Method and apparatus for supporting microelectronic substrates
A method and apparatus for supporting a microelectronic substrate. The apparatus can include a microelectronic substrate and a support member carrying the microelectronic substrate. The apparatus can further include a first connection structure carried by the support member. The first connection structure can have a first bond site configured to receive a flowable conductive material, and can further have at least two first elongated members connected and extending outwardly from the first bond site. Each first elongated member can be configured to receive at least a portion of the flowable conductive material from the first bond site, with none of the first elongated members being electrically coupled to the microelectronic substrate. The assembly can further include a second connection structure that is electrically coupled to the microelectronic substrate and that can include second elongated members extending away from a second bond site. The number of second elongated members can be equal to the number of first elongated members.
Latest Micron Technology, Inc. Patents:
- Microelectronic devices and electronic systems
- Arrays of memory cells including pairs of memory cells having respective charge storage nodes between respective access lines
- Stacked light emitting diode (led) hologram display
- Integrated transistors having gate material passing through a pillar of semiconductor material, and methods of forming integrated transistors
- Apparatus with memory process feedback
The present invention is directed toward methods and apparatuses for supporting microelectronic substrates. Conventional microelectronic device packages typically include a microelectronic substrate mounted on a support member and packaged with an encapsulant. In one conventional arrangement shown in
In operation, the wire bond pads 32 of the active trace patterns 30 are connected to corresponding wire bond pads 41 of the microelectronic substrate 40 with wire bonds 42. A solder ball (not shown in
In order to conform with industry standards, similar device packages 10 are often required to have the same number of solder balls, even if not all the solder balls are required to provide communication with the microelectronic substrate 40. Accordingly, the support member 20 can include inactive trace patterns 50. Each inactive trace pattern 50 can include a ball bond pad 51 that supports a solder ball, and an electroplating trace 54 for electroplating conductive coatings on the inactive trace pattern 50. The inactive trace patterns 50 do not include a wire bond pad 32 or a corresponding connecting trace 33. Accordingly, the inactive trace patterns 50 do not provide electrical communication to or from the microelectronic substrate 40. However, the inactive trace patterns 50 can support solder balls which, together with the solder balls on the active trace patterns 30, define a uniform pattern of solder balls that can be compatible with a variety of devices in which the package 10 is installed and/or tested.
One drawback with the foregoing arrangement is that the test jig 63 can partially or completely dislodge some of the solder balls 25 and/or the trace patterns to which the solder balls 25 are connected. The dislodged solder balls 25 and/or trace patterns can increase the incidence of short circuits in the package 10, and accordingly packages with these defects are typically discarded.
SUMMARYThe present invention is directed toward methods and apparatuses for supporting microelectronic substrates. An apparatus in according with one aspect of the invention includes a microelectronic substrate, a support member carrying the microelectronic substrate, and a connection structure carried by the support member. The connection structure can have a bond site configured to receive a flowable conductive material, such as solder, and the connection site can further have at least two elongated members connected to and extending outwardly from the bond site. Each elongated member can be configured to receive at least a portion of the flowable conductive material from the bond site, and none of the elongated members is electrically coupled to the microelectronic substrate.
In a further aspect of the invention, the connection structure can be a first connection structure and the elongated members can be first elongated members. The apparatus can include a second connection structure carried by the support member and having a second bond site configured to receive a flowable conductive material. The second connection structure can be electrically coupled to the microelectronic substrate and can have second elongated members extending outwardly from the second bond site, with each of the second elongated members configured to receive at least a portion of the flowable conductive material from the second bond site. The number of second elongated members for each second connection structure can equal the number of first elongated members for the first connection structure.
