Micro-cycle energy transfer systems and methods
A carrier supports property-transferring material and includes a first portion exposed to a first property and a second portion exposed to a second property. The first property is different from the second property causing the property-transferring material to develop micro-cyclic property transfer between the first and second properties. The first and second properties each include at least one of heat and mass.
This application claims the benefit of People's Republic of China Patent Application 200310122814.4, filed 21 Dec. 2003, People's Republic of China Patent Application 200320122847.4, filed 21 Dec. 2003, People's Republic of China Patent Application 200310122820.x, filed 21 Dec. 2003, and People's Republic of China Patent Application No. 200410015955.0, filed 15 Jan. 2004.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to systems and methods for transferring properties, such as heat and mass, between substances, such as fluids and/or solids.
2. Background of the Invention
Changing the energy content of a substance is often required in scientific experimentation and analyses and in air handling and management applications in which heating and cooling is provided. Changing the energy of a substance can involve changing the heat content of the substance, the mass or moisture content of the substance, or both. Such is the case with substances such as gases, liquids, and various types of solid material. In order to produce a desired change in the energy content of a given substance, the substance must be treated with a mechanical heat transfer device, such as a heating unit or a cooling unit, or a mechanical mass transfer device, such as a humidifier or a dehumidifier or selective membranes that operate with a sizable pressure differential. However, using such devices is expensive and requires large amounts of electrical power, which is not entirely acceptable and desired, especially in situations where such devices are not available or during periods of mechanical failure. Furthermore, heat transfer devices and mass transfer devices are bulky and not entirely practical in situations in which space is at a premium.
SUMMARY OF THE INVENTIONDisclosed herein are exemplary embodiments of systems and methods for transferring energy between different substances which are low in cost, efficient, easily controlled, easy to implement, and useful in scientific applications, and heating and cooling applications, such as air conditioning systems, liquid conditioning systems, gas/liquid conditioning systems, in systems in which energy transfer between one or more solids and one or more liquids is desired.
According to the invention, a system includes a carrier supporting property-transferring material and including a first portion exposed to a first property and a second portion exposed to a second property. The first property is different from the second property causing the property-transferring material to develop micro-cyclic property transfer between the first and second properties. The first and second properties each include at least one of heat and mass. In one embodiment, the material is hydrophilic material. In another embodiment, the material is hydrophobic material. A property-changing device is associated with at least one of the carrier and the property-transferring material in particular embodiment of the invention. In yet a further embodiment, a property-changing device is associated with at least one of the first property and the second property. The first and second portions of the carrier can include first and second surfaces of the carrier, first and second extremities of the carrier, or a combination of one or more surfaces and one or more extremities of the carrier. The first property is carried by at least one fluid, or at least one solid, and the second property is carried by at least one fluid, or at least one solid.
According to the invention, a method includes providing a carrier supporting property-transferring material, exposing the property-transferring material to a first property at a first portion of the carrier, exposing the property-transferring material to a second property at a second portion of the carrier, the first property being different from the second property, and the property-transferring material developing micro-cyclic property transfer between the first and second properties in response to exposing the property-transferring material to the first property at the first portion of the carrier and to the second property at the second portion of the carrier. In one embodiment, the material is hydrophilic material. In another embodiment, the material is hydrophobic material. The method further includes associating a property-changing device with at least one of the carrier and the property-transferring material, and in a further embodiment associating a property-changing device with at least one of the first property and the second property. The first property is carried by at least one fluid, or at least one solid, and the second property is carried by at least one fluid, or at least one solid.
Consistent with the foregoing summary of preferred embodiments, and the ensuing detailed description, which are to be taken together, the invention also contemplates associated system/apparatus and method embodiments.
BRIEF DESCRIPTION OF THE DRAWINGSReferring to the drawings:
Disclosed herein are property-transferring systems and methods for transferring heat and/or mass between one or more substances, such as fluids and/or solids. The present invention employs property-transferring material supported by a carrier having opposing portions, such as opposing surfaces and/or opposing extremities. A first portion of the carrier is exposed to a first property and a second portion exposed to a second property. The first property is different from the second property, which, according to the principles of the invention, causes the property-transferring material to develop micro-cyclic property transfer between the first and second properties. The first and second properties each include at least one of heat and mass, at is it to be understood that the term “property” in this disclosure is intended to mean heat and/or mass (i.e., moisture). The first and second portions of the carrier can be opposing surfaces of the carrier, opposing extremities of the carrier, or one or more opposing surfaces and one or more opposing extremities. The first and second properties are each delivered or otherwise carried by a substance, such as one or more fluids and/or one or more solids. A fluid employed with the invention can be one or more liquids and/or one or more gases.
In a particular mode of the invention, the carrier is infused/permeated with material that is capable of transferring heat and/or mass between different substances, such as one or more fluids and/or solids. The substances, namely, the one or more fluids and/or solids, act as the heat and/or mass source and sink, according to the principle of the invention, and transferring heat and/or mass between substances changes the energy content of those substances. As previously mentioned, the fluids can be gases and/or liquids, and the solids can be a mass of solid particles, one or more blocks, bricks, slabs of rigid or semi-rigid materials, foam, wood, etc., in which energy, i.e. heat and/or mass, transfer therebetween is desired. A fluid used with the invention can be flowing, if desired. The property-transferring material is preferably in liquid form, in which the carrier is a liquid permeable substrate or combination of liquid-permeable substrates allowing the liquid property-transferring material to circulate therein in response to temperature and/or concentration fluctuations in the liquid property-transferring material due to exposure of the liquid property-transferring material to different properties at different portions of the substrate.
