SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
In a semiconductor device in which a source/drain and a wiring layer are connected to each other through an associated buried conductive layer, a separation width of the buried conductive layer on a upper portion of a gate electrode is made small to manufacture a highly reliable and fine MOS transistor. After a silicon oxide film has been formed on a first polycrystalline silicon film to be aligned with a width of a gate electrode, a second polycrystalline silicon film formed on the whole surface of a substrate is selectively etched away so as to be left only on both side faces of a pattern of the silicon oxide film. Thereafter, the first polycrystalline silicon film is selectively etched away with both the silicon oxide film and the second polycrystalline silicon film as an etching mask so that the first polycrystalline film is separated with a width which is smaller than that of the gate electrode by a width of a pattern of the second polycrystalline silicon film. As a result, the buried conductive layer including the first and second polycrystalline silicon films is formed.
Latest UNITED MICROELECTRONICS CORPORATION Patents:
This application is a Continuation of application Ser. No. 09/008,497 filed on Jan. 16, 1998. application Ser. No. 09/008,497 claims priority to Japanese Application 07-319482 filed on Nov. 14, 1995. application Ser. No. 09/008,497 is a Division of application Ser. No. 08/747,928 filed on Nov. 12, 1996. The contents of each of these applications are incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a semiconductor device and to a method for manufacturing the same. More particularly, it relates to a semiconductor device having a buried conductive layer which is connected to a source/drain of MOS transistor and extends over a gate electrode of the MOS transistor, and to a method for manufacturing the same.
2. Description of the Related Art
In recent years, as high integration and scale-down (i.e., shrinking) of a semiconductor device have progressed, the alignment margin in the photolithographic process for a contact hole, formed to connect a source/drain of a MOS transistor and a wiring layer to each other, is decreasing. In addition, the aspect ratio of the contact hole is also increasing. Now, the aspect ratio is defined by the ratio of depth to diameter of the contact hole. From the foregoing, a technique has been adopted in which the source/drain of the MOS transistor and the wiring layer are not directly connected to each other, but instead are indirectly connected to each other through a buried conductive layer (an extraction electrode) formed on the source/drain.
Now, the process of manufacturing a MOS transistor employing that buried conductive layer will herein below be described with reference to
Firstly, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
The buried conductive layers 111 are formed in such a way that the alignment margin of the contact hole for the wiring connection which is formed through the insulating film on the associated buried conductive layer 111 can be increased. Also, the substantial aspect ratio of that contact hole can be decreased by the thickness of the associated buried conductive layer 111. As a result, it is possible to improve the reliability of the wiring connection in the contact hole portion. In addition, since the impurity diffusion layers 109, each having a shallower junction, can also be formed, while suppressing occurrence of any crystal defect in the silicon substrate 101, by thermal diffusion from the buried conductive layers 111. Formation of the buried conductive layer 111 is also suitable for scaling down of the semiconductor device.
Now, when forming the above-mentioned buried conductive layer 111, in the process shown in
If, due to the mismatch of alignment in the photolithography process, the central position of the slit of the photo resist film 110 is shifted in the direction of a width of the gate electrode by a distance X as shown in
Then, if the surface of the silicon substrate 101 is exposed, since the etch selectivity of the silicon substrate 101 to the buried conductive layer 111 formed of a polycrystalline silicon film is remarkably small, even the surface of the silicon substrate 101 will be partially etched away. As a result, a trench 120 will be formed in the silicon substrate 101 by the etching. In such a way, the silicon substrate 101 will be damaged. Such damage of the silicon substrate 101 results in the performance of the MOS transistor being remarkably degraded.
To avoid that situation, the width of the slit 110a of the photo resist film 110 needs to be made much smaller than the gate length of the gate electrode 105 so that the hole edge of the photo resist film 110 is not located on the associated sidewall oxide film 107 even if the slight mismatch of alignment occurs. This means that the gate length of the gate electrode 105 needs to be made much larger than the width of the slit 110a of the photo resist film 110. Thus, even if the width of the slit 110a of the photo resist film 110 should be made a minimum processing size provided by the photolithographic technology, the gate length of the gate electrode 105 needs to be made much larger than the minimum processing size. As a result, in the above-mentioned method of forming the buried conductive layer 111, there is a limit in scale-down (i.e., shrinking) of the transistor.
