See-saw interconnect assembly with dielectric carrier grid providing spring suspension
An interconnect assembly includes a number of interconnects combined in a preferably planar dielectric carrier frame having resilient portions acting as spring members in conjunction with their respective interconnect's rotational displacement during operational contacting. Each interconnect is fabricated as a see-saw structure pivoting around a rotation axis that substantially coincides with a symmetry plane of the torsion features provided by the resilient portion. The torsion features protrude towards and adhere to a central portion of the see-saw interconnect such that an angular movement of the interconnect is resiliently opposed by the torsion feature and the resilient portion. The torsion features and interconnects may be independently optimized to provide the interconnect with maximum stiffness and a maximum deflection at same time.
This application is a Continuation of application Ser. No. 10/759,338 filed on Jan. 16, 2004.
FIELD OF INVENTIONThe present invention relates to Interconnect assemblies for repetitively establishing conductive contact between opposing contact arrays. Particularly, the present invention relates to interconnect assemblies having a number of arrayed interconnect stages including see-saw interconnects embedded in a spring force providing dielectric carrier structure.
BACKGROUND OF INVENTIONDemand for ever decreasing chip fabrication costs forces the industry to develop new solutions for inexpensive and reliable chip testing devices. A common component for repetitively contacting contact arrays of tested circuit chips is an interconnect assembly that is placed adjacent a test apparatus contact array that has contact pitch corresponding to the tested chips' carrier (package) contact pitch. During packaged chip testing, a package is brought with its contact array into contact with the interconnect assembly such that an independent conductive contact is established between each of the package's contacts and the corresponding contact of the test apparatus.
Interconnect arrays have to provide highly uniform contact resistance over a desirably large deflection range to reduce degrading measurement influences of dimensional test contact variations. With decreasing contact pitches and increasing numbers of test contacts of packaged chips, it becomes increasingly challenging to design interconnect arrays that can be fabricated with low fabrication costs while meeting the demand for maximum deflection with an ever decreasing footprint available for each interconnect stage. The present invention meets this challenge.
Further desirable characteristics of an interconnect array are minimum path lengths and complexity of the individual conductive paths within the interconnect array to improve electrical performance and minimal overall contact force necessary to reliably establish all required conductive paths across the interconnect array. These characteristics become increasingly important as test frequencies and number of conductive paths within a single interconnect array increase. The present invention addresses these needs.
Each individual interconnect has to provide a maximum deflection within a given footprint commonly defined by the contact pitch. At the same time, each interconnect has to provide sufficient structural stiffness to warrant sufficient scribing in the interface between contact tips of the interconnects and the respective contacts of the package's contacts. In the prior art, planar arrayed interconnects have been fabricated with varying shapes, commonly embedded in substantially rigid dielectric carrier structures or carrier frames. For example, interconnects have been fabricated as see-saw structures integrated with torsion beams or torsion bridges that assist in increasing the interconnects' overall deflection. The interconnects are embedded thereby in the carrier structure such that the carrier structure remains structurally substantially unaffected by the interconnects deflections. Spring loaded deflection and wear resistant contacting features are provided by the same monolithic structure. This poses a significant limitation on maximizing deflection range due to the opposing material requirements for stiffness of the contacting features and resilience of the spring features. In the present invention addresses this problem.
For a cost effective and reliable fabrication of interconnect assemblies there exists a need for a interconnect configuration that requires a minimum number of involved fabrication steps and individual components. Fabrication steps are preferably performed along a single axis. Assembling operations are preferably avoided. The present invention addresses this need.
SUMMARY OF THE INVENTIONAn interconnect assembly includes a number of conductive and relatively stiff interconnect structures combined in a preferably planar dielectric carrier grid that has relatively resilient portions. The resilient portions act as spring members that resiliently deform upon the interconnects' displacement that takes place when a packaged chip is brought into contact with the interconnect assembly.
Each interconnect structure is fabricated and combined with the carrier grid for performing a see-saw pivoting movement around a rotation axis that substantially coincides with a symmetry plane of torsion features that are part of the resilient portions. The torsion features protrude laterally towards and adhere to a central portion of the see-saw interconnect such that an angular movement of the interconnect is resiliently opposed by the torsion feature and the remainder of the resilient portions. The resilient portions and interconnects may be independently optimized to provide the interconnects with maximum deflection stiffness, wear resistance, and conductivity.