When the property-transferring material supported by the carrier is exposed to different properties at different portions thereof, it develops a micro-cyclic property transfer in which the property content of the two properties, which are each carried by one or more fluids and/or solids, change and, moreover, are essentially equalized. In other words, the property change to one of the properties is balanced by a corresponding change to the other property. Although the invention is particularly useful for transferring energy between two properties, it can be employed for transferring energy between three or more properties, in which the summation of the property contents of the properties are essentially equalized by way of the property-transferring material supported by the carrier. Altering the heat, composition or concentration, and/or flow characteristics of a property-transferring material employed in a carrier in accordance with the invention serves to alter the property-transferring properties of a property-transferring system constructed and arranged in accordance with the principles of the invention. In particular, the property-transferring material can be heated or cooled before being applied to the carrier. Alternatively, the carrier can be furnished with a heating and/or cooling unit, such as heating and/or cooling coils, for heating and/or cooling the property-transferring material after it is applied to the carrier, in accordance with the principles of the invention. The amount and/or type of property-transferring material can be varied, as can the type of carrier employed. The carrier and/or the property-transferring material can be provided to accept a specific property and reject another. A carrier of a property-transferring system constructed in accordance with the invention allows exchange of the property-transferring material between the two properties applied to the different portions of the carrier.
Referring now to the drawings, in which like reference characters indicate corresponding elements throughout the several views, attention is first directed to
Air streams 101 and 102 are each developed by one or more fans, blowers, and/or air handlers (not shown), and flow counter currently relative to one another, in which air stream 101 flows in the direction as indicated by the arrowed line denoted at 101A and air stream 102 flows in the opposite direction as indicated the arrowed line denoted at 102A. It is to be understood that carrier 103 and air streams 101 and 102 may be maintained in a housing of, for instance, an air handling or conditioning system, in which carrier 103 is mounted in place, and air streams 101 and 102 are contained, for instance, in ducts or conduit structures or channels on either side of carrier 103 such that air streams 101 and 102 contact and move or flow over and across sides 105 and 106, respectively, of carrier 103.
According to the invention, substrate 104 is wetted with a property-transferring material that is capable of transferring heat and mass from air stream 101 to air stream 102 through substrate 104. The property-transferring material is in the form of a liquid, and in this embodiment consists of a liquid desiccant 110.
Liquid desiccant 110 is hydrophilic/hygroscopic, and can be a single liquid desiccant or a mixture of different liquid desiccants. Suitable liquid desiccants useful with the invention include, as a matter of example, lithium bromide, lithium chloride, a saline solution, or other similar hydrophilic liquid/solution or combination of hydrophilic liquids/solutions. It is to be understood that the term “liquid desiccant” is intended to include not only a single liquid desiccant but also a mixture of two or more liquid desiccants. When wetted with liquid desiccant 110, substrate 104 supports liquid desiccant 110, in which the liquid permeable character of substrate 104 permits liquid desiccant 110 to move/circulate there through from side 105 to side 106. The combination of substrate 104 and the infusion thereof with liquid desiccant 110 together create a dividing wall or partition dividing and isolating air streams 101 and 102 and preventing them from mixing and interacting with one another, in accordance with the principle of the invention.
Air streams 101 and 102 have different heat and mass contents, and thus have different energies. Moisture in a stream of fluid, whether gas or liquid, is commonly referred to as “mass” by those skilled in the art, and the term “mass” is used herein to defining the property of moisture. In the present embodiment, the heat and mass contents of air stream 101 are greater than the heat and mass contents of air stream 102. Liquid desiccant 110, which permeates substrate 104, consists of a solution of water and salt present at a predetermined concentration, in which the water is denoted at 111, and the salt is denoted at 112, and this is a common characteristic among desiccant liquids/solutions.
Air streams 101 and 102 flow against sides 105 and 106 of substrate 104, and interact with liquid desiccant 110 carried by substrate 104 at sides 105 and 106, respectively. Because the heat and mass content of air stream 101 is greater than the heat and mass content of air stream 102, an energy imbalance exists across substrate 104, and liquid desiccant 110 interacting with air stream 101 at side 105 of substrate 104 picks up heat H and mass M from air stream 101, which heats and also weakens the concentration of the liquid desiccant 110 at side 105 relative to that of the liquid desiccant 110 at side 106. As a result of this temperature and concentration differential/imbalance of liquid desiccant 110 across substrate 104 from side 105 to side 106, which is created by the energy imbalance across substrate 104 caused by the different properties of air streams 101 and 102 interacting with liquid desiccant 110 at sides 105 and 106, the liquid desiccant 110 at side 105 becomes diluted/hypotonic and the liquid desiccant 110 at side 106 becomes correspondingly concentrated/hypertonic. As a result, water 111 will diffuse/flow from the “hypotonic” side 105 of substrate 104 to the “hypertonic” side 106 of substrate 104 to equalize the concentration differential, and salt 112 will diffuse/flow from the “hypertonic” side 106 of substrate 104 to the “hypotonic” side 105 of substrate 104 to equalize the concentration differential.
The water 111 that flows from side 105 of substrate 104 to side 106 of substrate 104 carries the heat and mass picked up from air stream 101. When the water 111 carrying the heat and mass picked up from air stream 101 reaches side 106, air steam 102 comes into contact with this water at side 106 and interacts with it, in which the colder drier air stream 102 will pick up the heat and mass transferred to side 106 of substrate from side 105 of substrate 104. According to the invention, liquid desiccant 110 in substrate 104 transfers heat and mass from hotter moisture air stream 101 to colder drier air stream 102, in which air stream 101 is cooled and dried and air stream 102 is heated and moisturized, in accordance with the principle of the invention.
When the water 111 that picked up the heat and mass from air stream 101 reaches side 106, the water momentarily dilutes the hypertonic side 106 of substrate 104, and also releases its heat and mass into air stream 102 from side 106, which relieves this momentary dilution of the hypertonic side 106 of substrate 104. When the momentary dilution of the hypertonic side 106 of substrate 104 occurs, salt 112 diffuses/flows from side 105 of substrate 104 to side 106 of substrate and water flows in the opposite direction, which essentially recharges the system so that the heat and mass transfer function facilitated by liquid desiccant 110 can continue to occur in this cyclic nature.
