Deep trench etching using HDP chamber

-

A process for etching deep trenches in a substrate for purposes such as the fabrication of microelectromechanical systems (MEMS), for example, on the substrate. The two-step process includes first etching a tapered trench having a tapered profile and enhanced sidewall passivation in a substrate along a protective mask which defines the desired trench profile on the substrate surface. Next, the tapered trench is trimmed by high-density plasma in an isotropic etching step to provide a straight-profile deep trench with minimum sidewall passivation.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The present invention relates to etching of circuit patterns on semiconductor wafer substrates in the fabrication of integrated circuits on the substrates. More particularly, the present invention relates to a process for etching deep trenches in substrates using an HDP chamber in the fabrication of microelectromechanical systems (MEMS), for example.

BACKGROUND OF THE INVENTION

Integrated circuits are formed on a semiconductor substrate, which is typically composed of silicon. Such formation of integrated circuits involves sequentially forming or depositing multiple electrically conductive and insulative layers in or on the substrate. Etching processes may then be used to form geometric patterns in the layers or vias for electrical contact between the layers. Some electronic devices, for example, particular types of sensors, actuators, electronics, optics, etc., have cost and performance advantages when manufactured from semiconductor materials on a miniature scale using microelectromechanical systems (MEMS) technology. Such miniature electronic devices can be formed with micromechanical structures such as membranes, cantilevered beams, microbridges, tethered proof masses, micro hotplates, micromirrors, etc., which are integrated with transduction mechanisms such as piezoresistors, p-n junctions, field effect transistors (FETs), piezoelectric films, etc. In order for these miniature electronic devices to perform accurately, the micromechanical structures must be fabricated with precise dimensional control.

One example of a well-known MEMS device is a microscopic gimbaled mirror mounted on a substrate. A gimbaled mirror is a device that may pivot on a hinge about an axis. By pivoting about an axis, a gimbaled mirror can redirect light beams to varying positions. Typically, MEMS gimbaled mirrors are arranged in an array on a single silicon wafer substrate.

Fabrication of micro-mirror array chips used in an MEMS device requires precise alignment between the MEMS structure and other optical components such as optical fiber arrays or laser arrays. During the fabrication of the device, it is often necessary to bond one part of the MEMS device found on one wafer to another part of the device that is formed on a different wafer. Conventionally, these multiple layers of a MEMS device are aligned using a “flip chip” optical alignment system to align two wafers, or two parts, to each other. Fixtures are used to hold the wafers together, after which the wafers are attached to each other.

Fabrication of MEMS structures frequently requires etching of deep (20 μm) trenches in the silicon substrate on which the structures are fabricated. The wafer is then diced into separate chips along the deep trenches. In plasma etching, a gas is first introduced into a reaction chamber and then plasma is generated from the gas. This is accomplished by dissociation of the gas into ions, free radicals and electrons by using an RF (radio frequency) generator, which includes one or more electrodes. The electrodes are accelerated in an electric field generated by the electrodes, and the energized electrons strike gas molecules to form additional ions, free radicals and electrons, which strike additional gas molecules, and the plasma eventually becomes self-sustaining. The ions, free radicals and electrons in the plasma react chemically with the layer material on the semiconductor wafer to form residual products which leave the wafer surface and thus, etch the material from the wafer. Plasma intensity depends on the type of etchant gas or gases used, as well as the etchant gas pressure and temperature and the radio frequency generated at the electrode. If any of these factors changes during the process, the plasma intensity may increase or decrease with respect to the plasma intensity level required for optimum etching in a particular application. Decreased plasma intensity results in decreased, and thus incomplete, etching. Increased plasma intensity, on the other hand, can cause overetching and plasma-induced damage of the wafers. Plasma-induced damage includes trapped interface charges, material defects migration into bulk materials, and contamination caused by the deposition of etch products on material surfaces. Etch damage induced by reactive plasma can alter the qualities of sensitive IC components such as Schottky diodes, the rectifying capability of which can be reduced considerably. Heavy-polymer deposition during oxide contact hole etching may cause high-contact resistance.

