Cryosurgery device
A cryosurgery device includes an aerosol container holding a liquid refrigerant and having a valve and a stem extending out therefrom; an actuator seated on the stem and including an outlet tube for receiving released refrigerant from the container; a hub mounted on the container and including slots therein; an applicator tube mounted to the hub in fluid communication with the outlet tube; a porous tip mounted to a distal end of the applicator tube for receiving the refrigerant; and a base having a central opening for receiving the hub and applicator tube therein, the base including aligning projections that enter the slots in the hub to engage and apply pressure to the actuator to cause the actuator to depress the stem and release refrigerant to the tip.
Latest Patents:
The present invention relates generally to a cryosurgery device for cryogenically treating skin lesions and, more particularly, is directed to a cryosurgery device for applying a cryogenic refrigerant from a pressurized container to a porous-tip applicator which contacts the area of the skin lesion to freeze the skin lesion.
Historically, physicians have used liquid nitrogen applications to remove lesions from the skin. This has been very effective, but suffers from the disadvantage of requiring specialized equipment to condense nitrogen, the need for specialized storage devices, and the inherent hazards of handling and dispensing a material having a boiling point of −196° C. A certain amount of skill is required during treatment, so that excessive tissue injury is not obtained.
More recently, methods were developed to treat skin lesions cryogenically by employing a liquid refrigerant contained in a pressurized container. In such methods, an effective amount of the cryogenic agent from the pressurized container is supplied into a hollow supply tube, having a cotton or plastic foam applicator located at the distal end of the tube, so that the cryogenic material accumulates in the applicator. The skin surface of the lesion is then contacted with the applicator having the accumulated cryogenic agent for a period of time sufficient to permit the cryogenic agent to reduce the temperature of the skin lesion tissue to temperatures that freeze the skin, such that permanent, irreversible rupture of cellular membranes of cells of the skin lesion occurs while the cryogenic agent is evaporating. Subsequently, the applicator is removed from the skin surface after a period of time that is generally about 20 to about 60 seconds, depending on the boiling point of the refrigerant and the depth of tissue that will be frozen, and the frozen skin tissue of the skin lesion is then permitted to slowly thaw. During the next several weeks, the tissue that was frozen dislodges from the surrounding skin.
Examples of devices for applying a cryogenic agent to a skin lesion are disclosed in U.S. Pat. No. 4,865,028 (Swart); U.S. Pat. No. 5,516,505 (McDow); U.S. Pat. No. 5,200,170 (McDow); U.S. Pat. No. 5,330,745 (McDow); U.S. Pat. No. 5,738,682 (Jensma); U.S. Pat. No. 6,092,527 (Jensma); U.S. Pat. No. 6,296,410 (Ruizendaal); and U.S. Pat. No. 6,387,090 (Jensma).
A problem with such devices is the manner in which the cryogenic agent is moved from the container to the applicator. It is important that there be little loss in the cryogenic material during such transfer and, therefore, that the cryogenic material travels the most effective and shortest path in order to provide the greatest effectiveness in treating the skin lesion. Further, it is necessary to prevent accidental release of the cryogenic material to conserve the cryogenic agent, and to prevent injury to a user of the device.
SUMMARY OF THE INVENTIONAccordingly, it is a feature of the present invention to provide a cryosurgery device for applying a cryogenic refrigerant to a skin lesion that overcomes the aforementioned problems.
It is another feature of the present invention to provide a cryosurgery device for applying a cryogenic refrigerant to a skin lesion that provides an accurate and controlled supply of the cryogenic refrigerant.
It is still another feature of the present invention to provide a cryosurgery device for applying a cryogenic refrigerant to a skin lesion that reduces waste of cryogenic agent.
It is yet another feature of the present invention to provide a cryosurgery device for applying a cryogenic refrigerant to a skin lesion that substantially reduces potentially dangerous conditions from occurring during an uncontrolled escape of the cryogenic agent.
It is a further feature of the present invention to provide a cryosurgery device for applying a cryogenic refrigerant to a skin lesion in which the cryogenic material travels the most effective and shortest path to the applicator tip.
It is a still further feature of the present invention to provide a cryosurgery device for applying a cryogenic refrigerant to a skin lesion that is economical to manufacture and easy to use by consumers.