To prevent damage of the silicon substrate 101 due to the exposure of the surface of the silicon substrate 101, there are considered (a) a method including the step of forming a polycrystalline silicon film, which will form a buried conductive layer later, after further forming an insulating film on the side wall oxide films, or (b) a method including the step of forming a thicker side wall oxide film 107. However, in the former method, by the fine pattern technology, a hole needs to be formed through the insulating film formed on the associated side wall oxide film 107 so that contact is made between the buried conductive layer and the source/drain. As a result, the advantage, resulting from the buried conductive layer, of being able to form the buried conductive layer to be self-aligned with the source/drain, is lost. In addition, in the latter method, the width of each side wall oxide film 107 becomes necessarily large. Hence, this results in the fine transistor not being able to be formed. Therefore, the above-mentioned two methods for preventing the damage of the silicon substrate 101 are not suitable for practical use.
In addition, in JP-A-62-86715, there is described a method for manufacturing a semiconductor device wherein a contact hole is formed to be tapered in order to reduce the possibility of disconnection of the wiring layer.
The manufacturing method described in JP-A-62-86715 will herein below be described.
After a contact region, having a predetermined pattern, has been formed on a semiconductor substrate, an insulating layer is formed to cover the contact region. Next, a first photo resist mask is formed which is used to form a first contact hole. Thereafter, the insulating layer is etched to the depth of about one-half of the thickness of the insulating layer by anisotropic etching, thereby forming the first contact hole. Thereafter, the first photo resist mask is removed, and then a polycrystalline silicon layer is formed on the whole surface of the semiconductor substrate. Next, the whole surface of the polycrystalline silicon layer is selectively etched away by gas plasma to leave a part of the polycrystalline silicon layer on both an edge portion of the first contact hole and a stepped portion of the insulating film. Subsequently, a second photo resist mask is formed which is used to form a second contact hole. Then a second contact hole is formed through the insulating film remaining in the first contact hole by etching.
While the above-mentioned manufacturing method is suitable for the scale-down of the semiconductor device, the etching, by which the first contact hole is perforated, needs to be stopped at the time when the thickness of the insulating layer has been halved; hence, the control of the amount of etching is difficult to be carried out.
SUMMARY OF THE INVENTIONIn view of the foregoing problems associated with the prior art, an object of the present invention is, in a semiconductor device having a buried conductive layer connected to a source/drain of a MOS transistor and extending over a gate electrode of the MOS transistor, to enable manufacture of a finer transistor as compared with the prior art transistor while preventing damage to a semiconductor substrate without excessively complicating the manufacturing process.
To attain the above-mentioned object, according to the present invention, a method for manufacturing a semiconductor device includes the steps of: (a) forming a first insulating film on a semiconductor substrate; (b) forming a first conductive film as a gate electrode and a second insulating film on the first insulating film; (c) forming a third insulating film on the whole surface of the semiconductor substrate having the first insulating film, the first conductive film and the second insulating film formed thereon; (d) selectively etching away the third insulating film to form a side wall insulating film including the third insulating film on each of both side faces of the first conductive film and the second insulating film and also to expose the semiconductor substrate in portions which are not covered with both the side wall insulating film and the first conductive film; (e) diffusing impurities into the exposed portions of the semiconductor substrate to form a source and a drain in the semiconductor substrate; (f) forming a second conductive film to be a part of a buried conductive layer on the whole surface of the semiconductor substrate having the first insulating film, the first conductive film, the second insulating film and the side wall insulating film formed thereon; (g) forming a first mask layer on the second conductive film; (h) processing the first layer so as for the first mask layer to have a pattern which is separated into both side portions with the first conductive film; (i) forming a second mask layer on the whole surface of the semiconductor substrate having the first insulating film, the first conductive film, the second insulating film, the side wall insulating film, the second conductive film and the first mask layer formed thereon; (j) selectively etching away the second mask layer to leave a pattern of the second mask layer on each of both side faces of the pattern of the first mask layer; and (k) selectively etching away the second conductive film with the patterns of the first and second mask layers as a mask so as to process the second conductive film into a pattern in which the second conductive film is separated on the second insulating film.
