Patents Assigned to United Microelectronics Corporation
  • Patent number: 11923205
    Abstract: A method for manufacturing a semiconductor device includes: providing a wafer-bonding stack structure having a sidewall layer and an exposed first component layer; forming a photoresist layer on the first component layer; performing an edge trimming process to at least remove the sidewall layer; and removing the photoresist layer. In this way, contaminant particles generated from the blade during the edge trimming process may fall on the photoresist layer but not fall on the first component layer, so as to protect the first component layer from being contaminated.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: March 5, 2024
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Kun-Ju Li, Ang Chan, Hsin-Jung Liu, Wei-Xin Gao, Jhih-Yuan Chen, Chun-Han Chen, Zong-Sian Wu, Chau-Chung Hou, I-Ming Lai, Fu-Shou Tsai
  • Patent number: 11869854
    Abstract: A semiconductor structure in which the upper and lower semiconductor wafers are bonded by a hybrid bonding method is provided. The two semiconductor wafers each have discontinuous multiple metal traces or spiral coil-shaped metal traces. By hybrid bonding the two semiconductor wafers, multiple discontinuous metal traces are bonded together to form an inductance element with a continuous and non-intersecting path, or the two spiral coil-shaped metal traces are bonded together to form an inductance element. In this semiconductor structure, the inductance element formed by hybrid bonding has the advantage that the inductance value is easily adjusted.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: January 9, 2024
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chien-Ming Lai, Hui-Ling Chen, Zhi-Rui Sheng
  • Patent number: 11676992
    Abstract: An inductor module and a method for fabricating the same are disclosed. The inductor module includes a substrate, a first inter-level dielectric layer, a plurality of second inter-level dielectric layers, a trench, and a first metal layer. The first inter-level dielectric layer is disposed on the substrate. The second inter-level dielectric layers are sequentially stacked on the first inter-level dielectric layer. The trench is disposed to penetrate at least two of the second inter-level dielectric layers. The first metal layer is disposed in the trench. The first metal layer has a top side surface and a bottom side surface opposite to each other. The top side surface is coplanar with an upper surface of the trench in the second inter-level dielectric layers. The bottom side surface is coplanar with a bottom surface of the trench in the second inter-level dielectric layers.
    Type: Grant
    Filed: November 26, 2020
    Date of Patent: June 13, 2023
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Purakh Raj Verma, Su Xing, Shyam Parthasarathy, Xiao Yuan Zhi
  • Patent number: 11476212
    Abstract: Semiconductor apparatus and method for manufacturing semiconductor apparatus are provided. Semiconductor apparatus includes a semiconductor substrate having metal pads, a first passivation layer, a second passivation layer, an under bump metal layer, a stress buffer layer, a copper pillar and a solder structure. First passivation layer is formed on the semiconductor substrate and covers a portion of each metal pad, the first passivation layer has first passivation layer openings to expose a first portion of each metal pad. Second passivation layer is formed on the first passivation layer, the second passivation layer has second passivation layer openings to expose a second portion of each metal pad. Under bump metal layer is formed on the second portion of each metal pad exposed by the second passivation layer opening. Stress buffer layer is formed on the under bump metal layer, and the copper pillar is disposed on the stress buffer layer.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: October 18, 2022
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventor: Yu-Jie Lin
  • Patent number: 11387241
    Abstract: A method for fabricating flash memory is provided. A plurality of floating gate structures is formed on a gate dielectric layer in the memory device region of a substrate. The protective spacers are formed on two opposite sidewalls of each floating gate structure. A polysilicon gate structures are formed on the logic device region and a polysilicon control gate structure with an opening are formed on the memory device region to cover two adjacent floating gate structures, wherein the two protective spacers facing each other between two adjacent floating gate structures are exposed by the opening, and then the exposed protective spacer are removed. An ion implantation is performed on the substrate to form a source region between the two adjacent floating gate structures on each cell area. There will be no polysilicon material residue in the memory device region or pitting/undercutting phenomenon in the logic device region.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: July 12, 2022
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventor: Ming-Shing Chen
  • Patent number: 11377347
    Abstract: A method for manufacturing semiconductor structure includes: providing a substrate having a first surface; forming a trench on the first surface, wherein a bottom surface and side walls of the substrate are configured along an outer periphery of the trench; annealing the substrate with high-purity argon or high-purity hydrogen to flatten the bottom surface and the side walls; conformally disposing a composite-material layer to cover the first surface, the bottom surface and the side walls; disposing a polysilicon material layer in the trench; removing the composite-material layer on the first surface; forming a multi-layer metal interconnection structure on the first surface and the polysilicon material layer, the multi-layer metal interconnection structure including a MEMS frame structure and through holes; removing the polysilicon material layer and the composite-material layer; using plasma treatment to the trench to flatten the bottom surface and the side walls. The plasma contains inert gas and hydrogen.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: July 5, 2022
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Xiang Li, Ding Lung Chen
  • Patent number: 11372324