A typical conventional process for etching a deep trench in a substrate is shown in FIGS. 1A and 1B. A photoresist mask 12 in the form of the desired trench pattern to be etched is first deposited on the substrate 10. The photoresist mask 12 is typically a polyimide having a thickness of about 24 μm. As shown in FIG. 1A, a dielectric trench 14, typically having a depth of 58,000 angstroms and an etch profile of 90 degrees, is then etched in the photoresist mask 12. As shown in FIG. 1B, a substrate trench 16 is then etched in the substrate 10 beneath the photoresist mask 12, typically to a depth of about 20 μm, to define the deep trench 18. Like the dielectric trench 14, the substrate trench 16 typically has an etch profile of 90 degrees.

Etching of deep trenches in silicon wafers during the fabrication of MEMS devices requires a high etch rate, high selectivity and a vertical trench sidewall profile. Typically, the etch process is carried out using either the well-known Bosch process, which may be carried out in plasma etchers available from Alcatel, Plasma-therm and Surface technology systems, or cryo process which involves super-low temperatures of up to −110 C. Best results are typically obtained using the Bosch process, although the cryo process provides satisfactory results. However, the cryo process is difficult to maintain and both the Bosch process and the cryo process requires the use of specialized types of etchers which are quite expensive. Accordingly, a new and improved process is needed for etching of deep trenches in substrates using a general purpose etch chamber, such as a DPS (Decoupled Plasma Source) HDP (High Density Plasma) etch chamber available from Applied Materials, Inc., of Santa Clara, Calif.

An object of the present invention is to provide a new and improved process for etching deep trenches in substrates.

Another object of the present invention is to provide a deep trench etching process which is inexpensive.

Still another object of the present invention is to provide a deep trench etching process which is suitable for the fabrication of microelectromechanical (MEM) devices.

Yet another object of the present invention is to provide a process for etching deep trenches which is characterized by a high etch rate.

A still further object of the present invention is to provide a two-step process for the etching of deep trenches in a substrate.

Another object of the present invention is to provide a deep trench etching process which may be carried out in a general purpose etching chamber.

Still another object of the present invention is to provide a novel deep trench etching process which includes etching of a tapered profile and sidewall trimming by isotropic etching of a substrate.

SUMMARY OF THE INVENTION

In accordance with these and other objects and advantages, the present invention is generally directed to a novel process for etching deep trenches in a substrate for purposes such as the fabrication of microelectromechanical systems (MEMS), for example, on the substrate. The two-step process includes first etching a tapered trench having a tapered profile and enhanced sidewall passivation in a substrate along a protective mask which defines the desired trench profile on the substrate surface. Next, the tapered trench is trimmed by high-density plasma in an isotropic etching step to provide a straight-profile deep trench with minimum sidewall passivation. The deep trench etch process may be carried out in a conventional general-purpose etching chamber without the need for more specialized etch chambers traditionally used for the purpose.

In a preferred embodiment, a general purpose DPS (Decoupled Plasma Source) HDP (High Density Plasma) etch chamber available from Applied Materials, Inc., (AMAT) of Santa Clara, Calif., is used as the etch chamber for carrying out the process of the present invention. However, it is understood that other types of general purpose etch chambers may be used to carry out the process. The AMAT etch chamber is capable of sustaining low chamber pressures for long ion MFP, as well as high plasma density, which facilitates a high etch rate.

In a preferred embodiment, HBr/CF4 is used as the etchant in the first step to etch the tapered trench having the tapered sidewalls. In the second step, a high-density SF6/HBr/O2 plasma is used in combination with a chamber pressure on the order of about 5˜20 mT to facilitate a high silicon etch rate. The cathode temperature, controlled by backside helium, is selected to impart a uniform etch profile to the deep trench.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described, by way of example, with reference to the accompanying drawings, in which:

FIG. 1A is a cross-sectional view of a substrate illustrating etching of a dielectric trench in a photoresist layer on the substrate as a first step in a conventional process for forming a deep trench in the substrate;

FIG. 1B is a cross-sectional view of a substrate illustrating etching of an Si trench in the substrate as a second step in a conventional process for forming a deep trench in the substrate;

FIG. 2 is a schematic of a conventional etch chamber used in implementation of the process of the present invention;

FIG. 3A is a cross-sectional view of a substrate, illustrating etching of a tapered trench in the substrate according to a first step in implementation of the process of the present invention;

FIG. 3B is a cross-sectional view of a substrate, illustrating trimming of the tapered trench using isotropic etching according to a second step in implementation of the process of the present invention; and

FIG. 4 is a process flow diagram summarizing sequential steps in carrying out the process of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention includes a process for the etching of deep trenches in a substrate such as during the fabrication of MEMS (microelectromechanical systems) on the substrate. The process is a two-step method which includes a first step of etching a tapered trench having tapered sidewalls with sidewall passivation in the substrate, followed by a second step of isotropic etching or trimming of the tapered sidewalls to form the deep trench typically having a depth of about 20 μm and less sidewall passivation.