The invention is also directed to a method for coupling a flowable conductive material to a microelectronic substrate. The method can include aligning a support member to receive the flowable conductive material, with the support member having a support surface configured to carry a microelectronic substrate, and further having a first connection structure and second connection structure. The first connection structure can have a first bond site configured to receive the flowable conductive material and can be configured to remain decoupled from the microelectronic substrate when a support member carries the microelectronic substrate. The second connection structure can have a second bond site configured to receive the flowable conductive material, and can be configured to be electrically coupled to the microelectronic substrate when the support member carries the microelectronic substrate. The method can further include disposing a first quantity of the flowable conductive material on the first bond site, wicking a first portion of the first quantity of flowable material along first elongated members connected to and extending outwardly from the first bond site, and disposing a second quantity of the flowable conductive material on the second bond site. The method can further include wicking a second portion of the second quantity of flowable conductive material along second elongated members extending outwardly from the second bond site, with the second portion of the flowable conductive material having a volume approximately equal to a volume of the first portion. The first quantity of flowable conductive material can form a first conductive coupler, the second quantity can form a second conductive coupler, and each conductive coupler can project from the support member by approximately the same distance.
BRIEF DESCRIPTION OF THE DRAWINGS
The present disclosure describes packaged microelectronic substrates and methods for forming such packages. The term “microelectronic substrate” is used throughout to include substrates upon which and/or in which microelectronic circuits or components, data storage elements or layers, and/or vias or conductive lines are or can be fabricated. Many specific details of certain embodiments of the invention are set forth in the following description and in
As described above with reference to
The active connection structures 130 can each include an active bond site 131, such as a ball bond pad, which is configured to support a volume of a flowable conductive material, such as solder. When the flowable conductive material is disposed on the active bond site 131 and placed in a flowable state (for example, in a solder reflow oven), it can form an at least partially spherical or globular shape suitable for electrically and physically connecting the active connection structure 130 to other devices or circuit elements. The active connection structure 130 can further include two active elongated members 133, shown in
The inactive connection structures 150 can each include an inactive bond site 151, such as a ball bond pad, coupled to two inactive elongated members 153, shown in
In a further aspect of this embodiment, the support member 120 can optionally include a cover layer 126 attached to the first surface 121 with the connection structures 130 and 150 disposed between the cover layer 126 and the first surface 121. In one embodiment, the cover layer 126 can include a solder mask, and in other embodiments, the cover layer 126 can include other materials. In any of these embodiments, the cover layer 126 can have apertures 127 (shown as apertures 127a and 127b) aligned with the bond sites 131 and 151, respectively. The apertures 127 are sized to leave the bond sites 131 and 151 exposed, while covering at least part of each elongated member 133a,b and 153a,b to aid in securing the elongated members to the support member 120. In an alternative embodiment (shown in dashed lines in
In one embodiment, the bond sites 131 and 150 can each have a diameter of about 330 microns, and each elongated member 133a,b and 153a,b (and in particular, the inactive elongated member 153b) can have a length L of at least 250 microns. The apertures 127a,b in the cover layer 126 can have a diameter of about 430 microns. Accordingly, each bond site 131, 151 can be completely exposed through the corresponding aperture 127a, 127b. A portion 128 of each elongated member 133a,b and 153a,b can also be exposed for a distance D1 of about 50 microns, measured from the edge of the corresponding bond site 131, 151, respectively. The elongated member 153b can be covered by the cover layer 126 for a distance D2 of about 200 microns, and the remaining elongated members can be covered for distances greater than D2. In other embodiments, the foregoing dimensions can have other values.
In a further aspect of this embodiment, each elongated member 153a,b and 133a,b can have approximately the same width W in a direction transverse to the elongation direction to increase the likelihood that the flowable conductive material 125 will wick along each elongated member in at least approximately the same way. In yet a further aspect of this embodiment, the angular spacing between the active elongated members 133a and 133b can be about the same as the angular spacing between the inactive elongated members 131a and 131b (about 180° in FIGS. 3A-C).