    Abstract: A method for correcting a mask pattern includes: providing an original mask pattern including at least one dense pattern area and at least one isolated pattern area, and the original mask pattern being divided into a first pattern and a second pattern, wherein the first pattern is formed in the isolated pattern area and extends to the dense pattern area, and the second pattern is formed in the dense pattern area; forming at least one slot on at least one section of the first pattern, and the at least one section of the first pattern is located on at least one transition area between the at least one isolated pattern area and the at least one dense pattern area; and performing an optical proximity correction operation on the first pattern formed with at least one slot and the second pattern. Using the corrected mask pattern may avoid the occurrence of necking or breaking on portion of the post-transfer pattern.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: June 28, 2022
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chia-Chen Sun, Yu-Cheng Tung, Sheng-Yuan Hsueh, Fan Wei Lin
  • Patent number: 11355431
    Abstract: A semiconductor structure includes a first layer, a second layer, a first interconnection layer, and a second interconnection layer. The first layer includes an upper electrode pattern, and the second layer includes a lower electrode pattern, wherein the upper electrode pattern is opposite to the lower electrode pattern. The first interconnection layer includes a plurality of first interconnect structures electrically connected on the upper electrode pattern. The second interconnection layer includes a plurality of second interconnect structures electrically connected on the lower electrode pattern. The first interconnect structures on the upper electrode pattern are hybrid bonded with the second interconnect structures on the lower electrode pattern. Therefore, the upper electrode patterns and the lower electrode patterns are joined by hybrid bonding to form a capacitor element.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: June 7, 2022
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chien-Ming Lai, Zhi-Rui Sheng, Hui-Ling Chen
  • Publication number: 20210036152
    Abstract: A new method for fabricating a semiconductor device with high selection phosphoric acid solution and eliminating the step of oxide removal and thus reducing oxide loss to improve yield gain and cost saving.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 4, 2021
    Applicant: United Microelectronics Corporation
    Inventor: Tsung-Hsun Tsai
  • Patent number: 10903179
    Abstract: Semiconductor apparatus and method for manufacturing semiconductor apparatus are provided. Semiconductor apparatus includes a semiconductor substrate having metal pads, a first passivation layer, a second passivation layer, an under bump metal layer, a stress buffer layer, a copper pillar and a solder structure. First passivation layer is formed on the semiconductor substrate and covers a portion of each metal pad, the first passivation layer has first passivation layer openings to expose a first portion of each metal pad. Second passivation layer is formed on the first passivation layer, the second passivation layer has second passivation layer openings to expose a second portion of each metal pad. Under bump metal layer is formed on the second portion of each metal pad exposed by the second passivation layer opening. Stress buffer layer is formed on the under bump metal layer, and the copper pillar is disposed on the stress buffer layer.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: January 26, 2021
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventor: Yu-Jie Lin
  • Patent number: 10699913
    Abstract: Exemplary metal line structure and manufacturing method for a trench are provided. In particular, the metal line structure includes a substrate, a target layer, a trench and a conductor line. The target layer is formed on the substrate. The trench is formed in the target layer and has a micro-trench formed at the bottom thereof. A depth of the micro-trench is not more than 50 angstroms. The conductor line is inlaid into the trench.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: June 30, 2020
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Shin-Chi Chen, Jiunn-Hsiung Liao, Yu-Tsung Lai
  • Patent number: 10475640
    Abstract: Provided herein is a method for manufacturing a semiconductor device. A substrate including a MEMS region and a connection region thereon is provided; a dielectric layer disposed on the substrate in the connection region is provided; a poly-silicon layer disposed on the dielectric layer is provided, wherein the poly-silicon layer serves as an etch-stop layer; a connection pad disposed on the poly-silicon layer is provided; and a passivation layer covering the dielectric layer is provided, wherein the passivation layer includes an opening that exposes the connection pad and a transition region between the connection pad and the passivation layer, and a conductive layer conformally covering the connection pad and the poly-silicon layer in the transition region is provided.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: November 12, 2019
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Yan-Da Chen, Weng Yi Chen, Chang-Sheng Hsu, Kuan-Yu Wang, Yuan Sheng Lin
  • Patent number: 10408780
    Abstract: The present invention provides a structure of a gas sensor, comprising: a support, having a front side, a back side opposite to the front side, a cell region, and a peripheral region circling the cell region; a cavity, formed on the back side of the support in the cell region; a heater, disposed on the front side of the support covering the cavity; a sensing element, disposed on the heater; and a sealing layer, formed on the back side of the support covering inside the cavity.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: September 10, 2019
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chia-Wei Lee, Chang-Sheng Hsu, Chih-Fan Hu, Chin-Jen Cheng, Chang Hsin Wu
  • Patent number: 10199232