The process may be carried out using a general purpose etch system such as a DPS (Decoupled Plasma Source) HDP (High Density Plasma) etch chamber available from Applied Materials, Inc., (AMAT) of Santa Clara, Calif. Such a chamber is capable of sustaining low chamber pressures which facilitate long ion MFP, as well as high plasma density which facilitates a high etch rate. However, it is understood that the process of the present invention may be carried out in other types of etch chambers known by those skilled in the art.

Throughout the process, backside He pressure is maintained at a temperature of typically about 4˜12T to maintain a cathode temperature of typically about 10˜45 degrees C. Typical chamber wall temperature is about 50˜100 degrees C. Typically, the first step of the process is carried out under chamber pressures of about 20 mT, with a bias power of about 10˜100 W and a source power of about 100˜800 W. The HBr is introduced into the chamber at a flow rate of about 0˜20 sccm, and the CF4 is introduced into the chamber at a flow rate of about 10˜100 sccm, for about 2 minutes.

The second step of the process is carried out under chamber pressures of typically about 5˜20 mT, with a bias power of typically about 10˜200 W and a source power of typically about 500˜1200 W. The HBr, O2, and SF6 are introduced into the chamber at a flow rate of typically about 10˜50 sccm, about 50˜100 sccm and about 30˜100 sccm, respectively.

Variation of the process parameters contributes to various trench sidewall profiles. For example, an increase in chamber pressure during the first process step imparts a bowed or curved configuration to the tapered sidewalls. Lower chamber wall temperatures sustained during the second step tend to correspondingly reduce isotropic etching of the sidewalls. Variations in source power, on the other hand, have been found to have little effect on trench profile and depth.

Referring to FIG. 2, a conventional etch system which is suitable for forming a deep trench 38 (FIG. 3B) in a substrate 40 in implementation of the present invention as hereinafter described, is generally indicated by reference numeral 20. In a preferred embodiment, the etch system 20 is a DPS (Decoupled Plasma Source) HDP (High Density Plasma) etch system available from AMAT (Applied Materials, Inc.), of Santa Clara, Calif. Such a system is typically used for the general purpose etching of conductive and insulative material layers in the fabrication of integrated circuits on substrates. The etch system 20 includes a reaction chamber 22 having a typically grounded chamber wall and containing an electrostatic chuck (ESC) 24 for supporting the substrate 40. An electrode, such as a planar coil electrode 26, is positioned adjacent to a dielectric plate (not shown) which separates the electrode 26 from the interior of the reaction chamber 22 and acts as an anode. The electrode 26 is connected to an RF power source 28. Plasma-generating source gases are provided to the reaction chamber 22 by a gas supply (not shown). A bias power source 30 is connected to the electrostatic chuck 24 for electrically biasing the chuck 24, which acts as a cathode. Volatile reaction products and unreacted plasma species are removed from the reaction chamber 22 by a gas removal mechanism, such as a vacuum pump through a throttle valve (not shown), in conventional fashion.

Electrode power such as a high voltage signal is applied to the electrode 26 to ignite and sustain a plasma 34 in the reaction chamber 22. Ignition of a plasma 34 in the reaction chamber 22 is accomplished primarily by electrostatic coupling of the electrode 26 with the source gases, due to the large-magnitude voltage applied to the electrode 26 and the resulting electric fields produced in the reaction chamber 22. Once ignited, the plasma 34 is sustained by electromagnetic induction effects associated with time-varying magnetic fields produced by the alternating currents applied to the electrode 26. The plasma 34 may become self-sustaining in the reaction chamber 22 due to the generation of energized electrons from the source gases and striking of the electrons with gas molecules to generate additional ions, free radicals and electrons. The ESC 24 is typically electrically-biased to provide ion energies that are independent of the RF voltage applied to the electrode 26 and that impact the substrate 40.

Typically, the voltage varies as a function of position along the coil electrode 26, with relatively higher-amplitude voltages occurring at certain positions along the electrode 26 and relatively lower-amplitude voltages occurring at other positions along the electrode 26. A relatively large electric field strength is required to ignite plasmas in the reaction chamber 22. Accordingly, to create such an electric field it is desirable to provide the relatively higher-amplitude voltages at locations along the electrode 26 which are close to the grounded wall of the reaction chamber 22.