In accordance with an embodiment of the present invention, a cryosurgery device for use with an aerosol container of the type having a valve and a stem extending outward from the valve and the container, the container holding a propellant refrigerant therein, includes an actuator adapted to seat on a stem of the valve in order to depress the stem and release refrigerant from the container. The actuator includes an outlet tube for receiving the released refrigerant from the container. A hub is adapted to mount on the container, the hub including at least one opening therein and a first aligning arrangement. An applicator tube is mounted to the hub in fluid communication with the outlet tube of the actuator, and a porous tip is mounted to a distal end of the applicator tube for receiving the refrigerant. A base has a central opening for receiving the hub and applicator tube therein. The base includes at least one key and a second aligning arrangement for cooperating with the first aligning arrangement such that the at least one key enters the at least one opening in the hub to engage and apply pressure to the actuator to cause the actuator to depress the valve stem and release the refrigerant.
The actuator includes an inlet tube connected with the main body and adapted to receive the stem of the valve therein, and a main body that connects together the inlet tube and the outlet tube in fluid communication with each other. The main body includes an arrangement for limiting insertion of the stem into the inlet tube, and an actuating surface against which at least one key engages, such that application of the pressure to the actuating surface causes the actuator to move such that the shoulder engages and depresses the stem to release the refrigerant. The main body includes a generally cylindrical side wall, a bottom wall which closes the side wall and which includes an opening, with the inlet tube and outlet tube being connected to opposite sides of the bottom wall in surrounding relation to the opening therein, and a ledge connected with an upper edge of the side wall, the ledge defining the actuating surface. The main body further includes reinforcing ribs on an outer surface of the side wall and connected with the ledge.
The applicator tube includes an enlarged diameter section at a distal end thereof for receiving the porous tip therein. The hub includes a securing arrangement for releasably securing the applicator tube thereto. Specifically, the applicator tube includes at least one projection extending outwardly from a lower end thereof, and the securing arrangement includes a threaded securing arrangement for threadedly receiving the at least one projection of the applicator tube in a releasable securing manner. The threaded securing arrangement includes an annular boss extending from an upper surface of the hub, a tube coaxially positioned within the annular boss and connected with the annular boss at a lower end thereof, and at least one helical thread on an inner surface of the annular boss for receiving the at least one projection in a threaded releasable securing manner. The tube of the hub is in axial alignment with the applicator tube and the outlet tube of the actuator. The hub includes a cylindrical side wall, and a top wall that closes an upper end of the cylindrical side wall, the top wall having an opening therein and the annular boss extends from an underside of the top wall as the upper surface of the hub in surrounding relation to the opening therein. Further, the at least one opening is in the top wall.
The hub also includes a securing arrangement at a lower end of the cylindrical side wall adapted to be snap-fit secured over an upper annular lip of the container.
The first aligning arrangement includes at least one aligning rib on the cylindrical side wall, and the second aligning arrangement includes at least one recess for receiving the at least one aligning rib to angularly align the hub with the base. The opening in the base is closed by a lower wall at a lower end thereof.
The base includes at least one inwardly extending projection, each having an upper surface on which one the key is mounted, and each the upper surface defining a limit as to an extent to which the hub can be inserted into the base. For example, there can be three projections and keys of the base and three openings of the hub.
In accordance with another embodiment of the present invention, a cryosurgery device includes a container for holding a propellant refrigerant, the container including a valve and a stem extending out from the valve and the container; an actuator seated on the stem of the valve in order to depress the stem and release the refrigerant from the container, the actuator including an outlet tube for receiving the released refrigerant from the container; a hub mounted on the container, the hub including at least one opening therein and a first aligning arrangement; an applicator tube mounted to the hub in fluid communication with the outlet tube of the actuator; a porous tip mounted to a distal end of the applicator tube for receiving the refrigerant; and a base having a central opening for receiving the hub and applicator tube therein, the base including at least one key and a second aligning arrangement for cooperating with the first aligning arrangement such that the at least one key enters the at least one opening in the hub to engage and apply pressure to the actuator to cause the actuator to depress the stem and release the refrigerant.
