High speed information processing and mass storage system and method, particularly for information and application servers
A high speed, microcomputer based, Fibre Channel compatible and fault tolerant information processing and mass storage system especially suited for information servers and application servers. A unique and extremely versatile system architecture, including a dual loop arbitrated, Fibre Channel capable, multiple-fault tolerant, hot-swappable mass storage disk array, permits combinations of servers and mass storage arrays which can be tailored for a wide variety of applications and which can be configured with emphasis on the system characteristics such as redundancy, speed, processing capability, storage capability, and the like, as desired. A unique backplane and/or midplane arrangement for connecting the system components allows for easy and, in most cases, on-line field upgrading and/or service and at the same time provides for the very effective cooling of components, particularly those such as disk drives which tend to produce a lot of heat.
This application is related to Patent Application No. PCT/US99/05231 of Richard Dellacona filed Mar. 10, 1999, which is based upon Provisional Patent Application Ser. No. 60/077,643, filed Mar. 10, 1998, and to U.S. patent application Ser. No. 09/071282 of Richard Dellacona filed May 1, 1998, all of which are hereby incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
This invention relates to a high speed, microcomputer based, Fibre Channel compatible and fault tolerant information processing and mass storage system especially suited for information servers and application servers. In particular, the present invention relates to a method and apparatus for information processing and storage involving a unique and extremely versatile system architecture, including a dual loop arbitrated, Fibre Channel capable, multiple-fault tolerant, hot-swappable mass storage disk array and including a method and apparatus for providing an enterprise-wide information or application server system using such disk array.
2. State of the Art
Efforts have been made in the past to provide a mass storage file server capable of delivering information throughout an enterprise with high speed data throughput, scalable data storage capability in a convenient, easily configurable enclosure using well known, industry standard operating software and hardware. However, such systems have typically experienced many shortcomings and problems associated with equipment incompatibility as well as with the inability of presently available computer and communications hardware to sustain performance and service failure of component devices. Such shortcomings have included the lack of capability to add storage devices to accommodate increased storage requirements or to replace failed storage devices without the need to completely power down the information server. Some of the compatibility problems have involved, for example, bottlenecks in sharing information among the equipment components of various vendors. The above-referenced Dellacona patent applications address some of these problems and others, and provide unique solutions which are described and claimed therein.
The present invention further addresses some of the problems discussed in the referenced Dellacona applications, as well as others. For example, the present invention further addresses the problem of scalability and customization in information processing and storage systems for different applications. In some applications, there may be a greater need for processing capability rather than storage capacity, while other applications may require just the opposite. Yet other applications may require storage expansion for existing information processing systems. This invention provides an architecture which will readily accommodate such needs.
In addition, mass storage systems can create considerable heat, particularly where they are disk drive based. If the heat is not effectively removed, it can affect the reliability and life of the system. Often, it is difficult to remove the heat because of obstructions caused by the physical configuration of back planes and mid planes which act as barriers to air flow. Typically, for example, all of the disk drives of a mass storage module or array are typically plugged into connectors on the face of a backplane or mid plane that extends across the entire module. Whether enclosed in a cabinet or other enclosure or rack mounted without an enclosure, air flow through the module is inhibited by this type of structural arrangement, and excessive heating can occur, particularly in the vicinity of the disk drives.
Also, it is desirable to be able to hot swap individual disk drives of a mass storage module to accommodate the need for more storage capacity, but the system storage requirements may outgrow the capacity of the module and it may also be desirable to have the capability of adding modules without powering down the system. Of course, this capability must be provided without disturbing the operation of the existing module and with a minimum of signal degradation as modules are added.
SUMMARY OF THE INVENTIONThe present invention obviates one or more of the foregoing problems and/or shortcomings of the prior art through the provision of an information processing and mass storage method and system, including a unique mass storage array, particularly suited for information servers or application servers, with a novel system architecture which permits the addition or replacement of storage devices without interrupting or seriously degrading the operation of the system and which is highly fault-tolerant and reliable. In addition, the invention obviates one or more of the foregoing problems by providing a novel physical layout that permits the effective removal of heat from a system module containing heat creating components.