And so as the hotter moister air of air stream 101 continues to flow across side 105 of substrate 104 interacting with liquid desiccant 110, and the cooler drier air of air stream 102 continues to flow across side 106 of substrate 104, substrate 104, which is permeable to liquid desiccant 110, and liquid desiccant 110 together function as an engine continually and cyclically transferring heat and mass from hotter moisture air stream 101 to colder drier air stream 102, in accordance with the principle of the invention. Accordingly, air stream 101 is cooled and dried with system 100, and air stream 102 is heated and moisturized with system 100. After having been conditioned with system 100, air stream 101 can be directed through an outlet into, for instance, a habitable structure for providing cooling air, in which air stream 102 may be discharged through an outlet into the environment as “waste.” Prior to entering a habitable structure, air stream 101 may be further conditioned, i.e., heated or cooled, by a selected heat transfer apparatus, such as a compressor or other heat-transfer apparatus or system. Alternatively, after having been conditioned with system 100, air stream 102 can be directed through an outlet into, for instance, a habitable structure for providing heating air, in which air stream 101 may be discharged through an outlet into the environment as “waste.” Prior to entering a habitable structure, air stream 102 may be further conditioned, i.e., heated or cooled, by a selected heat transfer apparatus, such as a compressor or other heat-transfer apparatus or system. Air streams 101 and 102 conditioned with system 100 can be used for any desired purpose, such as heating, cooling, scientific purposes, etc.
In
According to the principles of the invention, the invention provides infusing a liquid permeable carrier 103 with a liquid desiccant for providing a foundation for the development of micro-cyclic heat and mass transfer regions along carrier 103 when opposing sides 105 and 106 of carrier 103 are exposed to air streams containing an unequal energy content, in which the energy content of the air streams is defined by differing heat and mass contents of the air streams in the embodiment designated 100. The micro-cycles are developed by liquid desiccant 110 across carrier 103, and are discrete areas along carrier 103 in which heat and mass transfer events from side 105 of substrate 104 to side 106 of substrate 104 take place. Streams 101 and 102 can be at atmospheric pressure, at high pressure, and can also be present in a vacuum, in which each such condition impacts the rate and nature of property transfer. Although the fluids in the embodiment designated at 100 are in the form of streams, one of or each of the fluids can be still as in the form of a layer, if desired, and it will be understood that this applies to all ensuing embodiments utilizing fluid streams. The fluids can be at high or low temperatures, and may be provided in different volumes or flow rates, and this also applies to all ensuing embodiments utilizing fluid streams.
The occurrence of micro-cycles is unique and caused by the circulation of liquid desiccant 110 through carrier 103 from side 105 to side 106 (i.e., the circulation of water and salt ions back and forth through carrier 103 from side 105 to side 106), are random, self-inducing, and self-circulating along the extent of carrier 103, and have no defined direction other than circulation. The micro-cycles are induced by a combination of diffusion or capillary force and salt or ion diffusion caused by the combination of temperature differentials in liquid desiccant 110 across carrier 103, concentration variances in liquid desiccant 110 as it picks up mass from one air stream and transfers it to another drier air stream, the coincident surface tension differentials of liquid desiccant 110 at sides 105 and 106, and, in certain instances, gravitational forces.
And so micro-cycles refer to random self-induced cycles of property-transferring materials within a carrier driven by forces resulting from the difference of properties of the substance and/or other natural forces, including, but not necessarily limited to, capillary forces, diffusion forces, temperature-induced pressure variances, gravity, etc. In a carrier permeated with liquid that is exposed to gas streams in accordance with the principle of the invention, the liquid acts as a property-transferring material that develops micro-cycles caused by capillary force and diffusion. In a carrier permeated with gas that is exposed to liquids in accordance with the principle of the invention, the gas acts as a property-transferring material that develops micro-cycles caused by pressure differentials due to temperature differentials and diffusion. In this regard, in a situation in which property-transfer is desired between two substances, the property-transferring material in the carrier can be a gas.
Capillary force is related to the surface tension of liquid desiccant 110 and to the temperature and concentration of liquid desiccant 110. A temperature change or concentration change in liquid desiccant 110 develops a capillary force change and, thus, a micro-cycle, namely, a micro-cyclic heat and mass transfer event. In accordance with system 100, air stream 101 increases the temperature of liquid desiccant 110 at side 105 and lowers its concentration as it picks up heat and mass from air stream 101. This increase in temperature and decrease in concentration of liquid desiccant 110 at side 105 reduces the surface tension of liquid desiccant 110, which causes water 111 to move through carrier 103 from side 105 to side 106 thus coming into contact with air stream 102. The resulting diffusion force caused by the resulting concentration differential of liquid desiccant 110 causes salt (i.e., ion) exchange from side 106 of carrier 103 to side 105 of carrier 103. In sum, this water and salt or ion transfer back and forth across carrier 103 from side 105 to side 106 caused as a result of exposure of sides 105 and 106 to air streams having different energy properties or contents produces in carrier 103 and liquid desiccant 110 it supports a heat and mass transfer engine, in accordance with the principle of the invention.
As a further example, a cool and dry air stream would decrease the temperature of the liquid desiccant, lower its concentration, and reduce its surface tension. In this example, the desiccant is caused to circulate through the carrier in contact with the colder and dryer air stream and dry by means of capillary force. A diffusion force causing ion exchange is created owing to carrier contact with the colder air stream. The desiccant, now colder and with a higher concentration, will provide for ion diffusion through the carrier to contact the cooler desiccant of lower concentration.
It will be understood that although system 100 is described in an environment in which air stream 101 has an initial heat and mass content which is greater than the initial heat and mass content of air stream 102, system 100 will work equally well in the environment in which air stream 101 has an initial heat and mass content which is less than the initial heat and mass content of air stream 102, in which case the operation of system 100 is reversed. Furthermore, the heat transfer function of liquid desiccant 110 and the mass/moisture transfer function of liquid desiccant 110 can work independently from one another. In this respect, liquid desiccant 110 functions to transfer heat from a hotter stream of air, namely, air stream 101, to a colder stream of air, namely, air stream 102, and this function is carried out by liquid desiccant 110 regardless of the mass/moisture difference between the respective air streams. Moreover, liquid desiccant 110 functions to transfer mass/moisture from a moist stream of air, namely, air stream 101, to a drier stream of air, namely, air stream 102, and this function is carried out by liquid desiccant 110 regardless of the temperature/heat difference between the respective air streams.