In addition, according to the present invention, there is provided a semiconductor device including: (a) a semiconductor substrate having a source and a drain of a MOS transistor formed therein; (b) a first insulating film formed on a predetermined region of the semiconductor substrate; (c) a first conductive film as a gate electrode and a second insulating film formed on a predetermined region of the first insulating film; (d) a third insulating film, as a side wall insulating film, formed on each of both side faces of the first conductive film and the second insulating film; (e) a second conductive film connected to one of the source and the drain of the MOS transistor and extending up to an upper portion of the gate electrode of the MOS transistor, the second conductive film having a pattern in which the second conductive film is separated into both side portions with the second insulating film; (f) a first mask layer formed on a first region of the second conductive film; and (g) a second mask layer formed on a second region of the second conductive film along each of side faces of the first mask layer.
After the second conductive film has been selectively etched away to be processed into a predetermined pattern, the first mask layer may be removed so that the resultant second conductive film is used as a lower electrode of a capacitor.
According to the present invention, since the first mask layer is formed on a region of a part of the second conductive film, and the second conductive film is selectively etched away with both the pattern of the first mask layer and the pattern of the second mask layer formed on each of both side faces thereof as an etching mask, the interval of the patterns of the second conductive films which are adjacent to each other on the second insulating film can be made smaller than that of the patterns of the first mask layers by a width of the pattern of the second mask layer as compared with the interval. As a result, even if the position of the edge portion of the pattern of the first mask layer is slightly shifted, it is possible to reduce the probability that the edge portion of the pattern of the second conductive film is located on the associated side wall insulating film. Hence, it is possible to promote scale down (i.e., shrinking) of the semiconductor device.
In addition, when the interval of the patterns of the first mask layers is made a minimum processing size in the photolithographic technology, the interval of the patterns of the second mask layers can be made smaller than the minimum processing size. Therefore, the width of the first conductive film, i.e., the gate electrode, can be made smaller than that of the prior art; e.g., it can be reduced to the minimum processing size.
Incidentally, in the present invention, each of the first and second mask layers may be formed of either a conductive film or an insulating film. In the case where one or both of the first and second mask layers is a conductive film, the mask layer of interest forms, together with the second conductive film, the buried conductive layer.
BRIEF DESCRIPTION OF THE DRAWINGSThe above and other objects as well as advantages of the present invention will become clear by the following description of the preferred embodiments of the present invention with reference to the accompanying drawings, wherein:
The preferred embodiments of the present invention will hereinafter be described in detail with reference to the accompanying drawings.
Referring first to
Firstly, as shown in
Then, after a polycrystalline silicon film about 100 nm thick containing phosphorus or arsenic of 2×1020 to 6×1020 atoms/cm3 is formed by the CVD method, a silicon oxide film 4 about 200 nm thick is formed on that polycrystalline silicon film by the CVD method. Thereafter, a photo resist film (not shown) is applied to the silicon oxide film 4 and then is processed to have a gate electrode pattern by utilizing the photolithographic technology. Then, the silicon oxide film 4 is selectively etched away with that photo resist film as an etching mask by anisotropic etching, whereby the silicon oxide film 4 is processed to have a gate electrode shape. Subsequently, after the photo resist film has been removed by ashing, that polycrystalline silicon film is selectively etched away with the silicon oxide film 4 as an etching mask by anisotropic etching, thereby forming a gate electrode 5 formed of that polycrystalline silicon film. In addition, phosphorus ions are implanted into the unmasked region of the P type semiconductor silicon substrate 1 with the gate electrode 5 as a mask at acceleration energy of 30 to 150 keV with a dose of 5×1012 to 5×1013 ions/cm2, whereby a pair of lightly doped impurity diffusion layers 6 are formed in the surface portions of the silicon substrate 1 on both sides of the gate electrode 5.
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Subsequently, the polycrystalline silicon film 8 is selectively etched away with both the silicon oxide film 12 and the polycrystalline silicon film 13 as an etching mask, whereby the polycrystalline silicon film 8 is removed except for its part underlying both the silicon oxide film 12 and the polycrystalline silicon film 13 so that the polycrystalline silicon film 8 is processed to have a pattern which is separated on the silicon oxide film 4. At this time, a separation width of the polycrystalline silicon film 8 is smaller than the width of the slit 10a by the width of the polycrystalline silicon film 13 remaining on both side faces of the silicon oxide film 12. As a result, the buried conductive layer 11 including the remaining polycrystalline silicon films 8 and 13 is formed.