A cryosurgery device can be used to treat a skin lesion, by: mounting an applicator tube and porous tip assembly to the hub, positioning the device over the base such that the base is located below the container and the porous tip extends downwardly into a central opening of the base; applying a force to the container, the base, or both, such that the keys enter corresponding openings in the hub to apply pressure to the actuator and cause refrigerant to be released into the applicator tube; discontinuing the force after the porous tip is saturated with liquid refrigerant; removing the base; and, without removing the applicator tube and porous tip from the hub, promptly placing the porous tip in contact with a lesion to cause freezing of the lesion as refrigerant evaporates.
The above and other aspects, features, and advantages of the invention will become readily apparent from the following detailed description thereof, which is to be read in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Referring to the drawings, and initially to
As shown in
The liquid refrigerant can be any suitable liquid refrigerant for use as a cryogenic agent to reduce the temperature of wart tissue to a temperature to freeze the skin, such that permanent, irreversible rupture of cellular membranes of cells of the skin lesion occurs while the cryogenic agent is evaporating. If the temperature of a wart is lowered below about −20° C. for at least about twenty seconds, the wart tissue will be destroyed. Many low-boiling refrigerant/aerosol propellant materials are suitable for this purpose, including halogenated hydrocarbons, ethers, and hydrocarbons. For environmental reasons, the formerly very common chlorofluorocarbon refrigerants have been prohibited for most uses, generally being replaced by fluorohydrocarbon compounds; for example, the commercial refrigerant 1,1,1,2-Tetrafluoroethane, which has a boiling point of −26.5° C., is useful in the present invention. The materials may be mixtures of refrigerant compounds to lower the container internal pressures, to achieve a desired boiling point, or for other reasons. Those skilled in the art are aware of numerous useful refrigerant compounds and mixtures.
Examples of useful mixtures are: 82 weight percent dimethyl ether and 18 weight percent propane; and 95 weight percent dimethyl ether, 2 weight percent propane, and 3 weight percent isobutane. For purposes of the present invention, a very suitable liquid refrigerant is a mixture of 75 weight percent dimethyl ether and 25 weight percent propane, which produces temperatures below about −30° C. on the surface of skin of a person when applied using the following described device.
A conventional spring-loaded pressurized “continuous” aerosol valve 32 is provided in reduced diameter neck 26 of container 12. The construction details of valve 32 are well known and the specific construction of valve 32 does not form part of the present invention. Examples of such valves can be found throughout the patent literature, for example, in U.S. Pat. Nos. 6,039,306; 6,318,603; and many other patents; as well as in A. R. Gennaro, Ed., Remington: The Science and Practice of Pharmacy, 20th Ed., Lippincott, Williams & Wilkins, Baltimore, Md., 2000, pages 971-972; the entire disclosures of which are incorporated herein by reference. In the embodiment shown, dip tube 34 is connected with valve 32 and extends into container 12, and a short outlet stem 36 extends out of container 12. It will be appreciated that dip tube 34 can be made to extend into the interior of container 12 for only a very short distance, or can even be eliminated, so that liquid refrigerant will be delivered when container 12 is inverted. As is well known in the art, when outlet stem 36 is depressed, valve 32 is opened, and the refrigerant from container 12 will exit through dip tube 34, valve 32 and outlet stem 36, until the outlet stem 36 is returned to its normal position (typically from pressure exerted by a spring disposed within the valve) and the valve is closed.
In addition, an annular lip 38 extends upwardly from the upper outer edge of annular wall 20, and includes an annular undercut 40, the purpose for which will become apparent from the discussion hereafter.
Referring now to
Thus, as a result of pressure applied to upper annular actuating surface 58 of actuation cup 14, inner annular shoulder 64 forces short outlet stem 36 inwardly of container 12 in order to open valve 32 and release the refrigerant, which then travels from short outlet stem 36, through outlet tube 60. In order to reinforce annular outer wall 50 as a result of such pressure without adding substantially to the material and costs of actuation cup 14, strengthening ribs 66 extend out radially from the outer surface of annular outer wall 50, in angularly spaced relation from each other, and are also connected to the underside of annular ledge 57.
As discussed above, a hub 16 is mounted over actuation cup 14 and is press fit onto propellant container 12. Referring now to
Hub 16 is open at the lower end of lower annular side wall 74, and has three equiangularly spaced snap-in beads 88 on the inner surface thereof. As a result, hub 16 can be snap fit onto propellant container 12. In such case, annular snap-in beads 88 will snap over annular undercut 40 in order to hold hub 16 on container 12.