Property change to one fluid stream exiting the carrier will balance the property change to the other fluid stream also exiting the carrier. In cases utilizing two or more fluid streams, the summation of property content entering the system from all fluid streams will equal the summation of property content of the fluid steams exiting the system. In order to add or subtract energy, an external energy or property-changing source can be provided. This energy change may be one or more of a change in the temperature of the property-transferring material, a change in the composition of the property-transferring material, a change in the flow of the property-transferring material through the carrier, and change in the flow of the fluid streams interacting with the property-transferring material supported by the carrier, and/or a property change one or more of the fluid streams. To create an imbalance in the property change to the fluid steams utilized in the system, one or more auxiliary energy sources can be provided, including one to heat and or cool one or more of the fluids applied to the system, and/or to heat and or cool the property-transferring substance supported by the carrier. Also, the flow of the property-transferring material on one portion of the carrier can be greater than a flow of the property-transferring material on an opposing portion of the carrier. Again, the energy change may be a change in the temperature of the property-transferring material, and/or a change in the composition of the property-transferring material, and/or a change in the flow rates of property-transferring material at different parts of the carrier. Furthermore, in addition to changing the temperature or concentration of the property-transferring material, energy may also be imparted by utilization of direct temperature change, such as associating a heat exchange device with the carrier. As a matter of illustration, a heat exchange device 115, such as a heat transfer coil or the like, is associated with carrier 103 in
Substrate 104 can be provided in various forms and structural configurations, including one or more of a relatively flat sheet or membrane, an elongate member, an elongate generally tubular member, a disk, a sphere, a combination of two or more of the foregoing substrate forms, etc. Substrate 104 is preferably substantially self-supporting. Sides 105 and 106 can be corrugated, if desired, for maximizing the surface area of each in contact with the fluid streams. Substrate 104 is fashioned of a liquid permeable material, or combination of liquid-permeable materials, and is liquid absorbent, relatively rugged and not easily damaged, capable of withstanding pressure differentials, and can withstand prolonged exposure to property-transferring materials and periodic wash-downs or cleanings with cleansing fluids. Suitable materials that can be used for substrate 104 include, treated paper or cellulosic material, permeable plastic, high-density foam material, high-density mesh material, a matrix of woven and/or unwoven polyester, polyethylene, or like material, or combination of any of the foregoing materials or similar materials. The substrate can be formed as an integral component, or as a combination of different materials that are joined together. The substrate could be a sandwich or laminate structure, and can be configured with different materials, such as netting and/or corrugated spacers, etc., for favoring heat transfer, or for favoring mass transfer. The substrate can also be made of different materials over its length, such as a one or more sections favoring heat transfer and one or more sections favoring mass transfer. Also, the portions of the substrate at which the different properties interact with the property-transferring material can be treated to reduce surface tension or to increase surface tension, which will alter the rate or quality of property transfer through the carrier as will be presently described.
Substrate 104 is a single component, which characterizes carrier 103 in the immediate embodiment. Carrier 103 can be configured as a combination of separate substrates, if desired, such as a plurality of substrate sheets, modules, components, elongate members, etc. A carrier can also be configured in multiple-tubular formats such that one or more fluid streams is contained within a series of tubular confines. A carrier can be continuous along its length, or can be broken up in to a plurality of substrate sections divided by non-property transferring spacers, dividers, blocks, partitions, etc.
The property-transfer characteristic of the property-transferring material applied to the carrier as in the embodiment designated 100 can be controlled by the type of property-transferring material used, by using a plurality of different property-transferring materials, in which the term “material” is intended to include a single property-transferring material or a combination of different property-transferring materials, including even different compositions of the same material. The portions of the carrier at which property transfer takes place can furnished with different amounts of the same property-transferring material, different compositions of the same property-transferring material, or different property-transferring materials. Application of property-transferring material to the carrier can be provided by forced distribution, and the carrier can be replenished with property-transferring material on a continuous basis, or a periodic basis. If the property-transferring material is applied by forced distribution, different portions of the carrier can be provided with different levels of the property-transferring material for controlling its property-transfer characteristic.
Distribution of a property-transferring material to a carrier in a system constructed and arranged in accordance with the principle of the invention can be made with a wicking system, in which a portion of the carrier is disposed in the property-transferring material such that it wicks into the carrier. The carrier can be furnished with wicking material or a combination of wicking materials for enhancing the desired wicking effect, and various wicking structures may be used, including metal powder and the like.
Further embodiments of the invention will now be discussed. It is to be understood that the general principles of the invention discussed in conjunction with system 100 also apply to the ensuing embodiments.
Referring now to
When wetted with hydrophobic liquid 121, substrate 104 acts as a carrier or support structure for hydrophobic liquid 121, in which the liquid permeable character of substrate 104 permits hydrophobic liquid to move/circulate there through from side 105 to side 106. The infusion of hydrophobic liquid 121 in substrate 104 together create a dividing wall or partition which divides and isolates air streams 101 and 102 and prevents them from mixing and interacting with one another, in accordance with the principle of the invention.
Like system 100, air streams 101 each contain two properties, namely, heat and mass, i.e., moisture. The heat and mass contents of air stream 101 are greater than the heat and mass contents of air stream 102, although the mass contents of air streams 101 and 102 really have no bearing in system 120. Air streams 101 and 102 flow against sides 105 and 106 of substrate 104, and interact with hydrophobic liquid 121 carried by substrate 104 at sides 105 and 106, respectively. Because the heat and mass content of air stream 101 is greater than the heat and mass content of air stream 102, an energy imbalance exists across substrate 104 and hydrophobic liquid 121 interacting with air stream 101 at side 105 of substrate 104 picks up only heat H from air stream 101 becoming hot relative to hydrophobic liquid 121 at side 106, which develops a temperature differential in hydrophobic liquid 121 across substrate 104 from side 105 to side 106 and causing the hydrophobic liquid 121 at side 105 to wick across substrate 104 from side 105 to side 106. The hydrophobic liquid 121 that wicks/flows from side 105 of substrate 104 to side 106 of substrate 104 carries the heat picked up from air stream 101, but not moisture do to its hydrophobic character, namely, its lack of affinity for water. When the hydrophobic liquid 121 carrying the heat picked up from air stream 101 reaches side 106, air steam 102 comes into contact with this heated hydrophobic liquid 121 and interacts with it. Because the heat content of air stream 101 is greater than that of air stream 102, the colder air stream 102 will pick up the heat from the hydrophobic liquid 121 transferred to side 106 of substrate from side 105 of substrate 104. According to the invention, hydrophobic liquid 121 in substrate 104 functions to transfer heat from hotter air stream 101 to colder stream 102, in which air stream 101 is cooled and air stream 102 is heated, in accordance with the principle of the invention. Because system 120 utilizes a hydrophobic liquid 121, hydrophobic liquid 121 rejects moisture and will not transfer moisture between air streams 101 and 102. As hot hydrophobic liquid 121 wicks from side 105 to the colder hydrophobic liquid 121 at side 106, the colder hydrophobic liquid at side 106 is displaced and is forced to side 105, which essentially recharges the system.