Next, as shown in
Next, as shown in
As described above, according to the present embodiment, the separation width of the polycrystalline silicon film 8 on the silicon oxide film 4 can be made smaller than the width of the slit 10a by the width of the pattern of the polycrystalline silicon film 13 remaining on both sides of the silicon oxide film 12 since the polycrystalline silicon film 8 is selectively etched away with both the silicon oxide film 12 and the polycrystalline silicon film 13 as the etching mask.
Although the first mask layer is formed of the silicon oxide film 12 and also the second mask layer is formed of the polycrystalline silicon film 13 in the present embodiment, the present invention is not limited thereto. Thus, it is to be understood that each of the first and second mask layers may be formed of either an insulating film or a conductive film.
In the case where the first mask layer is formed of a conductive layer, a value of a resistance developed between the source/drain of the MOS transistor and the aluminum wiring layer 17 can be reduced since the area of the conductor contacting with the aluminum wiring 17 is increased. In addition, while the contact hole 16 is perforated to reach the polycrystalline silicon film 8 in the present embodiment, the present invention is not limited thereto. That is, in the case where the first mask layer is formed of conductive film, the contact hole 16 may be perforated to reach at least the first mask layer.
Since the second mask layer is employed as the etching mask for the polycrystalline silicon film 8 containing the impurities, it preferably has a smaller etching rate than that of the polycrystalline silicon film 8. For example, the second mask layer is preferably formed of a polycrystalline silicon film containing no impurity since the etching rate is increased along with an increase in the content of impurities. In this case as well, the second mask layer will have its electric conductivity due to auto doping of the impurities from the polycrystalline silicon film 8 containing the impurities. Alternatively, the second mask layer may be formed of an insulating film which has a smaller etching rate than that of the polycrystalline silicon film 8. The structure in this case will be described in detail later.
In addition, while the LOCOS method is employed as the isolation method in the present embodiment, the present invention is not limited thereto. That is, other well known isolation methods such as the field shielding isolation method may also be employed.
Next, a description will herein below be given with respect to a semiconductor device according to a modification of the first embodiment of the present invention with reference to
To manufacture a DRAM memory cell as shown in
Referring to
To manufacture a DRAM memory cell as shown in
Next, a description will be given with respect to a semiconductor device according to a second embodiment of the present invention and a method for manufacturing the same with reference to
In the manufacturing process of the present embodiment, by carrying out the same process as that shown in
Next, as shown in
Next, as shown in
Subsequently, the polycrystalline silicon film 8 is selectively etched away with both the silicon oxide films 12 and 51 as an etching mask, whereby the polycrystalline silicon film 8 is selectively removed except its part underlying both the silicon oxide films 12 and 51 so that the polycrystalline silicon film 8 is processed to have a pattern in which it is separated on the silicon oxide film 4. At this time, the separation width of the polycrystalline silicon film 8 is smaller than the width of the slit 10a, which was formed to have the same width as the gate length, by the width of the remaining silicon oxide film 51. As a result, the buried conductive layer 11 formed of the remaining polycrystalline silicon film 8 is formed.
Next, as shown in
Next, as shown in
In the present embodiment as well, similarly to the above-mentioned first embodiment, it is effectively avoided that the surface of the semiconductor substrate is partially etched away while etching the polycrystalline silicon film 8, and the semiconductor substrate is damaged, e.g., a trench is formed in the semiconductor substrate. As a result, the reliability of the MOS transistor can be remarkably improved. In addition, since the separation width of the polycrystalline silicon film 8 can be made smaller than the minimum processing size provided by the photolithographic technology, the gate length of the gate electrode 5 can have a minimum processing size and hence a finer MOS transistor can be manufactured.
In addition, since in the present embodiment, the first and second mask layers are respectively formed of silicon oxide films 12 and 51, each having an etching rate smaller than that of the polycrystalline silicon film 8, the separation width of the polycrystalline silicon film 8 can be made smaller as compared with the case where the second mask layer is formed of a film having a large etching rate.