A top wall 90 closes the upper edge of upper annular side wall 70 and includes a central opening 92, as well as three equiangularly spaced, slightly arcuate slots 94 in surrounding relation to central opening 92. When hub 16 is snapped onto container 12, as shown best in
An annular boss 96 extends down from the lower surface of top wall 90 in surrounding relation to central opening 92 for a distance almost to the lower edge of upper annular side wall 70. The inner surface of annular boss 96 is formed with a helical screw thread 98. A hollow shaft 100 having an outer diameter less than the inner diameter of annular boss 96, is provided coaxially within annular boss 96 and is of substantially the same height as annular boss 96. The lower edges of annular boss 96 and hollow shaft 100 are connected together by an annular connecting wall 102. This latter arrangement is provided to capture and hold applicator tube 17 therein.
As discussed above, applicator tube 17 is secured to hub 16. As shown in
Two diametrically opposite projections 122 extend outwardly in the radial direction from the outer surface of lower section 116 at the lower edge thereof. The outer diameter of lower section 116 is less than the inner diameter of annular boss 96 while the inner diameter of lower section 116 is greater than the outer diameter of hollow shaft 100 so as to fit therebetween. In this manner, when the lower end of lower section 116 is inserted between boss 96 and hollow shaft 100, and then rotated, projections 122 engage with helical screw thread 98 to releasably lock applicator tube 17 to hub 16, as shown best in
The inner surface of upper section 114 is provided with equiangularly spaced grooves 124 that extend vertically and in the radial direction, so as to define a plurality of equiangularly spaced vertical projections 126 extending inwardly in the radial direction.
A cylindrical tip 128 formed from a porous material is friction fit in upper section 114 and held therein by projections 126. Tip 128 is used to absorb and transfer the cryogen to the skin. Tip 128 can be made of any suitable material, such as a polymeric foam, a sintered thermoplastic, a sintered metal, a glass or ceramic frit, or a polyolefin or polyester nonwoven fabric. Preferably, tip 128 is secured to applicator tube 17, for example by thermal welding, ultrasonic welding, an adhesive, etc. In general, the void volume of the porous tip should be greater than about 50 percent to provide sufficient capacity for holding liquid refrigerant. A maximum void volume will typically not exceed about 90 percent, and will depend on the relative rigidity and strength of the material of construction so that the tip will retain its general shape during use.
Preferably, tip 128 comprises a nonwoven material in which oriented polyethylene and polyester fibers are thermally bonded into a rod configuration, having a density about 0.2 g/cm3 and a void volume about 80 percent. The tip can be shaped as desired, such as cylindrical, conical pointed, truncated conical, or other shapes that provide a desired skin contact area. An advantage of nonwoven material is its rigidity, so that the desired shape is generally maintained during use, while also providing a good degree of comfort by being somewhat deformable while held in contact with the skin. Also, the important properties of nonwoven materials are not substantially changed as the temperatures vary during use in the invention.
In a presently preferred embodiment, an applicator tube 17 is about 25 mm (1 inch) in length and center section 112 has an inner diameter about 5 mm (0.2 inches); the inner diameter of upper section 114, between opposite projections 126, is about 6 mm (0.23 inches) to enhance retention of the porous tip. The porous tip has a diameter about 6.4 mm (0.25 inches) and a length about 12.7 mm (0.5 inches); at least about half of the length of the tip will typically extend beyond the upper edge of the applicator tube. When formed from the nonwoven material described above, a tip of these dimensions will have a mass about 75 mg.
When valve 32 is opened, the liquid refrigerant fills applicator tube 17 and saturates tip 128. Then, tip 128 is briefly pressed against a wart to be removed from the skin. As refrigerant evaporates from the tip, it may be replenished during at least a portion of the treatment time by liquid remaining in the tube. Preferably, for hygienic reasons, the applicator tube 17 and tip 128 are used only once, and then will be discarded.
In order to contain the refrigerant while valve 32 is open to saturate tip 128, base 18 is provided. Specifically, as shown in
Three equiangularly spaced, inwardly extending projections 150 are connected to outer shell 140 immediately below gaps or recesses 148. Each projection 150 has a generally trapezoidal shape with the inner surface 150a thereof being generally arcuate. Each projection 150 extends down to a distance to an approximate mid-point of the length of outer shell 140. An upstanding arcuate key 152 extends upwardly from the upper surface 150b of each projection 150 and is positioned near inner surface 150a, the purpose for which will become apparent from the discussion hereafter.