In accordance with one embodiment of the invention, an information processing and mass storage system adapted to be readily expandable to increase its storage capacity while the system is in operation comprises at least one module containing (a) at least one computer, (b) a plurality of plug-in storage devices such as disk drives for storing information, (c) a storage device bypass circuit board associated with each storage device, with each storage device being plugged into a connector on the bypass circuit board, (d) a module bypass circuit board including an optical input/output connector for outputting electrical signals from the module as light signals and for inputting light signals into the module as electrical signals and (e) a controller connecting the computer with each of the storage devices through its associated storage device bypass circuit board and through the module bypass circuit board.
Certain information server configurations in accordance with the invention include one or more computers, each computer connected to communicate through a Fibre Channel controller with a mass storage array comprising a plurality of bypass circuit boards, at least some of which are connected to an information storage device. In one embodiment, the controller provides a dual loop communications channel comprising two complete communication paths to each of bypass circuit boards and associated storage devices. In another embodiment, the controller provides a single loop which traverses the bypass circuit boards and any associated storage devices twice. In a one configuration with two or more computers, the Fibre Channel controller connected to each computer communicates with the mass storage array through a Fibre Channel controller bypass card.
In a preferred embodiment the computer is preferably a suitable conventional single board computer. The controller preferably is a conventional arbitrated dual channel Fibre Channel system through which the computer communicates with each of the storage device bypass circuit boards and the module bypass circuit board. The bypass circuit boards may be any suitable circuits which form a continuous loop for the Fiber Channel controller regardless of whether a disk drive is plugged into the drive bypass circuit board. The loop continues through other modules when they are connected to the module bypass circuit thereby readily permitting expansion while maintaining a unitary information processing and mass storage system.
In accordance with another embodiment of the present invention, a high speed information processing and mass storage system includes two modules, each including a plurality of disk drives in a hot-swappable, disk drive array. Each disk drive array is connected to a module bypass circuit which includes an optical input/output connector, preferably an optoelectronic transceiver. The optical input/output connectors of the modules are connected by a fiber optic transmission medium such that signals are communicated between the modules in the form of light. With this configuration, modules may be added to increase storage capacity without interrupting the operation of each other and without serious signal degradation.
In accordance with yet another embodiment of the present invention, a high speed information processing and/or mass storage system with disk drives for information storage includes at least one module with a plurality of drive bypass circuit boards, each including a drive bypass circuit board connector. At least one opening is provided between connectors to permit the flow of air between the connectors. Each drive bypass circuit board is a relatively flat circuit board with connectors on different edges of the board, wherein one of the connectors is the connector which receives the disk drive and the other connector connects to said drive bypass circuit board connector. The connectors, bypass circuit boards and drives are arranged such that when they are connected there is a path for air flow from outside the module alongside each bypass circuit board and its associated disk drive for cooling purposes without any backplane obstruction. Where the mass storage system is housed in an enclosure, at least one fan is mounted to force air from outside said enclosure through the spaces between said bypass boards and drives, preferably through the openings between the drive bypass circuit board connectors.
It will be appreciated that the present invention provides a novel high speed information processing and/or mass storage system particularly suitable for information and application servers. The system is scalable, fault tolerant, and reliable both because of its novel system architecture and its physical layout. Other features and advantages of the invention will become apparent from the following detailed description of exemplary and preferred embodiments when read in conjunction with the drawings which illustrate, by way of example, the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
One embodiment of an information or application server system in accordance with the present invention using the high speed information processing and mass storage system of the invention is illustrated in
The computer 102 preferably comprises single board high speed computer running a computer industry standard operating system software program such as, for example, Windows NT available from Microsoft Corporation. An operating system like Windows NT may be stripped down to remove those elements of the program which are not needed, if desired to preserve memory or to increase operating speed. Suitable conventional drivers of the type used for similar applications may be provided as necessary to support the particular architecture being implemented.
The computer may include a display such as a touch screen display, and various storage and peripheral devices (not shown) as required. The single board computer can include any of a wide number of suitable devices including, but not limited to, the Compact PCI CPU Board with Pentium Processor, Model No. ZT 5510, available from Ziatech Corporation. Modifications to enhance performance of the ZT 5510 can include an onboard 40 MB flash memory card for permanent storage of the non-reconfigurable portions of the Windows NT operating system software and an onboard, removable, PCMCIA 40 Mb flash memory card, “D2 FlashDisk” available from Sandisk Corporation for read/writeable storage of the reconfigurable portions of the Windows NT software.