Contacts of the test apparatus are in an offset to the test contacts. The substantially rotationally symmetric configuration of each see-saw interconnect with respect to its respective pivot axis results mainly in a torque that needs to be opposed by the respective resilient portion. A symmetric configuration of the resilient portion results in a balanced counteracting torque such that the overall position of the interconnects remains highly unaffected during the interconnects' displacement.
Each see-saw interconnect features at least one contact tip at each of the interconnects' opposing ends. The interconnect may be configured for multipath current transmission.
The initial contact force of the tips may be tuned by adjusting the angle of the see-saw interconnect with respect to the approach direction of the test contacts. This may be utilized to improve the tips' scribing on the test pads.
BRIEF DESCRIPTION OF THE FIGURESThe patent or patent application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Patent and Trademark Office upon request and payment of necessary fee.
In the following the terms “horizontal, vertical, upwards, downwards, bottom, top, X-oriented, Y-oriented” are used in conjunction with the Figures. As it may be clear to anyone skilled in the art, these terms are used solely for the purpose of ease of understanding and to describe spatial relations of elements with respect to each other.
Preferably each of the conductive see-saw structures 3 is substantially symmetric with respect to a symmetry plane SP, which is in vertical orientation and in the middle between two X-oriented grid members 212. A first peripheral arm 31 extends laterally downwards from the planar center portion 32 along the symmetry plane SP and terminates in a first contact tip 35. A second peripheral arm 33 extends laterally upwards from the planar center portion 32 in opposite direction of the first peripheral arm 31 also along the symmetry plane SP. The second peripheral arm 33 terminates in a second contact tip 36. The see-saw structures 3 are preferably sheet metal like structures preferably made with well-known electro deposition techniques in conjunction with a 3D forming operation.
The see-saw structures 3 are preferably two dimensionally arrayed within the interconnect assembly 1 such that the first tips 35 comply with a first contact pattern defined by a first X-pitch PX1 and a first Y-pitch PY1. Accordingly, the second tips 36 comply with a second contact pattern defined by a second X-pitch PX1 and a second Y-pitch PY2. In the preferred embodiment, all see-saw structures 3 are arrayed in parallel and have substantially equal shape and scale such that the first contact pattern is in a tip offset O1 to the second contact pattern but otherwise substantially equal. The tip offset O1 is defined by the horizontal distance between the contact tips 35, 36 along the symmetry plane SP of a common see-saw structure 32.
The present invention may include embodiments, in which the see-saw structures 3 are shaped, positioned and/or oriented for defining first and second contact patterns that differ from each other. This may be of particular advantage, where the interconnect assembly 1 is a modular part of a probe apparatus 100 as shown in
The carrier grid 21 provides resilient features such as torsion features 215 and optionally flex features 216 (see
In a second load case, where only one group of the apparatus contacts 102 or test contacts TC is forced against their corresponding tips 35 or 36 or where the opposing forces experienced by corresponding contact tips 35, 36 are not fully balanced, the resilient features also resiliently oppose a substantially vertical displacement of the see-saw structures 3.
In an exemplary application, the interconnect assembly 1 may be assembled in the probe apparatus 100 such that the contact tips 35 are in permanent pressure contact with their respective apparatus contacts 102. At the time between test cycles, where no tested device TD is forced against the contact tips 36, the second load case is experienced by the interconnect assembly 1. At the time a tested device TD is placed in a test position relative to the probe apparatus 100, the first load case is experienced by the interconnect assembly 1.
The contact forces experienced by the contact tips 35, 36 result mainly from the resilient properties of the resilient features in conjunction with a displacement of the contact tips 35, 36 along their respective apparatus contact axes CA and test contact axes TA. The tip's 35, 36 displacements are induced by the corresponding contacts 102, TC. The see-saw structures 3 are preferably configured as substantially rigid elements relative to the resilient features, even though some resilient deformation may also occur in the see-saw structures 3.
Each see saw structure 3 and its corresponding resilient features 215, 216 define an interconnect stage that is preferably configured to balance opposing contact forces resulting from substantially equal displacements induced on both contact tips 35, 36. The preferred interconnect stage configuration includes a rotationally symmetric configuration of the see-saw structure 3 with respect to the rotation axis RA. The preferred interconnect stage configuration includes also a rotationally symmetric configuration of the resilient features 215, 216 with respect to the rotation axis RA.
The rotationally symmetric configuration of the resilient features 215, 216 includes substantially rotationally symmetric shapes of the resilient features 215, 216 with respect to the rotation axis RA and substantially rotationally symmetric boundary conditions of the resilient features 215, 216 as may be well appreciated by anyone skilled in the art.