The “lock and key” combination of keys 152 and slots 94 acts to prevent opening of the valve unless base 18 is properly in place over hub 16. Thus, the release of refrigerant will take place into an enclosed space, and the user will be protected against a potentially injurious contact with the refrigerant. There typically will be up to about six each of keys 152 and slots 94, and their shapes can vary from the particular embodiment shown, such as being round, square, rectangular, etc. Preferably there will be at least two of the keys and slots. To provide additional security against injury from misuse, the device is designed to deliver refrigerant in liquid form only when container 12 is inverted, and the slots 94 are less accessible to a user. Excess amounts of refrigerant will be contained within the central opening of the base, which central opening is closed by bottom wall 160.
The lower edges of projections 150 are closed by an annular wall 154 at a substantial mid-point of the length of outer shell 140, with annular wall 154 defining a central opening 156 therein. A cylindrical wall 158 extends down from annular wall 154 in surrounding relation to central opening 156, and is closed at its lower end by a bottom wall 160. Trapezoidal projections 162 of a similar shape to projections 150 are formed on the outer surface of cylindrical wall 158 and are secured to the lower surface of annular wall 154 in alignment with the spaces between projections 150, in order to add structural rigidity to cylindrical wall 158. The lower ends of trapezoidal projections 162 are closed by lower walls 164.
In operation, actuator cup 14 and hub 16 are preferably pre-assembled with propellant container 12. Then, applicator tube 17 is assembled with hub 16 by the user by inserting the lower end of lower section 116 between boss 96 and hollow shaft 100, and then rotating applicator tube 17, whereby projections 122 engage with helical screw thread 98 to lock applicator tube 17 to hub 16, as shown best in
Due to this alignment, keys 152 extend into arcuate slots 94, and upon pressure on container 12, keys 152 engage upper annular actuating surface 58 of actuation cup 14 to push actuation cup 14 inwards toward container 12. As a result of this pressure applied to upper annular actuating surface 58 of actuation cup 14, inner annular shoulder 64 forces short outlet stem 36 inwardly toward container 12 in order to open valve 32 and release the refrigerant, which then travels from short outlet stem 36, through outlet tube 60 of actuator cup 14 and then through applicator tube 17 so as to saturate tip 128. This takes only a few seconds, and frequently as little as two seconds. An important feature of the device is the containment within base 18 of dispensed liquid refrigerant during the filling procedure, so that spillage onto the user is unlikely.
Thereafter, base 18 is removed and, without removing applicator tube 17 from hub 16, tip 128 with the refrigerant contained therein is immediately applied to the wart for a period of, for example, twenty seconds, in order to freeze the wart. After about five minutes, tip 128 will have sufficiently warmed so that the applicator can be safely removed from the device and the applicator tube/tip assembly can be discarded.
Base 18 can be used as a storage cover for the cryogenic surgery device, if the end opposite the end containing keys 152, etc. is sized to provide a friction fit over container 12.
With the exceptions of the aerosol container and the tip, all of the device components typically will be molded from one or more thermoplastic materials, such as polyethylene, polypropylene, or other polyolefins and polyolefin copolymers, nylons, polyesters, polyacetals, and polyurethanes. The materials of construction are not critical to the invention.
Having described a specific preferred embodiment of the invention with reference to the accompanying drawings, it will be appreciated that the present invention is not limited to that precise embodiment and that various changes and modifications can be effected therein by one of ordinary skill in the art without departing from the scope or spirit of the invention as defined by the appended claims.
Claims
1. A cryosurgery device for use with an aerosol container having a valve and a valve stem extending outwardly from the valve and the container, the container holding a refrigerant therein, the cryosurgery device comprising:
- an actuator adapted to seat on a stem of a container in order to depress the valve stem and release refrigerant from the container, the actuator including an outlet tube for receiving the released refrigerant from the container;
- a hub adapted to mount on the container, the hub including at least one opening therein and a first aligning arrangement;
- an applicator tube mounted to the hub in fluid communication with the outlet tube of the actuator;
- a porous tip mounted to a distal end of the applicator tube for receiving the refrigerant; and
- a base having a central opening for receiving the hub and applicator tube therein, the base including at least one key and a second aligning arrangement for cooperating with said first aligning arrangement such that the at least one key can enter the at least one opening in the hub to engage and apply pressure to the actuator to cause the actuator to depress the stem and release the refrigerant.