The Fibre Channel controller 104 may be any suitable design according to the Fibre Channel Consortium created as a separate board or incorporated into the single board computer design. The communications interface or access card 106 may be any suitable device made in accordance with well known T-1 communications architecture, and/or architecture adapted for compatibility with other network and telecommunications architectures, protocols and topologies including, but not limited to, T-3, DS-3, OC-3C, OC-12C, OC-192C, FDDI, SONET, SCSI, TCP/IP, HiPPI and ATM. In addition, the computers 102 and 110 may be networked together and with other computers through appropriate ethernet cards or other suitable networking techniques. The respective manufacturer, Fibre Channel Consortium and I2O Special Interest Group reference design data sheets and materials describing the detailed operating capabilities and specifications of each of the foregoing components are hereby incorporated by reference in their entirety. Also, further information concerning possible subsystems and connection protocols for the server are described in the referenced Dellacona applications.
For example,
Each module 202 has a module or chassis bypass circuit board 216 in the communication path of the Fibre Channel controller 104. The chassis bypass circuit board 216 of module 202A is provided with an optical input/output connector 218 for outputting electrical signals from the module 202A as light signals and for inputting light signals into the module 202A as electrical signals. Likewise, the modules 202B . . . 202n have chassis bypass circuit boards 216 with associated input/output connectors 218 (not shown). As illustrated, the input/output connector 218 of the chassis bypass circuit board of module 202A is adapted to be connected via a light transmission medium such as optical fibers 220 to the optical input/output connector 218 (not shown) of the chassis bypass circuit board of module 202B.
As was previously noted, the controller 104 preferably is a conventional Fibre Channel Controller (FCC) which operates on a Fibre Channel protocol, and preferably is an arbitrated dual channel Fiber Channel Controller. The controller 104 provides a dual channel communication path within each module 202 between the computer 102 and each of the operable storage devices 212. As is described hereinafter in greater detail, the bypass circuit boards 210 ensure that the communication path is complete even if a storage device 212 is inoperable (i.e., is not operable at or above some minimum level as is hereinafter described in greater detail) or has been removed from the connector on the bypass circuit board.
In that regard, each of the storage devices 212 is preferably a high speed, high capacity, conventionally available disk drive which is removably connected to its associated bypass circuit board 210. Preferably, the disk drive plugs into a connector on the bypass circuit board 210 so that it can be readily removed and replaced or so that drives may be added to empty bypass circuit board positions, as needed to expand the storage capacity of the module. Each bypass circuit board 210 includes circuits which connect the controller 104 to the disk drive 212 when the disk drive is plugged in and is conveying to the bypass circuit board that it is operable at a certain minimum level. On the other hand, the bypass circuit board 210 connects the controller 104 directly to the next bypass circuit board, bypassing the disk drive 212, when the disk drive is not plugged in or is not operating at or above the minimum level. Any suitable, conventional disk drive of the type that runs self-diagnostics and provides a fault/no fault output signal may be used for this purpose.
With further reference to
With continued reference to
It will be appreciated that with the above described architecture, individual mass storage device modules 202 of the mass storage array 200 may be expanded internally by adding disk drives or other suitable storage devices, and bad disk drives may be replaced without affecting the operation of the rest of the module or the system it is used in. This provides an extremely versatile hot swappable, hot expandable, mass storage device array. In addition, when the demands of the system exceed the capacity of a single module, an additional module may be added, again without interrupting the operation of the rest of the array or its system.
As was explained above, the Fibre Channel controller provides a dual path 10 through each module of the mass storage array 200. In accordance with the present invention, the system can be configured so that the dual path is a single path which traverses the mass storage array twice or two independent paths as is illustrated in
Referring now to
It will be appreciated by one skilled in the art that the
It will be appreciated that the system configuration illustrated in
It can be seen that system architecture according to the present invention lends itself to a wide variety of configurations to accommodate a variety of applications.
The A signal path from the backplane connector 230 is connected to a suitable conventional electronic switch 234. The B signal path from the backplane connector 230 likewise is connected to an electronic switch 236. The A and B signal paths from electronic switches 234 and 236 are connected to a bypass board storage card or drive connector 238 where they are routed to the storage device (e.g., a disk drive) 212.