One feature of the foregoing arrangement is that the number of inactive elongated members 153 extending away from the inactive bond site 151 is equal to the number of active elongated members 133 extending away from the active bond site 131. Accordingly, the cover layer 126 (or alternatively the elongated members alone) can provide approximately the same securing force to both the inactive connection structure 150 and the active connection structure 130. As a result, the inactive elongated members 153a,b can be less likely to pull away from the support member 120 when subjected to stresses, such as shear stresses which may be imposed on the conductive couplers 129 during testing. This feature can apply when the cover layer 126 covers some or all of the elongated members, and/or when the cover layer 126 is not implemented. This is unlike some conventional arrangements (such as those described above with reference to
Another feature of an embodiment of the arrangement described above with reference to FIGS. 3A-C is that the inactive elongated members 153 can wick away the flowable conductive material 125 in generally the same manner and to generally the same extent as the active elongated members 133. For example, because the number of inactive elongated members 153 extending away from each inactive bond site 151 can be the same as the number of active elongated members 133 extending away from each active bond site 131, the flowable conductive material 125 will tend to wick away from both bond sites in generally the same way. Accordingly, approximately the same volume of flowable conductive material will tend to wick along each elongated member and away from each bond site, whether the bond site is active or inactive.
Another feature of an embodiment of the arrangement described above with reference to FIGS. 3A-C is that the angular spacing between adjacent inactive elongated members 153 can be about the same as the angular spacing between adjacent active elongated members 133. As a result, the overall size and shape of flowable conductive material 125 remaining on the inactive bond site 151 (forming the inactive conductive coupler 129b) can be approximately the same as the overall size and shape of the flowable conductive material 125 remaining on the active bond site 131 (forming the active conductive coupler 129a). For example, the height H2 by which the inactive conductive coupler 129b projects from the support member 120 can be at least approximately the same as the height H1 by which the active conductive coupler 129a projects from the support member 120.
Yet another feature of an embodiment of the arrangement describe above with reference to FIGS. 3A-C is that the distance D, can be at least approximately the same for both the active elongated members 133a,b and the inactive elongated members 153a,b. Accordingly, the flowable conductive material 125 (which tends to wick along the exposed portions of the elongated members, but not beneath the cover layer 126) can wick away from the inactive bond site 151 in generally the same manner and to generally the same extent as it wicks away from the active bond site 131. As a result, the shape of the inactive conductive coupler 129b can be at least approximately identical to the shape of the active conductive coupler 129a.
An advantage of the foregoing features is that the inactive conductive couplers 129b can be contacted by a conventional test fixture (such as the fixture 60 shown in
The inactive connection structure 450 can include an inactive bond site 451 and two inactive elongated members 453a and 453b. In a further aspect of this embodiment, the inactive elongated member 453b can include an anchor 455 which can increase the strength of the connection between the inactive connection structure 450 and the support member 420. For example, the anchor 455 can provide more surface area beneath the corresponding cover layer 126 (not shown in
In other embodiments, the active and inactive connection structures can have other shapes and arrangements for which the number of elongated members extending outwardly from an active bond site is equal to the number of elongated members extending outwardly from an inactive bond site. In any of these arrangements, the connection structures and, optionally, the corresponding cover layers, can support conductive couplers (such as solder balls) having generally similar shapes and similar behaviors, regardless of whether the conductive couplers are carried by an active bond site or an inactive bond site.
The connection structure 1030 can include a second bond site 1031 spaced apart from the first bond site 1041. The second bond site 1031 can include a solder ball pad, and can support a conductive coupler 1029, such as a solder ball. Accordingly, the appuratus 1010 can have a “flip chip” configuration. In other embodiments, the second bond site 1031 can have other configurations and can support other types of conductive couplers. In any of these embodiments, the connection structure 1030 can include an electrically conductive material (such as a metal redistribution layer) and can have a first surface 1037 facing toward the second surface 1046 of the microelectronic substrate 1040, and a second surface 1038 facing opposite from the first surface 1037. The connection structure 1030 can further include elongated members 1033a and 1033b extending outwardly from the second bond site 1031. In one aspect of this embodiment, the elongated member 1033a can be connected between the second bond site 1031 of the connection structure and the first bond site 1041 of the microelectronic substrate 1040. The elongated member 1033b can have a generally tab-shaped configuration, generally similar to those described above.