2. The cryosurgery device according to claim 1, wherein said actuator includes:
- an inlet tube connected with the main body and adapted to receive the valve stem therein; and
- a main body which connects together said inlet tube and said outlet tube in fluid communication with each other, the main body including: an arrangement for limiting insertion of the valve stem into the inlet tube, and an actuating surface against which at least one key engages, such that application of said pressure to the actuating surface causes said actuator to move such that the shoulder engages and depresses the valve stem to release the refrigerant.
3. The cryosurgery device according to claim 2, wherein said main body includes:
- a generally cylindrical side wall,
- a bottom wall which closes the side wall and which includes an opening, with the inlet tube and outlet tube being connected to opposite sides of the bottom wall in surrounding relation to the opening therein, and
- a ledge connected with an upper edge of the side wall, the ledge defining said actuating surface.
4. The cryosurgery device according to claim 3, wherein said main body further includes reinforcing ribs on an outer surface of the side wall and connected with said ledge.
5. The cryosurgery device according to claim 1, wherein the applicator tube includes an enlarged diameter section at a distal end thereof for receiving the porous tip therein.
6. The cryosurgery device according to claim 1, wherein said hub includes a securing arrangement for releasably securing said applicator tube thereto.
7. The cryosurgery device according to claim 6, wherein:
- said applicator tube includes at least one projection extending outwardly from a lower end thereof; and
- said securing arrangement includes a threaded securing arrangement for threadedly receiving the at least one projection of the applicator tube in a releasable securing manner.
8. The cryosurgery device according to claim 7, wherein said threaded securing arrangement includes:
- an annular boss extending from an upper surface of said hub,
- a tube coaxially positioned within said annular boss and connected with said annular boss at a lower end thereof, and
- at least one helical thread on an inner surface of said annular boss for receiving said at least one projection in a threaded releasable securing manner.
9. The cryosurgery device according to claim 8, wherein said tube of said hub is in axial alignment with said applicator tube and said outlet tube of said actuator.
10. The cryosurgery device according to claim 8, wherein said hub includes:
- a cylindrical side wall, and
- a top wall which closes an upper end of said cylindrical side wall, said top wall having an opening therein and said annular boss extends from an underside of said top wall as said upper surface of said hub in surrounding relation to said opening therein.
11. The cryosurgery device according to claim 1, wherein:
- said hub includes: a cylindrical side wall, and a top wall which closes an upper end of said cylindrical side wall, and
- said at least one opening is in said top wall.
12. The cryosurgery device according to claim 11, wherein said hub further includes a securing arrangement at a lower end of said cylindrical side wall adapted to be snap-fit secured over an upper annular lip of the container.
13. The cryosurgery device according to claim 11, wherein said first aligning arrangement includes at least one aligning rib on said cylindrical side wall, and the second aligning arrangement includes at least one recess for receiving the at least one aligning rib to angularly align the hub with the base.
14. The cryosurgery device according to claim 1, wherein the opening in the base is closed by a lower wall at a lower end thereof.
15. The cryosurgery device according to claim 1, wherein the base includes at least one inwardly extending projection, each having an upper surface on which one said key is mounted, and each said upper surface defining a limit as to an extent to which the hub can be inserted into said base.
16. The cryosurgery device according to claim 1, wherein there are an equal number of said projections, keys of said base, and openings of said hub, said number being at least three.
17. The cryosurgery device according to claim 1, wherein said porous tip comprises a nonwoven material.
18. The cryosurgery device according to claim 1, wherein said porous tip comprises a nonwoven material having polyolefin and polyester components.