And so as the hotter air of air stream 101 continues to flow across side 105 of substrate 104 interacting with hydrophobic liquid 121, and the cooler air of air stream 102 continues to flow across side 106 of substrate 104, substrate 104, which is permeable to hydrophobic liquid 121, and hydrophobic liquid 121 function as micro-cyclic heat-transfer engine continually transferring heat fromhotter air stream 101 to colder air stream 102 as heated and cooled hydrophobic liquid circulates through carrier 103 from side 105 to side 106, in accordance with the principle of the invention. Air stream 101 is cooled with system 120, and air stream 102 is heated with system 100.
According to the principles of the invention, the invention provides infusing a liquid permeable carrier 103 with a hydrophobic liquid for providing a foundation for the development of micro-cyclic heat transfer regions along carrier 103 when opposing sides 105 and 106 of carrier 103 are exposed to air streams containing an unequal energy content, in which the energy content of the air streams is defined by differing heat contents of the air streams in the embodiment designated 120. The micro-cycles are developed by hydrophobic liquid 121 across carrier 103, and are discrete areas along carrier 103 in which heat transfer events from side 105 of substrate 104 to side 106 of substrate 104 take place as hot and cold hydrophobic liquid 121 circulates back and forth through carrier 103 from side 105 to side 106.
It will be understood that although system 120 is described in an environment in which air stream 101 has an initial heat content which is greater than the initial heat content of air stream 102, system 120 will work equally well in the environment in which air stream 101 has an initial heat content which is less than the initial heat content of air stream 102, in which case the operation of system 120 is reversed.
Reference is now made to
Air streams 141 and 142 are each developed by one or more fans, blowers, and/or air handlers (not shown) and flow countercurrently relative to one another, in which air stream 141 flows in the direction as indicated by the arrowed line denoted at 141A and air stream 142 flows in the opposite direction as indicated the arrowed line denoted at 142A. Air streams 141 each contain two properties, namely, heat and mass. The heat and mass contents of air stream 141 defining the energy content of air stream 141 are greater than the heat and mass contents of air stream 142 which define its energy content. Carrier 143 and air streams 141 and 142 are maintained in a housing of an air handling or conditioning system, in which carrier 143 is mounted in the housing and air streams 141 and 142 contained, for instance, in ducts on either side of carrier 143 such that air streams 141 and 142 contact and move or flow over sides 148 and 149, respectively, of carrier 143.
Substrate 144, which constitutes carrier 143 in this embodiment, is fashioned of a combination of liquid permeable materials. According to the invention, substrate 144 is wetted with material that is capable of transferring heat and mass from air stream 141 to air stream 142 through substrate 144. In the present embodiment, the material is liquid desiccant 160. Liquid desiccant 160 is similar to liquid desiccant 110, and it is to be understood that the discussion of desiccant 110 applies to desiccant 160. When wetted with liquid desiccant 160, substrate 144 acts as a carrier or support structure for liquid desiccant 160. The infusion of liquid desiccant 160 in substrate 144 together create a dividing wall or partition which divides and isolates air streams 141 and 142 and prevents them from mixing and interacting with one another, in accordance with the principle of the invention.
Layers 146 and 147 and wick layers 161 are each fashioned of a liquid permeable material or a combination of materials like that of substrate 104, and layer 145 is fashioned of alternating wick layers 161 and insulator layers 162, in which wick layers 161 provide wicking passages for liquid desiccant 160 to circulate between layers 146 and 147, and insulator layers 162 absorb heat substantially preventing heat transfer through substrate 144, in accordance with the principle of the invention. Insulator layers 162 are fashioned of an insulating material or combination of materials, such as ceramic material or other heat-absorbing material or combination of heat-absorbing materials. With the exception of insulator layers 162 substantially preventing heat transfer through substrate 144, system 140 functions identically to system 100 transferring moisture from a moist air stream to a drier air stream, in which the discussion of system 100 applies to system 140 in this regard. However, because insulator layers 162 absorb heat and thereby substantially prevent heat transfer through substrate 144, system 140 transfers only mass (i.e., moisture) between air streams 141 and 142, in accordance with the principle of the invention. It will be readily understood that carrier 143 is configured to reject heat transfer, and facilitate mass transfer.
Air streams 141 and 142 flow against sides 148 and 149 of substrate 144, and interact with liquid desiccant 160 carried by substrate 144 at sides 148 and 149, respectively. Because the heat and mass content of air stream 141 is greater than the heat and mass content of air stream 142, an energy imbalance exists across substrate 144 and liquid desiccant 160 interacting with air stream 141 at side 148 of substrate 144 picks up heat and mass M from air stream 141, which weakens the concentration of liquid desiccant 160 at side 148 relative to the concentration of liquid desiccant 160 at side 149. As a result of this concentration differential of liquid desiccant 160 across substrate 144 which is created by the energy imbalance across substrate 144 caused by the different properties of air streams 141 and 142 interacting with liquid desiccant 160 at sides 148 and 149, liquid desiccant 160 at side 148 becomes diluted/hypotonic and the liquid desiccant 160 at side 149 becomes correspondingly concentrated/hypotonic. As a result, the water of liquid desiccant 160 will diffuse/flow through wick layers 161 from the “hypotonic” side 148 of substrate 144 to the “hypertonic” side 149 of substrate 144, and the salt of liquid desiccant 160 will diffuse/flow through wick layers 161 from the “hypertonic” side 149 of substrate 144 to the “hypotonic” side 148 of substrate 104.