The plasma 34 includes high-energy ions, free radicals and electrons which react chemically with the surface material of the substrate 40 to form reaction produces that leave the surface of the substrate 40, thereby etching a trench in the substrate 40, as hereinafter described. Plasma intensity depends on the type of etchant gas or gases used, as well as the etchant gas pressure and temperature and the radio frequency generated at the electrode 26. If any of these factors changes during the process, the plasma intensity may increase or decrease with respect to the plasma intensity level required for optimum etching in a particular application. Decreased plasma intensity results in decreased, and thus incomplete, etching. Increased plasma intensity, on the other hand, can cause overetching and plasma-induced damage of the substrate 40. Plasma-induced damage includes trapped interface charges, material defects migration into bulk materials, and contamination caused by the deposition of etch products on material surfaces.

Referring again to FIG. 2 in conjunction with FIGS. 3A and 3B, according to the process of the present invention a deep trench 38 having a depth of typically about 20 μm is etched in the substrate 40 for the purpose of fabricating MEMS (microelectromechanical systems) on the substrate 40, for example. Prior to the process of the invention, a photoresist mask 42 is initially deposited on the surface of the substrate 40 to shield the portions of the substrate 40 that are not to be exposed to the etchant plasma, as well as expose the portions on the surface of the substrate 40 which are to be exposed to the etchant plasma for the formation of the deep trenches 38 therein. The photoresist mask 42 is typically spin-coated on the substrate 40 according to methods which are well-known by those skilled in the art.

To begin the first step according to the process of the invention, the substrate 40 is placed in the reaction chamber 22 of the etch system 20, on the chuck 24. As HBr is introduced into the reaction chamber 22 at a flow rate of typically about 0˜20 sccm and CF4 is simultaneously introduced into the reaction chamber 22 at a flow rate of typically about 10˜100 sccm, for a period of typically about 2 minutes, the reaction chamber 22 is maintained at an interior pressure of typically about 4˜20 mT, with a bias power of about 10˜100 W applied to the chuck 24 via the bias power source 30 and a source power of typically about 100˜800 W applied to the electrode 26 via the RF power source 28. The temperature of the cathode/chuck 24 is maintained at a temperature of typically about 10˜45 degrees C., whereas the wall temperature of the reaction chamber 22 is maintained at typically about 50˜100 degrees C. As shown in FIG. 3A, the first etching step heretofore described forms a tapered trench 44, having slanted sidewalls 45 and a substantially flat bottom 46, in the substrate 40 along the areas that remain uncovered and exposed by the photoresist mask 42. During the etching process, a stream of Cl2 may be introduced into the reaction chamber 22 in order to promote polymer passivation of the slanted sidewalls 45.

As a second step according to the process of the invention, the substrate 40 remains on the chuck 24 in the process chamber 22 while the interior pressure of the reaction chamber 22 is adjusted to typically about 5˜20 mT. HBr, O2 and SF6 are introduced into the reaction chamber 22 at flow rates of typically about 10˜50, 30˜100 and 30˜100 sccm, respectively, for a period of typically about 4˜5 minutes. A bias power of typically about 10˜200 W is applied to the chuck 24 via the bias power source 30, and a source power of typically about 500˜1200 W is applied to the electrode 26 via the RF power source 28. The temperature of the cathode/chuck 24 is maintained at a temperature of typically about 10˜45 degrees C. and the wall temperature of the reaction chamber 22 is maintained at typically about 50˜100 degrees C. This step produces a high-density plasma 34 in the reaction chamber 22, thus facilitating isotropic etching of the initially slanted sidewalls 45 of the tapered trench 44 to define the straight sidewalls 49 of the deep trench 38, having the flat bottom 50.

The flow diagram of FIG. 4 summarizes the steps according to the process of the present invention. In process step S1, a substrate, which is typically silicon, is provided. In process step S2, a photoresist mask is applied to the substrate typically using conventional spin-coating techniques. The photoresist mask covers and protects most areas on the substrate while exposing those areas on the substrate along which the deep trench is to be formed. In process step S3, the mask-covered substrate is placed in an etching chamber such as a general purpose AMAT DPS etch chamber. In process step S4, a trench having a tapered sidewall profile is initially etched in the substrate as heretofore described with respect to FIG. 3A. In process step S5, the tapered sidewall profile trench is further subjected to isotropic etching using a high-density plasma to form a deep trench having straight sidewalls and a depth of typically about 20 μm.