19. A cryosurgery device comprising:
- an aerosol container for holding a refrigerant, the container including a valve and a valve stem extending out from the valve and the container;
- an actuator seated on the valve stem in order to depress the valve stem and release the refrigerant from the container, the actuator including an outlet tube for receiving released refrigerant from the container;
- a hub mounted on the container, the hub including at least one opening therein and a first aligning arrangement;
- an applicator tube mounted to the hub in fluid communication with the outlet tube of the actuator;
- a porous tip mounted to a distal end of the applicator tube for receiving the refrigerant; and
- a base having a central opening for receiving the hub and applicator tube therein, the base including at least one key and a second aligning arrangement for cooperating with said first aligning arrangement such that the at least one key can enter the at least one opening in the hub to engage and apply pressure to the actuator to cause the actuator to depress the stem and release the refrigerant.
20. The cryosurgery device according to claim 19, wherein said actuator includes:
- an inlet tube connected with the main body and adapted to receive the valve stem therein; and
- a main body which connects together said inlet tube and said outlet tube in fluid communication with each other, the main body including: an arrangement for limiting insertion of the valve stem into the inlet tube; and an actuating surface against which at least one key engages, such that application of said pressure to the actuating surface causes said actuator to move such that the shoulder engages and depresses the valve stem to release the refrigerant.
21. The cryosurgery device according to claim 20, wherein said main body includes:
- a generally cylindrical side wall,
- a bottom wall which closes the side wall and which includes an opening, with the inlet tube and outlet tube being connected to opposite sides of the bottom wall in surrounding relation to the opening therein, and
- a ledge connected with an upper edge of the side wall, the ledge defining said actuating surface.
22. The cryosurgery device according to claim 19, wherein the applicator tube includes an enlarged diameter section at a distal end thereof for receiving the porous tip therein.
23. The cryosurgery device according to claim 19, wherein:
- said applicator tube includes at least one projection extending outwardly from a lower end thereof; and
- said hub includes a threaded securing arrangement for threadedly receiving the at least one projection of the applicator tube in a releasable securing manner.
24. The cryosurgery device according to claim 23, wherein said threaded securing arrangement includes:
- an annular boss extending from an upper surface of said hub,
- a tube coaxially positioned within said annular boss and connected with said annular boss at a lower end thereof, and
- at least one helical thread on an inner surface of said annular boss for receiving said at least one projection in a threaded releasable securing manner.
25. The cryosurgery device according to claim 19, wherein said hub includes:
- a cylindrical side wall,
- a top wall which closes an upper end of said cylindrical side wall, said top wall having an opening therein and said annular boss extends from an underside of said top wall as said upper surface of said hub in surrounding relation to said opening therein.
26. The cryosurgery device according to claim 19, wherein:
- said hub includes: a cylindrical side wall, and a top wall which closes an upper end of said cylindrical side wall, and
- said at least one opening is in said top wall.
27. The cryosurgery device according to claim 26, wherein said container includes an upper annular lip and said hub further includes a securing arrangement at a lower end of said cylindrical side wall adapted to be snap-fit secured over the upper annular lip of the container.
28. The cryosurgery device according to claim 26, wherein said first aligning arrangement includes at least one aligning rib on said cylindrical side wall, and the second aligning arrangement includes at least one recess for receiving the at least one aligning rib to angularly align the hub with the base.
29. The cryosurgery device according to claim 19, wherein the base includes at least one inwardly extending projection having an upper surface on which one said key is mounted, said upper surface defining a limit as to an extent to which the hub can be inserted into said base.
30. The cryosurgery device according to claim 19, wherein there are an equal number of said keys of said base and said openings in said hub, the number being at least three.
31. The cryosurgery device according to claim 19, wherein said porous tip comprises a nonwoven material having polyolefin and polyester components.
32. A method of treating a skin lesion, comprising:
- positioning the device of claim 19 such that said base is below said container and said porous tip extends downwardly into said central opening of said base;
- applying a force to said container, said base, or both, such that said at least one key enters said at least one opening in the hub to apply pressure to said actuator and cause refrigerant to be released into said applicator tube and porous tip;
- discontinuing said force after said porous tip is saturated with liquid refrigerant;
- removing said base; and
- without removing said porous tip from said hub, promptly placing said porous tip in contact with said lesion to cause lesion freezing as refrigerant evaporates.
Type: Application
Filed: Aug 19, 2003
Publication Date: Feb 24, 2005
Applicant:
Inventors: Harold Howlett (Horn Lake, MS), Robert Johnson (Memphis, TN), Charles Lundy (Germantown, TN), Eric Su (Collierville, TN)
Application Number: 10/643,301