The water that flows from side 148 of substrate 144 to side 149 of substrate 144 carries the heat and mass picked up from air stream 141. As the water carrying the heat and mass picked up from air stream 141 passes through wick layers 161, insulator layers 162 absorb the heat carried by the water in which the concentration differential in liquid desiccant 160 across substrate 144 maintains the flow of the water into layer 147 and air steam 102 comes into contact with this water and interacts with it and picks up the mass transferred from air stream 141. According to the invention, liquid desiccant 160 in substrate 144 functions to transfer mass from hotter moisture air stream 141 to colder drier air stream 142, in which insulator layers 162 prevent heat transfer between air streams 141 and 142 and air stream 141 is cooled and dried and air stream 142 is moisturized, in accordance with the principle of the invention.
When the water 111 that picked up the mass from air stream 141 reaches side 149, the water momentarily dilutes the hypertonic side 149 of substrate 144, and also releases its mass into air stream 142 from side 149, which relieves this momentary dilution of the hypertonic side 149 of substrate 144. When the momentary dilution of the hypertonic side 149 of substrate 144 occurs, the salt of liquid desiccant 160 diffuses/flows from side 149 of substrate 144 to side 148 of substrate and water flows in the opposite direction, which essentially recharges the system so that the mass transfer function facilitated by liquid desiccant 160 can continue to occur in this cyclic or micro-cyclic nature.
And so as the hotter moister air of air stream 141 continues to flow across side 148 of substrate 144 interacting with liquid desiccant 160, and the cooler drier air of air stream 142 continues to flow across side 149 of substrate 144, substrate 144 and liquid desiccant 160 function as an engine continually and cyclically pulling heat and mass out of air stream 141, and transferring mass from hotter moisture air stream 141 to colder drier air stream 142 via wick layers 161 and absorbing heat via insulator layers 162, in accordance with the principle of the invention. Accordingly, air stream 141 is cooled and dried with system 140, and air stream 142 is moisturized with system 100.
It will be understood that although system 140 is described in an environment in which air stream 141 has an initial heat and mass content which is greater than the initial heat and mass content of air stream 142, system 140 will work equally well in the environment in which air stream 141 has an initial heat and mass content which is less than the initial heat and mass content of air stream 142, in which case the operation of system 140 is reversed.
In
According to the principles of the invention, the invention provides infusing a liquid permeable carrier 143 with a liquid desiccant for providing a foundation for the development of micro-cyclic mass transfer regions along carrier 143 when opposing sides 148 and 149 of carrier 143 are exposed to air streams containing an unequal energy content, in which the energy content of the air streams is defined by differing heat and mass contents of the air streams in the embodiment designated 140. The micro-cycles are developed by liquid desiccant 160 across carrier 143, and are discrete areas along carrier 143 in which heat and mass transfer events from side 148 of carrier 143 to side 149 of carrier 143 take place, in which wick layers 161 in carrier 143 permit mass transfer between sides 148 and 149 of carrier 143 and insulator layers 162 in carrier 143 substantially prevent heat transfer between sides 148 and 149 of carrier 143.
Reference is now made to
Like system 100, carrier 103 is wetted with liquid desiccant 110, which is hydrophilic. System 180 functions identically to system 100, and the discussion of system 100 applies to system 180, with the exception that the heat and mass transfer in system 180 occurs between air stream 101 and liquid stream 181, rather than between air stream 101 and another air stream, such as air stream 102 as in system 100. Also, although an air stream and a liquid stream are interacting with carrier 103 in system 180, system 180 can be facilitated with more than two air and liquid streams, if desired.
Referring now to
Substrate 104 is wetted with hydrophobic liquid 121. So wetted with hydrophobic liquid 121, substrate 104 acts as a carrier or support structure for hydrophobic liquid 121, in which the liquid permeable character of substrate 104 permits hydrophobic liquid 121 to move/circulate therethrough from side 105 to side 106. The infusion of hydrophobic liquid 121 in substrate 104 together create a dividing wall or partition which divides and isolates air stream 101 from liquid stream 191 and prevents them from mixing and interacting with one another, in accordance with the principle of the invention. System 190 functions identically to system 120, and the discussion of system 120 applies to system 190, with the exception that the heat transfer in system 120 occurs between air stream 101 and liquid stream 191, rather than between air stream 101 and another air stream, such as air stream 102 as in system 100. Also, although an air stream and a liquid stream are interacting with carrier 103 in system 190, system 190 can be facilitated with more than two air and liquid streams, if desired.
Reference is now made to
Substrate 144 is wetted with liquid desiccant 160. So wetted with liquid desiccant 160, substrate 144 acts as a carrier or support structure for liquid desiccant 160, and the infusion of liquid desiccant 160 in substrate 144 together create a dividing wall or partition which divides and isolates air stream 141 from liquid stream 201 and prevents them from mixing and interacting with one another, in accordance with the principle of the invention. System 200 functions identically to system 140, and the discussion of system 120 applies to system 200, with the exception that the heat transfer in system 200 occurs between air stream 101 and liquid stream 201, rather than between air stream 101 and another air stream, such as air stream 102 as in system 140. Also, although an air stream and a liquid stream are interacting with carrier 143 in system 200, system 200 can be facilitated with more than two air and liquid streams, if desired.
Referring to
Like system 180, carrier 103 is wetted with liquid desiccant 110, which is hydrophilic. System 210 functions identically to system 180, and the discussion of system 180 applies to system 210, with the exception that the heat and mass transfer in system 210 occurs between liquid streams 211 and 181, rather than between air stream 101 and liquid stream 181. Also, although two liquid streams are interacting with carrier 103 in system 210, system 210 can be facilitated with more than two air and liquid streams, if desired.
