided with its transmission drive voltage or amplification power factor adjustable; and the amplification circuit 102 is an optional as required by system;
A local peripheral interface circuit 103: related to a dedicated circuit comprised of selected electronic circuit device depending on the function of the wireless data process or communication peripheral device to serve as an intermediate interface circuit between the transmission/receiving circuit device 101 or the amplification circuit 102 and an input device 104 or an output device 105; and the local peripheral interface circuit 103 is an optional as required by system;
An input device 104: comprised of a detector and its associate electronic and electro mechanical devices to convert one type of more than one type of optical, audio, thermal, electric, or mechanical displacement or static induction, or other physical or chemical changes into pulse or digital or analog electric signals for outputs to the local peripheral interface circuit 103, or for direct output to the amplification circuit 102; and the input device 104 is an optional as required by system;
An output device 105: comprised of mechano-electronic or solid state electronic device or display device and its associate mechanism to convert electric signal from the local peripheral interface circuit 103 or the amplification circuit 102 into a specific electric signal or into an output in the form of optical information, video information, audio information or mechanical displace or thermal state, or other physical or chemical output; and the output device 105 is an optional as required by system; and
A power supply 110: comprised of one or more than one DC battery 1100 including disposable primary battery, or dischargeable battery or battery capacitor, or super capacitor; characterized by that an output voltage control device 111 comprised of mechano-electronic device or solid state electronic device may be provided to execute control and adjustment of voltage setup by manual or as required by input or output status so to change its output voltage for linear or stepped voltage rise or drop.

2. A wireless information device with its transmission power level adjustable as claimed in claim 1, wherein, the output voltage control device 111 of the power supply 110 includes a solid state or mechano-electronic switch 1101 to execute control and adjustment of voltage in series or in parallel with at least two DC batteries 1100, the mechano-electronic or solid state switch 1101 is further provided to switch series or parallel connection status of the batteries by manual, or to execute control and adjustment of the voltage setup depending on the input or output status so to change its output voltage, thus to further change its drive voltage of associate transmission or receiving circuit provided by the switch 1101, or to execute switch in series or in parallel by operating the switch 1101 when dischargeable batteries are used for the control and adjustment of charging voltage of its matching dischargeable battery.

3. A wireless information device with its transmission power level adjustable as claimed in claim 1, wherein, the output voltage control and adjustment device 111 of the power supply 110 includes a voltage rise/drop control circuit converter 1103, comprised of a solid state switch device and its associate circuit device is provided to convert DC voltage into a one-way or two-way pulse voltage, which is then verified for DC output through voltage rise or drop by means of an AC adapter, and finally, a mechano-electronic or solid state switch 1102 is used to execute control and adjustment of voltage setup by manual switching or as required by input or output status.

4. A wireless information device with its transmission power level adjustable as claimed in claim 1, wherein, the output voltage control and adjustment device 111 of the power supply 110 includes a chopper voltage control circuit comprised of a solid state switch device and its associate circuit device to execute chopper control for the DC voltage thus to change its average output voltage.

5. A wireless information device with its transmission power level adjustable as claimed in claim 1, wherein, its control and operation methods include that the output voltage from the power supply 110 is controlled and adjusted to the power supply status featuring lower voltage VL during stand-by time TS and higher voltage VH during transmission or receiving time TW by operation and control of the transmission/receiving circuit device 101 or by the local peripheral interface circuit 103 or the input device 104.

6. A wireless information device with its transmission power level adjustable as claimed in claim 1, wherein, its control and operation methods include that a lower driver voltage VL is selected for transmission or receiving function in SD status upon approaching a communication range by manual control and operation while a higher drive voltage VH is selected for transmission or receiving function in LD status upon leaving away the communication range for a longer distance.

7. A wireless information device with its transmission power level adjustable as claimed in claim 1, wherein, its control and operation methods include that the drive voltage is upgraded by manual to function as a booster for transmission power.

8. A wireless information device with its transmission power level adjustable as claimed in claim 1, wherein, its control and operation methods include that the amplification ratio of the amplification circuit 102 is controlled and adjusted for a smaller value upon approaching the communication range; and for a greater value upon leaving away from the communication range by manual control and operation.

9. A wireless information device with its transmission power level adjustable as claimed in claim 1, wherein, its control and operation methods include that the selected source voltage is controlled and adjusted by manual depending on the length and environment of the communication range.

10. A wireless information device with its transmission power level adjustable as claimed in claim 1, wherein, its control and operation methods include that the amplification circuit 102 is selected to provide a fixed amplification ratio while being selected by the power supply 110 to provide the function of control and adjustment of the drive voltage.

11. A wireless information device with its transmission power level adjustable as claimed in claim 1, wherein, its control and operation methods include that the amplification circuit 102 is selected to provide the function of control and adjustment of the drive voltage while the power supply 110 is selected to provide a fixed drive voltage.

12. A wireless information device with its transmission power level adjustable as claimed in claim 1, wherein, its control and operation methods include that the amplification circuit 102 is selected to provide the function of control and adjustment of the drive voltage while the power supply 110 is provided at the same time with the function of control and adjustment of the drive voltage; and both of the amplification circuit 102 and the power supply 110 may be controlled and operated separately from each other or in synchronized ratio by a preset interaction relation.

13. A wireless information device with its transmission power level adjustable as claimed in claim 1, wherein, its control and operation methods include that the amplification ratio of the amplification circuit 102 is controlled and adjusted for a lower driver voltage and a smaller value upon approaching the communication range; and for a higher voltage and a greater value upon leaving away from the communication range by manual control and operation.

Patent History
Publication number: 20040203984
Type: Application
Filed: Jun 11, 2002
Publication Date: Oct 14, 2004
Inventor: Tai-Her Yang (Si-Hu Town)
Application Number: 10166176