In a further aspect of this embodiment, the apparatus 1010 can include passivation layers 1035 (shown as a first passivation layer 1035a and a second passivation layer 1035b) positioned between electrically conductive elements of the apparatus 1010 to at least partially isolate these elements from each other. For example, the first passivation layer 1035a can be positioned between the second surface 1046 (including the active microelectronic features 1044) of the microelectronic substrate 1040, and the first surface 1037 of the connection structure 1030. The second passivation layer 1035b can be positioned adjacent to the second surface 1038 of the connection structure 1030. In one aspect of this embodiment, the second passivation layer 1035b can perform at least some of the same functions as the cover layer 126 described above reference to
In a further aspect of this embodiment, the apparatus 1010 can include an inactive connection structure 1150 having a second bond site 1151. Elongated members 1153a, 1153b can extend outwardly from the second bond site 1151, without being electrically connected to the microelectronic substrate 1040. Accordingly, the inactive connection structures 1150 can support a conductive coupler to provide uniformity with a pre-selected pattern of conductive couplers, in a manner generally similar to that described above.
FIGS. 12A-B illustrate a cross-sectional side view and top isometric view, respectively, of an apparatus 1210 in accordance with another embodiment of the invention. In one aspect of this embodiment, the apparatus 1210 can include a microelectronic substrate 1240 having a first bond site 1241, and a connection structure 1230 having a second bond site 1231. The microelectronic substrate 1240 can include active devices 1244 electrically coupled to the first bond site 1241. The connection structure 1230 can include a plurality of elongated members 1233 (two are shown in FIGS. 12A-B as elongated members 1233a, 1233b) extending outwardly from the second bond site 1231. In one aspect of this embodiment, the elongated member 1233a can be coupled between the first bond site 1241 and the second bond site 1231 and the elongated member 1233b can include an elongated tab-shaped member generally similar to those described above. The bond site 1231 can include a support portion 1280 carrying a wettable portion 1281. The support portion 1280 can have a composition generally similar to that of the elongated members 1233a-1233b (for example, a composite of aluminum, nickel, copper and titanium), and the wettable portion 1281 can have a different composition (such as a composite of nickel and copper). Accordingly, the wettable portion 1281 can be configured to be wetted by a flowable conductive material (such as solder) to support and electrically couple to a conductive coupler 1229.
In a further aspect of this embodiment, the apparatus 1210 can include a die passivation layer 1235 positioned between the active devices 1244 and the connection structure 1230. A first dielectric layer 1236a can be disposed between the passivation layer 1235 and the elongated members 1233a, 1233b, and a second dielectric layer 1236b can be disposed on top of the connection structure 1230. In one aspect of an embodiment shown in
Referring now to
The connection structures 1430 can further include a connecting trace 1439 that extends outwardly from the second bond site 1432. The connecting trace 1439 can be coupled to a via 1436 that extends from the second surface of the support member 1420 to the first surface 1421. The via 1436 can be electrically coupled to the first bond site of the support member 1420, as described in greater detail below with reference to
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Claims
1-61. (canceled)
62. An electronic device, comprising:
- a housing;
- a microelectronic substrate positioned within the housing;
- a support substrate carrying the microelectronic substrate in the housing; and
- a connection structure carried by the support substrate, the connection structure having a bond site configured to receive a flowable conductive material, the connection structure further having at least two elongated members, each of which is connected to and extends outwardly from the bond site, each elongated member being configured to receive at least a portion of the flowable conductive material from the bond site, and neither of which is electrically connected to the microelectronic substrate.