Referring now to
Substrate 104 is wetted with hydrophobic liquid 121. So wetted with hydrophobic liquid 121, substrate 104 acts as a carrier or support structure for hydrophobic liquid 121, in which the liquid permeable character of substrate 104 permits hydrophobic liquid 121 to move/circulate therethrough from side 105 to side 106. The infusion of hydrophobic liquid 121 in substrate 104 together create a dividing wall or partition which divides and isolates liquid stream 221 from liquid stream 191 and prevents them from mixing and interacting with one another, in accordance with the principle of the invention. System 220 functions identically to systems 190, and the discussion of system 190 applies to system 220, with the exception that the heat transfer in system 220 occurs between liquid streams 221 and 191, rather than between air stream 101 and liquid stream 191. Also, although two liquid streams are interacting with carrier 103 in system 220, system 220 can be facilitated with more than two air and liquid streams, if desired.
Referring now to
Substrate 144 is wetted with liquid desiccant 160. So wetted with liquid desiccant 160, substrate 144 acts as a carrier or support structure for liquid desiccant 160, and the infusion of liquid desiccant 160 in substrate 144 together create a dividing wall or partition which divides and isolates liquid stream 231 from liquid stream 201 and prevents them from mixing and interacting with one another, in accordance with the principle of the invention. System 230 functions identically to system 200, and the discussion of system 200 applies to system 230, with the exception that the heat transfer in system 230 occurs between liquid streams 231 and 201, rather than air stream 141 and liquid stream 201. Also, although two liquid streams are interacting with carrier 143 in system 230, system 230 can be facilitated with more than two air and liquid streams, if desired.
Respecting the embodiments set forth in
Again, fluids used in various embodiments set forth in
Further, in the embodiments set forth in
In
From a structural standpoint, the foregoing embodiments of the invention can be implemented in various ways, and
Referring first to
Fluid streams 254B and 255B pass into chamber 252 from inlets 254 and 255, interact with carrier 253 and material 261, and discharge outwardly through outlets 270 and 271, respectively, in which interaction of fluid streams 254B and 255A with material 261 supported by carrier 253 produces micro-cyclic energy transfer between fluid streams 254B and 255B. Depending on the type of material used for material 261, and also the nature of carrier 253, as in the embodiments set forth in
Looking now to
Fluid streams 294B and 295B pass into chamber 292 from inlets 294 and 295, interact with carrier 293 and material 301, and discharge outwardly through outlets 310 and 311, respectively, in which interaction of fluid streams 294B and 295A with material 301 supported by carrier 293 produces micro-cyclic energy transfer between fluid streams 294B and 295B. Depending on the type of material used for material 301, and also the nature of carrier 293, as in the embodiments set forth in
Looking now to
Fluid streams 404B and 405B pass into chamber 402 from inlets 404 and 405, interact with carrier 403 and material 411, and discharge outwardly through outlets 420 and 421, respectively, in which interaction of fluid streams 404B and 405A with material 411 supported by carrier 403 produces micro-cyclic energy transfer between fluid streams 404B and 405B. Depending on the type of material used for material 411, and also the nature of carrier 403, as in the embodiments set forth in
Referring now to
Fluid streams 504B and 505B pass into chamber 502 from inlets 504 and 505, interact with carriers 503 and material 511, and discharge outwardly through outlets 520 and 521, respectively, in which interaction of fluid streams 504B and 505A with material 511 supported by carriers 503 produces micro-cyclic energy transfer between fluid streams 504B and 505B. The liquid permeable characteristics of carriers 503A and 503B are different from the liquid permeable characteristics of carriers 503C and 503D, in which material 511 flows through carriers 503C and 503D faster than carriers 503A and 503B. This difference in flow rates of material 511 causes energy transfer events between fluid streams at carriers 503C and 503D to be different from the energy transfer events between fluid streams at carriers 503A and 503B. Depending on the type of material used for material 511, and also the nature of carrier 503, as in the embodiments set forth in
Reference is now made to
Sumps 610 and 611 support property-transferring materials 610A and 611A, in which property-transferring material 610A is different from property-transferring material 611A. Material 610A is pumped by a pump 612 through a conduit 613 to nozzles 614, which discharge material 610A onto carriers 603A. Material 611A is pumped by a pump 615 through a conduit 616 to nozzles 617, which discharge material 611A onto carriers 604A.
In system 600, it is to be understood that plumbing, namely, pump 612 and conduit 613, functions to deliver material 610A to carriers 603A, and that plumbing, namely, pump 615 and conduit 616, functions to deliver material 611A to carriers 604A. Pumps 612 and 615 can operate continually for continuing providing carriers 603A and 604A with materials 610A and 611A, respectively, intermittently for periodically providing carriers 603A and 604A with materials 610A and 611A, respectively, etc., and may be operated manually or automatically such as by way of a timer, etc. Carriers 603A and 604A are located above sumps 610 and 611, respectively, which collect materials 610A and 611A from carriers 603A and 604A, respectively.
Fluid streams 607B and 608B pass into chamber 602 from inlets 607 and 608, interact with carriers 603A and 604A and materials 610A and 611A, and discharge outwardly through outlets 620 and 621, respectively, in which interaction of fluid streams 607B and 608B with materials 610A and 611A supported by carriers 603A and 604A produces micro-cyclic energy transfer between fluid streams 607B and 608B.
Because materials 610A and 611A are different, they provide different energy transfer characteristics, such as different types of energy transfer (such as heat for one of sets 603,604 and mass for the other of sets 603,604), different levels of the same or different types of energy transfer, and/or different rates of the same or different energy transfer, which will depend on the type of material used for each of materials 610A and 611A, and also on the nature of carriers 603A and 604A as in the embodiments set forth in
A conduit 618A coupled to sump 610 can be provided, if desired, and used to direct material 610A to a heat exchange/altering device (not shown) than can be configured to change or maintain the temperature of material 610A before it is returned to sump 610 by way of conduit 618B. In this way, the temperature of material 610A in sump 610 can be controlled, and also maintained at relatively constant suitable temperatures. Also, a conduit 619A coupled to sump 611 can be provided, if desired, and used to direct material 611A to a heat exchange/altering device (not shown) than can be configured to change or maintain the temperature of material 611A before it is returned to sump 611 by way of conduit 619B. In this way, the temperature of material 611A in sump 611 can be controlled, and also maintained at relatively constant suitable temperatures.