The return A signal path from the bypass board drive connector 238 is connected to the switch 234, and the return B signal path from the connector 238 is connected to switch 236. A fault signal produced by the storage device to indicate its presence and its level of operability as was described above is applied to each of the electronic switches 234 and 236 to control the switching thereof. The A and B return paths from the switches 234 and 236 are connected to the bypass board backplane connector 230 where they are routed through the backplane 232 to the next bypass circuit board or to the Fibre Channel controller.
In operation, the A signal path enters the bypass circuit board and is connected to the switch 234. If the fault signal is not present (i.e., there is no fault and the signal is in a low or negative signal state) indicating that the storage device is not present or is inoperable, the switch 234 returns the A signal path to the bypass board backplane connector 230 thus bypassing the storage device 212. The B signal path similarly is looped back to the backplane connector 230 by the electronic switch 236 if the fault signal is low. On the other hand, the A and B signal paths are routed through the switches 234 and 236 to the storage device and then back through the switches when the fault signal is high or positive indicating the storage device is present and operable.
Referring now to
Typically, each of the modules 202 of a mass storage device array such as the one shown in
In accordance with one aspect of this physical structure of the invention, each of the drive bypass circuit boards 210 is a relatively thin circuit board. The circuit board is, however, unlike typical circuit boards built to receive a disk drive or other mass storage device. In such conventional circuit boards, the connector or plug which receives the plug-in disk drive typically is positioned so that the disk drive extends perpendicular to the plane of the board. For example, it is usual to have the bypass circuits and/or the communications paths between them on a backplane or midplane circuit board which extends across the module in a fashion similar to a computer motherboard which extends across the computer chassis and has connectors to receive various plug-in cards or boards. That arrangement creates an obstruction which makes it more difficult to effectively cool heat producing storage devices such as disk drives.
As is illustrated in
It can be seen that between each connector 240 there is a space 244 through which air can readily be drawn or forced by a fan or other air circulation means as is necessary. Even if the structural members are part of a housing that surrounds the components, screening or other suitable openings can be provided so that the areas 244 permit sufficient air flow. It can also be seen that because the disk drive is plugged into the bypass circuit board so that their planes are parallel and not perpendicular, there is no obstruction of air flow.
It will also be appreciated that this arrangement is particularly suited for field service of the unit and is readily upgradeable. Connectors can be readily replaced in the field without the need to change a complete backplane or midplane board, and in some instances repairs of this sort can be carried out with little or no down time. In addition, the illustrated connection arrangement permits expansion without the limitations encountered when using a backplane or midplane with a fixed number of expansion slots and without the other physical and electrical limitations encountered with backplanes or midplanes.
Similar physical arrangements may be used to connect computers to their associated components to create the desired server configuration. For example, as illustrated in
The above-described exemplary embodiments are intended to be illustrative in all respects, rather than restrictive, of the present invention. Thus the present invention is capable of many variations in detailed implementation that can be derived from the description contained herein by a person skilled in the art. All such variations and modifications are considered to be within the scope and spirit of the present invention as defined by the following claims.
Claims
1-36. (canceled)
37. A method for transferring data in a network server system, the network server system being connected to a network for providing subscribers on a network with access to data from the network server system, comprising:
- providing at least one mass storage device;
- providing first and second controllers, at least one of the first and second controllers being connected to the network for receiving input signals from the network and for outputting signals from the network server system to the network, and at least one of the first and second controllers being connected to said at least one mass storage device for controlling input and output of said at least one mass storage device;
- providing at least one central processing unit connected to the first and second controllers, said at least one central processing unit establishing direct communication between the first controller and the second controller; and
- maintaining the direct communication between the first and second controllers independently of said at least one central processing unit, freeing said at least one central processing unit.
38. The method of claim 37, wherein the first and second controllers operate with a Fibre Channel protocol.
39. The method of claim 37, wherein the first and second controllers comprise arbitrated loop dual channel Fibre Channel controllers.
40. The method of claim 37, wherein said at least one of the first and second controllers is connected to an optical input/output connector which is connected to the at least one mass storage device, the optical input/output connector outputting electrical signals as output light signals and inputting light signals to the first controller as input electrical signals.