While the preferred embodiments of the invention have been described above, it will be recognized and understood that various modifications can be made in the invention and the appended claims are intended to cover all such modifications which may fall within the spirit and scope of the invention.

Claims

1. A process for forming a deep trench in a substrate, comprising the steps of:

providing an etch chamber;
placing said substrate in said etch chamber;
etching a tapered trench in said substrate by subjecting said substrate to a first etching step; and
etching said tapered trench to form said deep trench by subjecting said substrate to a second etching step.

2. The process of claim 1 wherein said first etching step includes providing a pressure of about 4˜20 mT in said etch chamber.

3. The process of claim 2 wherein said first etching step includes applying a bias power of about 10˜100 W and a source power of about 100˜800 W to said etch chamber.

4. The process of claim 3 wherein said first etching step includes flowing HBr and CF4 into said etch chamber.

5. The process of claim 1 wherein said second etching step includes providing a pressure of about 5˜20 mT in said etch chamber.

6. The process of claim 5 wherein said second etching step includes applying a bias power of about 10˜200 W and a source power of about 500-1200 W to said etch chamber.

7. The process of claim 6 wherein said second etching step includes flowing HBr, O2 and SF6 into said etch chamber.

8. A process for forming a deep trench in a substrate, comprising the steps of:

providing an etch chamber having a cathode and a chamber wall;
placing said substrate in said etch chamber;
maintaining said cathode at a temperature of about 10˜45 degrees C. and said chamber wall at a temperature of about 50˜100 degrees C.;
etching a tapered trench in said substrate by subjecting said substrate to a first etching step; and
etching said tapered trench to form said deep trench by subjecting said substrate to a second etching step.

9. The process of claim 8 wherein said first etching step includes providing a pressure of about 4˜20 mT in said etch chamber.

10. The process of claim 9 wherein said first etching step includes applying a bias power of about 10˜100 W and a source power of about 100˜800 W to said etch chamber.

11. The process of claim 10 wherein said first etching step includes flowing HBr and CF4 into said etch chamber.

12. The process of claim 11 wherein said second etching step includes providing a pressure of about 5˜20 mT in said etch chamber.

13. The process of claim 12 wherein said second etching step includes applying a bias power of about 10˜200 W and a source power of about 500-1200 W to said etch chamber.

14. The process of claim 13 wherein said second etching step includes flowing HBr, O2 and SF6 into said etch chamber.

15. A process for forming a deep trench in a substrate, comprising the steps of:

providing a high density plasma etch chamber having a cathode and a chamber wall;
placing said substrate in said etch chamber;
etching a tapered trench in said substrate by subjecting said substrate to a first etching step; and
etching said tapered trench to form said deep trench by subjecting said substrate to a second etching step.

16. The process of claim 15 wherein said first etching step and said second etching step includes maintaining said cathode at a temperature of about 10˜45 degrees C. and said chamber wall at a temperature of about 50˜100 degrees C.

17. The process of claim 15 wherein said first etching step includes providing a pressure of about 4˜20 mT in said etch chamber, applying a bias power of about 10˜100 W and a source power of about 100˜800 W to said etch chamber, and flowing HBr and CF4 into said etch chamber.

18. The process of claim 17 wherein said first etching step and said second etching step includes maintaining said cathode at a temperature of about 10˜45 degrees C. and said chamber wall at a temperature of about 50˜100 degrees C.

19. The process of claim 17 wherein said second etching step includes providing a pressure of about 5˜20 mT in said etch chamber, applying a bias power of about 10˜200 W and a source power of about 500-1200 W to said etch chamber, and flowing HBr, O2 and SF6 into said etch chamber.

20. The process of claim 19 wherein said first etching step and said second etching step includes maintaining said cathode at a temperature of about 10˜45 degrees C. and said chamber wall at a temperature of about 50˜100 degrees C.

Patent History
Publication number: 20050029221
Type: Application
Filed: Aug 9, 2003
Publication Date: Feb 10, 2005
Applicant:
Inventors: Fa-Yuan Chang (Taipei City), Buh-Kuan Fang (Taipei City), Shih-Feng Chen (Sanchong), Cheng-Cheng Chang (Hsin-Chu)
Application Number: 10/637,360
Classifications
Current U.S. Class: 216/2.000