Incidentally, the present embodiment may also be applied to the method for manufacturing a DRAM in the above-mentioned modifications as shown in
Further, while the LOCOS method is employed as the isolation method in the present embodiment, the present invention is not limited thereto. That is, there may be employed other well known isolation methods such as the field shielding isolation method.
As set forth hereinabove, according to the present invention, it is possible to reduce the likelihood that the edge portion of the pattern of the second conductive film is located on the associated side wall insulating film since the separation width of the second conductive film constituting the buried conductive layer can be made smaller than the interval of the patterns of the first mask layers by the width of the pattern of the second mask layer. As a result, it is possible to solve the problem that while etching the second conductive film, even the semiconductor substrate is partially etched away and damaged. As a result, it is possible to remarkably improve the reliability of the MOS transistor without harming the advantage, resulting from the buried conductive layer, that the buried conductive layer can be formed to be self-aligned with the source/drain.
In addition, according to the present invention, the width (the gate length) of the first conductive film (the gate electrode) can be reduced to the minimum processing size since the separation width of the second conductive film can be smaller than the minimum processing size. Therefore, it is possible to manufacture a MOS transistor finer than that by the prior art.
While the present invention has been particularly shown and described with reference to the preferred embodiments of the specified modifications thereof, it will be understood that the various changes and other modifications will occur to those skilled in the art without departing from the scope and true spirit of the invention. The scope of the invention is therefore to be determined by the appended claims.
Claims
1. A method for manufacturing a semiconductor device having a buried conductive layer which is connected to one of a source and a drain of a MOS transistor and extends over a gate electrode of said MOS transistor, said method comprising the steps of:
- forming a first insulating film on a semiconductor substrate;
- forming a first conductive film as said gate electrode and a second insulating film on said first insulating film;
- forming a third insulating film on the whole surface of said semiconductor substrate having said first insulating film, said first conductive film and said second insulating film formed thereon;
- selectively etching away said third insulating film to form a side wall insulating film including said third insulating film on each of both side faces of said first conductive film and said second insulating film and also to expose said semiconductor substrate in portions which are not covered with said side wall insulating film and not covered with said first conductive film;
- diffusing impurities into said exposed portions of said semiconductor substrate to form a source and a drain in said semiconductor substrate;
- forming a second conductive film to be a part of said buried conductive layer on the whole surface of said semiconductor substrate having said first insulating film, said first conductive film, said second insulating film and said side wall insulating film formed thereon;
- forming a first mask layer on said second conductive film;
- processing said first mask layer to have a pattern which is separated into both side portions as to said first conductive film;
- forming a second mask layer on the whole surface of said semiconductor substrate having said first insulating film, said first conductive film, said second insulating film, said side wall insulating film, said second conductive film and said first mask layer formed thereon;
- selectively etching away said second mask layer to leave a pattern of said second mask layer on each of both side faces of the pattern of said first mask layer; and
- selectively etching away said second conductive film with the patterns of said first and second mask layers as a mask so as to process said second conductive film into a pattern in which said second conductive film is separated on said second insulating film.
2. A method for manufacturing a semiconductor device according to claim 1, wherein said first mask layer is formed of an insulating film, and said second mask layer is formed of a conductive film.
3. A method for manufacturing a semiconductor device according to claim 1, wherein each of said first and second mask layers is formed of an insulating film.
4. A method for manufacturing a semiconductor device according to claim 1, wherein said first mask layer Is formed of a conductive film, and said second mask layer is formed of an insulating film.
5. A method for manufacturing a semiconductor device according to claim 1, wherein each of said first and second mask layers is formed of a conductive film.
6. A method for manufacturing a semiconductor device according to claim 1, further comprising the steps of:
- forming, after said step of selectively etching away said second conductive film, an interlayer insulating film on the whole surface of said semiconductor substrate having said first insulating film, said first conductive film, said second insulating film, said side wall insulating film, said second conductive film, and said first and second mask layers formed thereon;
- forming a contact hole through both said interlayer insulating film and said first mask layer so that said contact hole reaches said second conductive film; and forming a wiring layer which is connected to said second conductive film at the bottom of said contact hole.