41. A method for transferring data in a network server system, the network server system being connected to a network for providing subscribers on a network with access to data from the network server system, comprising:
- providing a high speed mass storage system;
- providing first and second Fibre Channel controllers, at least one of the first and second controllers being connected to the network for receiving input signals from the network and for outputting signals from the network server system to the network, and at least one of the first and second controllers being connected to the high speed mass storage system for controlling input and output from the mass storage system;
- providing at least one central processing unit connected to the first and second Fibre Channel controllers, said at least one central processing unit establishing direct communication between the first Fibre Channel controller and the second Fibre Channel controller; and
- maintaining the direct communication between the first and second controllers independently of said at least one central processing unit, freeing said at least one central processing unit.
42. The method of claim 41, wherein the first and second Fibre Channel controllers comprise arbitrated loop dual channel Fibre Channel controllers.
43. The method of claim 41, wherein said at least one of the first and second Fibre Channel controllers is connected to an optical input/output connector which is connected to the high speed mass storage system, the optical input/output connector outputting electrical signals as output light signals and inputting light signals to the first controller as input electrical signals.
44. A method for transferring data in a network server system, the network server system being connected to a network for providing subscribers on a network with access to data from the network server system, the method comprising:
- providing a mass storage system which is readily expandable to increase its storage capacity while the system is in operation, said mass storage system including at least one mass storage module with a plurality of plug-in storage devices for storing information;
- providing at least one central processing unit;
- providing a plurality of storage device bypass circuit boards associated with each of said storage devices, respectively, each storage device being plugged into a connector on the storage device bypass circuit board;
- providing a module bypass circuit board including an optical input/output connector for outputting electrical signals from said at least one mass storage module as light signals and for inputting light signals into said at least one mass storage module as electrical signals; and
- providing at least one controller providing a communication path between said at least one central processing unit with said plurality of storage devices through said storage device bypass circuit boards, respectively, and through the module bypass circuit board.
45. The method of claim 44 wherein each storage device bypass circuit board includes a circuit which completes the connection of the CPU with the other storage device bypass circuits and their associated storage devices whether or not the storage device is present.
46. The method of claim 44 wherein said at least one mass storage module comprises a first mass storage module and at least one additional mass storage module, and the module bypass circuit board connects to said at least one additional mass storage module by outputting electrical signals from said first mass storage module to said at least one additional mass storage module via the optical input/output connector when light signals are received from said at least one additional mass storage module by said optical input/output connector.
47. The method of claim 44 wherein said at least one mass storage module comprises first and second mass storage modules each including one said Module bypass circuit board including one said optical input/output connector, and wherein the optical input/output connectors of the first and second mass storage modules are connected by a fiber optic transmission medium such that signals are communicated between the first and second mass storage modules in the form of light.
48. The method of claim 47 wherein the module bypass circuit board of the first mass storage module connects to the second mass storage module by outputting electrical signals from the first mass storage module to the second mass storage module via the optical input/output connectors when light signals are received from the second mass storage module by said optical input/output connector of said first mass storage module.
49. The method of claim 44 wherein the controller operates with a Fibre Channel protocol.
50. The method of claim 44 wherein the controller is an arbitrated loop dual channel Fibre Channel controller.
51. The method of claim 44 wherein each storage device is a disk drive and wherein each storage device bypass circuit board comprises a disk drive bypass circuit board including a circuit which completes the connection of the CPU with the other drive bypass circuits and their associated disk drives whether or not the disk drive is present.
52. The method of claim 51 wherein said at least one mass storage module comprises a first mass storage module and at least one additional mass storage module, and the module bypass circuit board connects to said at least one additional mass storage module by outputting electrical signals from said first mass storage module to said at least one additional mass storage module via the optical input/output connector when light signals are received from said at least one additional mass storage module by said optical input/output connector.
53. The method of claim 50 including first and second mass storage modules each including one said module bypass circuit board including one said optical input/output connector, wherein the optical input/output connectors of the first and second mass storage modules are connected by a fiber optic transmission medium such that signals are communicated between the first and second mass storage modules in the form of light.