The rotationally symmetric configuration of the see-saw structure 3 includes the planar central portion 32 horizontally evenly extending around an intersection between the symmetry plane SP and the rotation axis RA as well as substantially equal horizontal distances DH1, DH2 and vertical distance CT, CB of the contact tips 35, 36 relative to the rotation axis RA.
For a given size of the central portion 32, the positions of the contact tips 35, 36 relative to the rotation axis RA and the dielectric film 2 is mainly defined by a length of the peripheral arms 31, 35 and their respective bending angles BA1, BA2. The vertical distances CT, CB may be selected for sufficient clearance between the contacts TC, 102 and elements of the interconnect assembly 1 under operational conditions. A first proportion between distances DH1 and CT as well as a second proportion between distances DH2 and CB may be adjusted to vary a scribing motion of the contact tips 35, 36 on their corresponding contacts TC, 102 as may be well appreciated by anyone skilled in the art.
Since the spring suspension of the interconnect stages is provided by the resilient features 215, 216, the see-saw structures 3 may be configured and optimized mainly for transmitting an electrical current and/or voltage with minimum resistance between a test contact TC and a corresponding probe apparatus contact 102.
In
In
The mechanical interface between see-saw structures 3, 3A, 3B, 3C and the carrier grid 21 has significant influence on the current flow limitations across the see-saw structures 3, 3A, 3B, 3C. This is because temperature rise that results from current flow tends to degrade the mechanical connection between the see-saw structure 3, 3A, 3B, 3C and the interface portion 214. In the exemplary case of an adhesive connection between planar center portion 32 and interface portion 214, the adhesive strength degrades with increasing temperature. On the other hand at a final fabrication stage where the see-saw structure 3, 3A, 3B, 3C is already combined with the carrier grid 21, the 3D forming of the see-saw structure 3, 3A, 3B, 3C, may require clearance areas CL on both sides of the planar center portion 32 immediately adjacent the bending edges 34, 37. The clearance areas CL provide direct access for a clamping tool eventually necessary for fixedly holding the planar center portion 32 during the 3D forming of the peripheral arms 31, 35 and/or the arm segments 311, 312, 351, 352. This case is depicted in
In the embodiment depicted in
In an alternate embodiment shown in
In a further embodiment shown in
In the enlarged detail view of
In the preferred embodiment and as shown in the
The exemplary stress and displacement analyses of
The graph of
The graph of
Fabrication of interconnect assembly 1 includes well known fabrication steps summarized in
The block 1002 represents the fabrication of the carrier grid 21 together with the circumferential support frame 4 and eventual stiffening structures 401. A dielectric thin film 2 deposited on a substrate is patterned and shaped. The dielectric thin film 2 is preferably made of a polymer such as polyimide. The substrate may be stainless steel or any other suitable material as may be appreciated by anyone skilled in the art. The carrier grid 21 is preferably a dielectric laminate that is laminated to the conductive layer and consecutively released by removing the underneath substrate except the eventually stiffening structures 401, which may be altered in thickness by a separate material removal process.
According to block 1003, the prefabricated and conductively connected see-saw structures 3, 3A, 3B, 3C are combined with the previously fabricated carrier grid by adhesive bonding or other well known techniques for combining a metal structure with a polymer. In following steps depicted by blocks 1004, 1005 and 1006, the see-saw structures 3, 3A, 3B, 3C may be lasered and electro plated, 3D formed and released from their conductive connection by well known techniques. The conductive connection is a particular necessity in case of electro deposition processes utilized in combination with a dielectric carrier grid 21 to include all see-saw structures 3, 3A, 3B, 3C in a single electric connection for efficient simultaneous plating as is well known to anyone skilled in the art.
The scope of the invention is not limited to a particular outside contour of the see-saw structures 3, 3A, 3B, 3C as long as their function is warranted as described in the above. Likewise, the scope of the invention is not limited by a particular fashion by which the interconnect stages are arrayed within an interconnect assembly as may be well appreciated by anyone skilled in the art.
Accordingly, the scope of the invention described in the above specification is set forth by the following claims and their legal equivalents.
Claims
1-32. (canceled)
33. An interconnect assembly comprising:
- a carrier grid, at least a portion of the carrier grid having a resilient property; and
- a plurality of conductive contact structures supported by the carrier grid,
- at least a portion of the carrier grid compliantly bending upon a predetermined force being applied to at least a portion of the conductive contact structures, the conductive contact structures being configured to pivot about a rotative axis upon the application of the predetermined force.