Referring to
Sumps 710 and 711 support property-transferring materials 710A and 711A, in which property-transferring material 710A is different from property-transferring material 711A. Material 710A is pumped by a pump 712 through a conduit 713 to nozzles 714, which discharge material 710A onto carriers 703A. Material 711A is pumped by a pump 715 through a conduit 716 to nozzles 717, which discharge material 711A onto carriers 704A.
In system 700, it is to be understood that plumbing, namely, pump 712 and conduit 713, functions to deliver material 710A to carriers 703A, and that plumbing, namely, pump 715 and conduit 716, functions to deliver material 711A to carriers 704A. Pumps 712 and 715 can operate continually for continuing providing carriers 703A and 704A with materials 710A and 711A, respectively, intermittently for periodically providing carriers 703A and 704A with materials 710A and 711A, respectively, etc., and may be operated manually or automatically such as by way of a timer, etc. Carriers 703A and 704A are located above sumps 710 and 711, respectively, which collect materials 710A and 711A from carriers 703A and 704A, respectively.
Fluid streams 705B, 706B, and 707B pass into chamber 702 from inlets 705, 706, and 707, interact with carriers 703A and 704A and materials 710A and 711A, and discharge outwardly through outlets 720, 721, and 722, respectively, in which interaction of fluid streams 705B, 706B, and 707B with materials 710A and 711A supported by carriers 703A and 704A produces micro-cyclic energy transfer between fluid streams 705B, 706B, and 707B.
Because materials 710A and 711A are different, they provide different energy transfer characteristics, such as different types of energy transfer (such as heat for one of sets 703,704 and mass for the other of sets 703,704), different levels of the same or different types of energy transfer, and/or different rates of the same or different energy transfer, which will depend on the type of material used for each of materials 710A and 711A, and also on the nature of carriers 703A and 704A as in the embodiments set forth in
A conduit 718A coupled to sump 710 can be provided, if desired, and used to direct material 710A to a heat exchange/altering device (not shown) than can be configured to change or maintain the temperature of material 710A before it is returned to sump 710 by way of conduit 718B. In this way, the temperature of material 710A in sump 710 can be controlled, and also maintained at relatively constant suitable temperatures. Also, a conduit 719A coupled to sump 711 can be provided, if desired, and used to direct material 711A to a heat exchange/altering device (not shown) than can be configured to change or maintain the temperature of material 711A before it is returned to sump 711 by way of conduit 719B. In this way, the temperature of material 711A in sump 711 can be controlled, and also maintained at relatively constant suitable temperatures.
Reference is now made to
Carriers 804 are wetted with a property-transferring material, and fluid streams 805B and 806B pass into chambers 802 and 803, respectively, from inlets 805 and 806, respectively. Fluids streams 805B and 806B interact with sides 804A and 804B, respectively, of carriers 804 and the property-transferring material carried thereby, and discharge outwardly through outlets 810 and 811, respectively, in which interaction of fluid streams 805B and 806B with the property-transferring material at sides 804A and 804B, respectively, of carriers 804 produces micro-cyclic energy transfer between fluid streams 805B and 806B.
The fluids used in various embodiments set forth in
The invention has been described above with reference to preferred embodiments, and the various embodiments set forth in
Having fully described the invention in such clear and concise terms as to enable those skilled in the art to understand and practice the same, the invention claimed is:
Claims
1. Apparatus comprising:
- a carrier supporting property-transferring material and including a first portion exposed to a first property and a second portion exposed to a second property;
- the first property being different from the second property causing the property-transferring material to develop micro-cyclic property transfer between the first and second properties;
- wherein the first and second properties each comprise at least one of heat and mass.
2. Apparatus according to claim 1, wherein the material comprises hydrophilic material.
3. Apparatus according to claim 1, wherein the material comprises hydrophobic material.
4. Apparatus according to claim 1, further comprising a property-changing device associated with at least one of the carrier and the property-transferring material.
5. Apparatus according to claim 1, further comprising a property-changing device associated with at least one of the first property and the second property.
6. Apparatus according to claim 1, wherein the first and second portions of the carrier comprises first and second surfaces of the carrier.
7. Apparatus according to claim 1, wherein the first and second portions of the carrier comprises first and second extremities of the carrier.
8. Apparatus according to claim 1, wherein the first property is carried by at least one fluid.
9. Apparatus according to claim 1, wherein the first property is carried by at least one solid.
10. Apparatus according to claim 1, wherein the second property is carried by at least one fluid.
11. Apparatus according to claim 1, wherein the second property is carried by at least one solid.
12. A method comprising steps of:
- providing a carrier supporting property-transferring material;
- exposing the property-transferring material to a first property at a first portion of the carrier;
- exposing the property-transferring material to a second property at a second portion of the carrier;
- the first property being different from the second property; and
- the property-transferring material developing micro-cyclic property transfer between the first and second properties in response to exposing the property-transferring material to the first property at the first portion of the carrier and to the second property at the second portion of the carrier.
13. The method according to claim 12, wherein the material comprises hydrophilic material.
14. The method according to claim 12, wherein the material comprises hydrophobic material.
15. The method according to claim 12, further comprising associating a property-changing device with at least one of the carrier and the property-transferring material.
16. The method according to claim 12, further comprising associating a property-changing device with at least one of the first property and the second property.
17. The method according to claim 12, wherein the first property is carried by at least one fluid.
18. The method according to claim 12, wherein the first property is carried by at least one solid.
19. The method according to claim 12, wherein the second property is carried by at least one fluid.
20. The method according to claim 12, wherein the second property is carried by at least one solid.
Type: Application
Filed: Dec 17, 2004
Publication Date: Jul 21, 2005
Inventors: Walter Albers (Paradise Valley, AZ), Yijun Yuan (Shaoxing)
Application Number: 11/015,701