54. The method of claim 53 wherein the module bypass circuit board of the first mass storage module connects to the second mass storage module by outputting electrical signals from the first mass storage module to the second mass storage module via the optical input/output connectors when light signals are received from the second mass storage module by said optical input/output connector of said first mass storage module.
55. A network server system, comprising:
- a central processing unit;
- a first controller communicatively coupled to the central processing unit;
- a mass storage device communicatively coupled to the first controller, the first controller configured to control communications to and from the mass storage device; and
- a second controller communicatively coupled to the central processing unit and the first controller, the second controller configured to communicate with a network, the central processing unit being operative to establish direct communication between the first and second controllers, and said first and second controllers being operative to maintain the direct communication independent of the central processing unit.
56. The network server system of claim 55, wherein the first controller communicates with the mass storage device over a high speed optical network.
57. A server system, comprising:
- a central processing unit;
- a first controller communicatively coupled to the central processing unit and configured to control communications to and from at least one mass storage device over an optical communication path; and
- a second controller communicatively coupled to the central processing unit and the first controller, the second controller configured to communicate with a network, the central processing unit being operative to establish direct communication between the first and second controllers, and said first and second controllers being operative to maintain the direct communication independent of the central processing unit.
58. In a network server system, the improvement in the network server system comprising:
- a first controller communicatively coupled to the network server system;
- a mass storage device communicatively coupled to the first controller, the first controller configured to control communications to and from the mass storage device; and
- a second controller communicatively coupled to the network server system and the first controller, the second controller configured to communicate with a network, the network server system being operative to establish direct communication between the first and second controllers, and said first and second controllers being operative to maintain the direct communication with each other once the direct communication is established.
59. A network server system, comprising:
- a network communications interface;
- a mass storage device; and
- a storage device controller communicatively coupled to the network communications interface and to the mass storage device to control communications between the network communications interface and the mass storage device, said network communications interface being operative to establish direct communications between the mass storage device and the network communications interface via the storage device controller.
60. The network server system of claim 59, further comprising:
- a central processing unit communicatively coupled to the network communications interface to receive data requests from the network communications interface.
61. The network server system of claim 60, wherein the central processing unit is bypassed by establishing direct communications between the mass storage device and the network communications interface via the storage controller.
62. A method for transferring data in a network server system, the network server system being connected to a network for providing subscribers on a network with access to data from the network server system, the method comprising:
- providing a network communications interface;
- providing a mass storage device;
- providing a storage device controller communicatively coupled to the network communications interface and to the mass storage device to control communications between network communications interface and the mass storage device; and
- establishing direct communications between the mass storage device and the network communications interface via the storage device controller.
63. A network server system, comprising:
- a network communications interface;
- a mass storage device;
- a storage device controller communicatively coupled to the network communications interface and to the mass storage device to control communications between network communications interface and the mass storage device; and
- means for establishing direct communications between the mass storage device and the network communications interface via the storage device controller.
64. A mass storage server, comprising:
- a plurality of interface cards, each interface card configured to automatically detect whether a storage device is coupled to the interface card; and
- a mid-plane connector board having two opposing sides and a plurality of sockets for connecting the interface cards on each opposing side of the mid-plane connector board.
65. The mass storage server of claim 64, wherein the plurality of interface cards are bypass cards that can be sequentially connected together to interconnect a plurality of storage devices.
66. A mass storage server, comprising:
- a plurality of hot-swappable storage devices interconnected in a loop; and
- a mid-plane connector board having two opposing sides and a plurality of sockets for connecting the hot-swappable storage devices on each opposing side of the mid-plane connector board.
67. The mass storage server of claim 66, wherein each of said hot-swappable storage devices is coupled to the mid-plane connector board via a bypass card.
68. An information server system having a scalable, modular, fault tolerant, hot swappable architecture of a plurality of components for interfacing with a computer network, comprising:
- a central processing unit;
- means for interfacing with a computer network connected to the central processing unit;
- a mass storage subsystem connected to the central processing unit; and
- a mid-plane connector board having two opposing sides and means for connecting the interface cards for the components on each said opposing side of the mid-plane connector board.