63. The device of claim 62 wherein each elongated member is configured to receive at least a portion of the flowable conductive material from the bond site.
64. The device of claim 62 wherein the connection structure is a first connection structure and the elongated members are first elongated members configured to receive at least a portion of the flowable conductive material from the first bond site, and wherein the apparatus further comprises a second connection structure carried by the support substrate, the second connection structure having a second bond site configured to receive a flowable conductive material, the second connection structure having a third bond site electrically coupled to the microelectronic substrate, the second connection structure further having second elongated members extending outwardly from the second bond site, wherein each of the second elongated members is configured to receive at least a portion of the flowable conductive material, and wherein and at least one of the second elongated members extends between the second and third bond sites.
65. The device of claim 62 wherein the elongated members are configured to be wetted by the flowable conductive material when the flowable conductive material is in a flowable state.
66. The device of claim 62 wherein the conductive structure includes two elongated members extending away from opposite sides of the bond site.
67. The device of claim 62, further comprising a layer disposed on the elongated members and attached to the support substrate, the layer having an aperture aligned with the bond site.
68. The device of claim 62, further comprising a layer disposed on the elongated members and attached to the support substrate, the layer having an aperture aligned with the bond site, and wherein a covered portion of each elongated member extends between the layer and the support substrate, and an exposed portion of each elongated member is exposed through the aperture, further wherein each exposed portion has approximately the same length.
69. The device of claim 62 wherein the connection structure includes at least one electrically conductive metallic material.
70. The device of claim 62 wherein the bond site includes a solder ball pad, and wherein the apparatus further comprises a solder ball disposed on the solder ball pad.
71. The device of claim 62 wherein at least one of the elongated members has a first end connected to the bond site and a second end spaced apart from the bond site, and wherein the elongated member includes an anchor toward the second end to secure the elongated member to the support substrate.
72. The device of claim 62 wherein the support substrate has a first surface coupled to the microelectronic substrate and a second surface facing opposite from the first surface, the connection structure being disposed on the second surface, and wherein the support substrate includes a slot extending between the first and second surfaces, and wherein the device further comprises wires extending through the slot between the second connection structure and the microelectronic substrate.
73-81. (canceled)
82. An apparatus for supporting a microelectronic substrate, comprising:
- a support member having a first surface and a second surface facing opposite from the first surface, the second surface being configured to carry a microelectronic substrate; and
- a connection structure carried by the support member, the connection structure including:
- first and second bond sites, the first bond site being positioned at least proximate to the first surface of the support member, the second bond site being positioned at least proximate to the second surface of the support member, the second bond site being configured to be electrically coupled to the microelectronic substrate when the support member carries the microelectronic substrate, the first bond site being configured to receive a flowable conductive material; and
- at least two elongated members connected to and extending outwardly from the first bond site, at least one of the elongated members being coupled between the first and second bond sites.
83. The apparatus of claim 82 wherein the at least one elongated member includes a first portion in a first plane generally parallel to the first surface, a second portion in a second plane generally parallel to the second surface and spaced apart from the first plane, and a third portion connected between the first and second portions.
84. The apparatus of claim 82, further comprising a solder ball disposed on the first bond site.
85. The apparatus of claim 82, further comprising:
- a microelectronic substrate carried by the support member; and
- a conductive link electrically coupled between the microelectronic substrate and the second bond site.
86. The apparatus of claim 82, further comprising:
- a microelectronic substrate carried by the support member; and
- a wire bond electrically coupled between the microelectronic substrate and the second bond site.
87. The apparatus of claim 82 wherein each elongated member is configured to receive at least a portion of a flowable material from the first bond site.
88-124. (canceled)
Type: Application
Filed: Jun 30, 2005
Publication Date: Nov 3, 2005
Applicant: Micron Technology, Inc. (Boise, ID)
Inventors: Stephen Moxham (Boise, ID), William Stephenson (Meridian, ID)
Application Number: 11/172,325