    Abstract: Exemplary metal line structure and manufacturing method for a trench are provided. In particular, the metal line structure includes a substrate, a target layer, a trench and a conductor line. The target layer is formed on the substrate. The trench is formed in the target layer and has a micro-trench formed at the bottom thereof. A depth of the micro-trench is not more than 50 angstroms. The conductor line is inlaid into the trench.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: February 5, 2019
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Shin-Chi Chen, Jiunn-Hsiung Liao, Yu-Tsung Lai
  • Patent number: 10128366
    Abstract: A semiconductor device includes a semiconductor substrate, a gate structure formed over the semiconductor substrate, and an epitaxial structure formed partially within the semiconductor substrate. The gate structure includes a gate dielectric layer formed over the semiconductor substrate, a gate electrode formed over the gate dielectric layer, and a spacer formed on side surfaces of the gate dielectric layer and the gate electrode. A laterally extending portion of the epitaxial structure extends laterally at an area below a top surface of the semiconductor substrate in a direction toward an area below the gate structure. A lateral end of the laterally extending portion is below the spacer.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: November 13, 2018
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Yu-Ying Lin, Kuan Hsuan Ku, I-Cheng Hu, Chueh-Yang Liu, Shui-Yen Lu, Yu Shu Lin, Chun Yao Yang, Yu-Ren Wang, Neng-Hui Yang
  • Patent number: 10121869
    Abstract: A method of manufacturing a semiconductor memory device and a semiconductor memory cell thereof are provided. The semiconductor memory device formed from the manufacturing method includes a plurality of semiconductor memory cells and an electric isolating structure. Each semiconductor memory cell includes a substrate, a first gate, a second gate, a first gate dielectric layer, a second gate dielectric layer, and a first spacing film. The first gate and the second gate are formed on the substrate. The first gate dielectric layer is between the first gate and the substrate, whereas the second gate dielectric layer is between the second gate and the substrate. The first spacing film having a side and a top edge is between the first gate and the second gate. The second gate covers the side and the top edge.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: November 6, 2018
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Weichang Liu, Zhen Chen, Shen-De Wang, Wang Xiang, Wei Ta
  • Patent number: 10115582
    Abstract: Provided herein is a semiconductor device is provided. The semiconductor device includes a substrate including a MEMS region and a connection region thereon; a dielectric layer disposed on the substrate in the connection region; a poly-silicon layer disposed on the dielectric layer, wherein the poly-silicon layer serves as an etch-stop layer; a connection pad disposed on the poly-silicon layer; and a passivation layer covering the dielectric layer, wherein the passivation layer includes an opening that exposes the connection pad and a transition region between the connection pad and the passivation layer.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: October 30, 2018
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Yan-Da Chen, Weng Yi Chen, Chang-Sheng Hsu, Kuan-Yu Wang, Yuan Sheng Lin
  • Patent number: 10103248
    Abstract: A high-voltage FinFET device having LDMOS structure and a method for manufacturing the same are provided. The method includes: providing a substrate with a fin structure to define a first and a second type well regions; forming a trench in the first-type well region to separate the fin structure into a first part and a second part; forming a STI structure in the trench; forming a first and a second polycrystalline silicon gate stack structures at the fin structure; forming discontinuous openings on the exposed fin structure and growing an epitaxial material layer in the openings; doping the epitaxial material layer to form a drain and a source doped layers in the first and second parts respectively; and performing a RMG process to replace the first and second polycrystalline silicon gate stack structures with a first and second metal gate stack structures respectively.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: October 16, 2018
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Tai-Ju Chen, Yi-Han Ye, Te-Chih Chen
  • Patent number: 9978854
    Abstract: An etching method adapted to forming grooves in Si-substrate and FinFET transistor manufactured thereof are provided. The etching method includes providing a silicon substrate, at least two gate structures formed on the silicon substrate and at least two gate spacer structures disposed on the silicon substrate; performing a first etching process on the silicon substrate to form a first groove, which has a base and two inclined sidewalls, ascending to respective bottoms of the gate structures, and are interconnected with the base, respectively; and performing a second etching process on the silicon substrate at the base of the first groove, so as to form a second groove in a trench shape, wherein the two inclined sidewalls of the first groove are interconnected with the second groove respectively, and the first etching process is substantially different from the second etching process.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: May 22, 2018
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Jhen-Cyuan Li, Shui-Yen Lu, Man-Ling Lu, Yu-Cheng Tung, Chung-Fu Chang
  • Patent number: 9916978
    Abstract: The invention provides a method for fabricating a fin field effect transistor (FinFET), comprising: providing a substrate having a logic region and a large region; forming a plurality of fin structures in the logic region by removing a portion of the substrate in the logic region; forming an oxide layer on the substrate filling in-between the fin structures in the logic region; forming an first epitaxial structure in the large region by removing a portion of the substrate in the large region; exposing a portion of the fin structures and a portion of the epitaxial structure by removing a portion of the oxide layer; and forming a gate electrode on portions of the fin structures.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: March 13, 2018
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Chih-Kai Hsu, Yu-Hsiang Hung, Wei-Chi Cheng, Ssu-I Fu, Jyh-Shyang Jenq, Chao-Hung Lin