69. Apparatus for increasing the throughput rates of a user computer having a communications interface via a network with a host server system, the user computer communications interface including a modem of the type utilizing a database hash table for decryption of encrypted data received from the host server system, the apparatus comprising:
- means for installing a supplementary database hash table in the user computer to replace the function of the hash table in the modem;
- means for accessing the supplementary hash table installed in the computer for decryption of encrypted data received from the host server system; and
- means for synchronizing the modem with the transmission speed of the host server system by gradually increasing the setting of the throughput rate of the modem along with that of data transmission from the host server system.
70. A system for increasing the throughput rates of a user computer, comprising:
- a user computer having a communications interface, the communications interface including a modem of the type utilizing a database hash table for decryption of encrypted data received;
- a host server system; and
- a network communicatively coupling the host server system and the user computer, wherein a supplementary database hash table is installed in the user computer to replace the function of the hash table in the modem, the supplementary hash table installed in the computer is accessed by the user computer to decrypt encrypted data received from the host server system, and the modem is synchronized with the transmission speed of the host server system by gradually increasing the setting of the throughput rate of the modem along with that of data transmission from the host server system.
71. A high speed mass storage system which is readily expandable to increase its storage capacity while the system is in operation, comprising:
- first and second mass storage modules, each mass storage module having at least one hot-swappable storage device;
- a module bypass circuit board including an optical input/output connector for outputting electrical signals from the module as light signals and for inputting light signals into the module as electrical signals, and wherein the first and second mass storage modules are connected to the module bypass circuit board by a fiber optic transmission medium such that signals are communicated between the first and second mass storage modules in the form of light; and
- a controller managing a communication path between the first and second mass storage modules through the module bypass circuit board.
72. A high speed mass storage system which is readily expandable to increase its storage capacity while the system is in operation, comprising:
- first and second mass storage modules, each mass storage module including at least one storage device and at least one bypass circuit board associated with each storage device;
- a module bypass circuit board including an optical input/output connector for outputting electrical signals from the module bypass circuit board as light signals and for inputting light signals into the module bypass circuit board as electrical signals, and wherein the first and second mass storage modules are connected to the module bypass circuit board by a fiber optic transmission medium such that signals are communicated between the first and second mass storage modules in the form of light; and
- a controller managing a communication path between the first and second mass storage modules through the module bypass circuit board.
73. A high speed mass storage system which is readily expandable to increase its storage capacity while the system is in operation, comprising:
- a plurality of mass storage modules;
- a module bypass circuit board including an optical input/output connector for outputting electrical signals from the module bypass circuit board as light signals and for inputting light signals into the module bypass circuit board as electrical signals, and wherein the plurality of mass storage modules are connected to the module bypass circuit board by a fiber optic transmission medium such that signals are communicated between the plurality of mass storage modules in the form of light.
74. The high speed mass storage system of claim 73, wherein said optical input/output connector comprises an optoelectronic transceiver.
75. A high speed mass storage system which is readily expandable to increase its storage capacity while the system is in operation, comprising:
- first and second mass storage modules, each mass storage module including at least one storage device and at least one bypass circuit board associated with each storage device;
- means for inputting and outputting light signals, said means for inputting and outputting light signals outputting electrical signals as light signals and for inputting light signals as electrical signals, and wherein the first and second mass storage modules are connected to the means for inputting and outputting light signals by a fiber optic transmission medium such that signals are communicated between the first and second mass storage modules in the form of light; and
- means for managing a communication path between the first and second mass storage modules through the means for inputting and outputting light signals.
76. The high speed mass storage system of claim 75, wherein said means for inputting and outputting light signals comprises an optoelectronic transceiver.
77. A high speed mass storage system which is readily expandable to increase its storage capacity while the system is in operation, comprising:
- a plurality of mass storage modules;
- means for inputting and outputting light signals, said means for inputting and outputting light signals outputting electrical signals as light signals and inputting light signals as electrical signals, wherein the plurality of mass storage modules are connected to the means for inputting and outputting light signals by a fiber optic transmission medium such that signals are communicated between the plurality of mass storage modules in the form of light.
78. The high speed mass storage system of claim 77, wherein said means for inputting and outputting light signals comprises an optoelectronic transceiver.
Type: Application
Filed: Feb 4, 2005
Publication Date: Oct 6, 2005
Inventor: Richard Dellacona (Riverside, CA)
Application Number: 11/051,852