7. A method for manufacturing a semiconductor device according to claim 1, further comprising the steps of:
- forming, after said step of selectively etching away said second conductive film, a fourth insulating film on the whole surface of said semi-conductor substrate having said first insulating film, said first conductive film, said second insulating film, said side wall insulating film, said second conductive film, and said first and second mask layers formed thereon;
- forming a contact hole through both said fourth insulating film and said first mask layer so that said contact hole reaches said second conductive film;
- forming a third conductive film in the inside of said contact hole so that said third conductive film reaches said second conductive film;
- processing said third conductive film into an electrode pattern;
- coating a surface of said third conductive film, which has been processed into the electrode pattern, with a dielectric film;
- forming a fourth conductive film on said dielectric film; and
- processing said fourth conductive film into an electrode pattern.
8. A method for manufacturing a semiconductor device according to claim 1, further comprising the steps of:
- removing said first mask layer after said step of selectively etching away said second conductive film;
- coating at least a surface of said second conductive film with a dielectric film;
- forming a third conductive film on said dielectric film; and
- processing said third conductive film into an electrode pattern.
9. A method for manufacturing a semiconductor device according to claim 8 further comprising the step of coating a surface of said second mask layer with a dielectric film.
10. A semiconductor device comprising:
- a semiconductor substrate having a source and a drain of a MOS transistor formed therein;
- a first insulating film formed on a predetermined region of said semiconductor substrate;
- a first conductive film as a gate electrode and a second insulating film formed on a predetermined region of said first insulating film;
- a third insulating film, as a side wall insulating film, formed on each of both side faces of said first conductive film and said second insulating film;
- a second conductive film connected to one of said source and said drain of said MOS transistor and extending over said gate electrode of said MOS transistor, said second conductive film having a pattern in which said second conductive film is separated into both side portions as to said second insulating film;
- a first mask layer formed on a first region of said second conductive film; and
- a second mask layer formed on a second region of said second conductive film along each of side faces of said first mask layer.
11. A semiconductor device according to claim 10, wherein said first mask layer is formed of an insulating film, and said second mask layer is formed of a conductive film.
12. A semiconductor device according to claim 10, wherein each of said first and second mask layers is formed of an insulating film.
13. A semiconductor device according to claim 10, wherein said first mask layer is formed of a conductive film, and said second mask layer is formed of an insulating film.
14. A semiconductor device according to claim 10, wherein each of said first and second mask layers is formed of a conductive film.
15. A semiconductor device according to claim 10, further comprising:
- an interlayer insulating film formed on said second insulating film, and said first and second mask layers, a contact hole being formed through both said interlayer insulating film and said first mask layer so as to reach said second conductive film; and
- a wiring layer formed on said interlayer insulating film so as to fill in said contact hole, said wiring layer being connected to said second conductive film at the bottom of said contact hole.
16. A semiconductor device according to claim 10, further comprising:
- a fourth insulating film formed on said second insulating film, and said first and second mask layers, a contact hole being formed through both said fourth insulating film and said first mask layer so as to reach said second conductive film;
- a first electrode formed on said fourth insulating film so as to fill in said contact hole, said first electrode being connected to said second conductive film at the bottom of said contact hole;
- a dielectric film with which a surface of said first electrode is coated; and
- a second electrode formed on said dielectric film.
17. A semiconductor device comprising:
- a semiconductor substrate having a source and a drain of a MOS transistor formed therein;
- a first insulating film formed on a predetermined region of said semiconductor substrate;
- a first conductive film as a gate electrode and a second insulating film formed on a predetermined region of said first insulating film;
- a side wall insulating film formed on each of both side faces of said first conductive film and said second insulating film;
- a second conductive film connected to one of said source and said drain of said MOS transistor and extending over said gate electrode of said MOS transistor, said second conductive film having a pattern in which said second conductive film is separated into both side portions as to said second insulating film; and
- a mask layer formed on an edge region of said second conductive film.
18. A semiconductor device according to claim 17, wherein said mask layer is formed of a conductive film.
19. A semiconductor device according to claim 17, wherein said mask layer is formed of an insulating film.
20. A semiconductor device according to claim 17, further comprising:
- a dielectric film with which at least a surface of said second conductive film is coated; and
- an electrode formed on said dielectric film.
Type: Application
Filed: Nov 12, 2004
Publication Date: Apr 7, 2005
Applicant: UNITED MICROELECTRONICS CORPORATION (Hsin-Chu City)
Inventor: Hiroyuki Inoue (Tokyo)
Application Number: 10/904,496