34. The interconnect assembly of claim 33 wherein the resilient property of the carrier grid opposes pivoting of the conductive contact structures about the rotative axis.
35. The interconnect assembly of claim 33 wherein the carrier grid includes a plurality of x-axis grid members and a plurality of y-axis grid members, corresponding ones of the x-axis grid members and y-axis grid members extending to nodes of the carrier grid.
36. The interconnect assembly of claim 35 wherein at least one of the x-axis grid members and/or the y-axis grid members includes an interface region to which a respective conductive contact structure is secured, the interface region having a width dimension greater than the remainder of the corresponding x-axis grid member or y-axis grid member.
37. The interconnect assembly of claim 35 wherein the conductive contact structures are secured to respective y-axis grid members.
38. The interconnect assembly of claim 33 wherein each of the conductive contact structures includes (1) a center portion secured to the carrier grid, (2) a first arm portion extending along a downward angle from the center portion, and (3) a second arm portion extending along an upward angle from the center portion.
39. The interconnect assembly of claim 33 wherein the interconnect assembly is configured to provide electrical interconnection between a first structure and a second structure, a first contact tip of each of the conductive contact structures being fixedly electrically coupled to electrical contacts of one of the first structure and the second structure.
40. The interconnect assembly of claim 33 wherein each of the conductive contact structures includes a first contact tip at a first end thereof, and a second contact tip at a second end thereof, at least a portion of the conductive contact structures defining a slot dividing at least one of the first contact tip and/or the second contact tip into a left tip portion and a right tip portion.
41. The interconnect assembly of claim 33 wherein each of the conductive contact structures includes a first contact tip at a first end thereof, and a second contact tip at a second end thereof, at least a portion of the conductive contact structures defining a slot extending from the first contact tip to the second contact tip and dividing the conductive contact structure into a left portion and a right portion.
42. The interconnect assembly of claim 33 wherein the conductive contact structures are secured to the carrier grid on a first surface thereof at an interface region, the interconnect assembly additionally comprising a stiffening structure on a second surface of the carrier grid opposite the interface region.
43. The interconnect assembly of claim 33 wherein each of the conductive contact structures includes a core and a conductive plating disposed on the core.
44. The interconnect assembly of claim 43 wherein the core includes an NiMn alloy and the plating is an electroplating.
45. The interconnect assembly of claim 33 wherein the carrier grid comprises a polyimide layer.
46. The interconnect assembly of claim 33 wherein the carrier grid includes a support layer and a dielectric layer provided on the support layer, and wherein predetermined portions of the carrier grid are void of the support layer such that the predetermined portions of the support layer have a resilient property with respect to other portions of the carrier grid.
47. The interconnect assembly of claim 46 wherein the support layer is a metallic layer, and the dielectric layer comprises a polyimide material.
48. A method of providing an interconnect assembly, the method comprising the steps of:
- providing a carrier grid, at least a portion of the carrier grid having a resilient property; and
- securing a plurality of conductive contact structures to the carrier grid, the conductive contact structures being secured to the carrier grid such that at least a portion of the carrier grid compliantly bends upon a predetermined force being applied to at least a portion of the conductive contact structures, and such that the conductive contact structures pivot about a rotative axis upon the application of the predetermined force.
49. The method of claim 48 further comprising the step of:
- forming the plurality of conductive contact structures by a photolithographic process prior to the step of securing.
50. The method of claim 48 further comprising the step of:
- plating a core of each of the plurality of conductive contact structures with a conductive plating.
51. The method of claim 48 wherein the step of providing a carrier grid includes depositing a dielectric layer on a support substrate, and patterning the dielectric layer and support substrate to form the carrier grid.
52. The method of claim 51 wherein the step of providing a carrier grid includes removing a portion of the support substrate such that predetermined areas of the carrier grid include a portion of the dielectric layer without a corresponding portion of the support substrate, the predetermined areas having increased resiliency with respect to the remainder of the carrier grid.
53. The method of claim 48 wherein the step of providing a carrier grid includes patterning a dielectric layer and a support substrate to form a grid such that the grid includes a plurality of x-axis grid members and a plurality of y-axis grid members, wherein dimensions and spacing of the x-axis grid members and y-axis grid members are selected for the patterning at least partially based on desired resilient properties of the interconnect assembly.
Type: Application
Filed: Mar 10, 2005
Publication Date: Jul 21, 2005
Patent Grant number: 7189078
Inventors: January Kister (Portola Valley, CA), James Jaquette (Mesa, AZ), Gene Tokraks (Gilbert, AZ)
Application Number: 11/077,054