High dielectric constant spacer for imagers
An imager having gates with spacers formed of a high dielectric material. The high dielectric spacer provides larger fringing fields for charge transfer and improves image lag and charge transfer efficiency.
The invention relates generally to a method and apparatus relating to a pixel array of an imager. In particular, the invention relates to imagers having pixels with an improved gate structure.
BACKGROUNDTypically, a digital imager array includes a focal plane array of pixel cells, each one of the cells including a photoconversion device, e.g. a photogate, photoconductor, or a photodiode. In a CMOS imager a readout circuit is connected to each pixel cell which typically includes a source follower output transistor. The photoconversion device converts photons to electrons which are typically transferred to a floating diffusion region connected to the gate of the source follower output transistor. A charge transfer device (e.g., transistor) can be included for transferring charge from the photoconversion device to the floating diffusion region. In addition, such imager cells typically have a transistor for resetting the floating diffusion region to a predetermined charge level prior to charge transference. The output of the source follower transistor is gated as an output signal by a row select transistor.
Exemplary CMOS imaging circuits, processing steps thereof, and detailed descriptions of the functions of various CMOS elements of an imaging circuit are described, for example, in U.S. Pat. No. 6,140,630 to Rhodes, U.S. Pat. No. 6,376,868 to Rhodes, U.S. Pat. No. 6,310,366 to Rhodes et al., U.S. Pat. No. 6,326,652 to Rhodes, U.S. Pat. No. 6,204,524 to Rhodes, and U.S. Pat. No. 6,333,205 to Rhodes. The disclosures of each of the forgoing patents are hereby incorporated by reference in their entirety.
In a digital CMOS imager, when incident light strikes the surface of a photoconversion device, e.g., a photodiode, electron/hole pairs are generated in the p-n junction of the photodiode. The generated electrons are collected in the n-type region of the photodiode. The photo charge moves from the initial charge accumulation region to the floating diffusion region or it may be transferred to the floating diffusion region via a transfer transistor. The charge at the floating diffusion region is typically converted to a pixel output voltage by a source follower transistor (described above).
Image lag can be a problem for imagers, whether the imager is a CMOS, CCD or other type of imager. Image lag can occur, for example, in CMOS image sensor pixels using transfer transistors to transfer charge from the photodiode to the floating diffusion region. There is a potential barrier corresponding to the photodiode/transfer gate region. If this potential barrier is too high, a portion of the charge will be unable to move from the photodiode to the floating diffusion region. The greater the potential barrier, the less charge will be transferred to the floating diffusion region. A potential barrier in the photodiode/transfer gate region may cause incomplete charge transfer reducing the charge transfer efficiency (CTE) of the pixel cell. Charge remaining in the photodiode from a prior image can affect a subsequent image, causing image lag, where a ghost image from the initial charge is apparent in a subsequent image.
Fringing fields improve charge transfer from a photoconversion device, e.g. a photodiode, to a charge collection region. Conventional imagers typically utilize low dielectric (K) oxide spacers for transistor gates, which create smaller fringing fields. A larger fringing field in, for example, a transfer gate of a CMOS imager would improve charge transfer from the photodiode to the floating diffusion region. This would thereby reduce image lag because more carriers are transferred. In CCD imagers, larger fringing fields improve charge transfer efficiency (CTE) in addition to improving image lag characteristics.
CCD devices that use overlapping polysilicon 1 and polysilicon 2 electrodes achieve a high fringing field by applying high voltages to the polysilicon electrodes. This is not desireable on CMOS imagers which are advantageously low voltage devices so they will compatible with CMOS logic circuit and devices. Another imager device, the single polysilicon CCD imager does not have overlapping polysilicon electrodes and could also benefit from a method to achieve high fringing fields to achieve improved charge transfer. Thus, there is a desire and need to increase fringing fields and thereby improve charge transfer and reduce image lag in imager devices.
SUMMARYEmbodiments of the invention provide an imager having gates with spacers formed of a high dielectric constant material. The high dielectric spacers provide larger fringing fields for charge transfer and also improve image lag and charge transfer efficiency.
DESCRIPTION OF THE DRAWINGSAdditional features of the present invention will be apparent from the following detailed description and drawings which illustrate exemplary embodiments of the invention, in which:
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof and show by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized, and that structural, logical, and electrical changes may be made without departing from the spirit and scope of the present invention. The progression of processing steps described is exemplary of embodiments of the invention; however, the sequence of steps is not limited to that set forth herein and may be changed as is known in the art, with the exception of steps necessarily occurring in a certain order.
The terms “wafer” and “substrate,” as used herein, are to be understood as including silicon, silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) technology, doped and undoped semiconductors, and other semiconductor structures. Furthermore, when reference is made to a “wafer” or “substrate” in the following description, previous processing steps may have been utilized to form regions, junctions, or material layers in or over the base semiconductor structure or foundation. In addition, the semiconductor need not be silicon-based, but could be based on silicon-germanium, germanium, gallium arsenide or other semiconductors.
The term “pixel,” as used herein, refers to a photo-element unit cell containing a photoconversion device and associated transistors for converting photons to an electrical signal. For purposes of illustration, a single representative pixel and its manner of formation is illustrated in the figures and description herein; however, typically fabrication of a plurality of like pixels proceeds simultaneously. Accordingly, the following detailed description is not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
In the following description, the invention is described in relation to CMOS and CCD imagers for convenience; however, the invention has wider applicability to other solid state imagers. Now referring to the figures, where like reference numbers designate like elements,
The illustrated photodiode 50 consists of a p+region 22 and an n-type region 24. The remaining structures shown in
In the exemplary embodiment shown in
Referring to
As shown in
Formed floating diffusion region 16 and source/drain region 30 are depicted in
The reset transistor or any other transistor may also be formed with or without a high dielectric constant spacers. Alternatively, some transistors of a pixel sensor cell may be formed with a high dielectric constant spacers, while other transistors of the same pixel sensor cell may be formed according to conventional methods with conventional spacers known in the art. In addition, although described above in reference to a CMOS image sensor, the method of forming a gate stack having a high dielectric constant spacer may also be performed on other types of imagers such as for example, a charge coupled device (CCD).
The pixel sensor cell is essentially complete at this stage, and conventional processing methods may be used to form insulating, shielding, and metallization layers to connect gate lines and other connections to the pixel sensor cells. For example, the entire surface may be covered with a passivation layer 88 of, for example, silicon dioxide, BSG, PSG, or BPSG, which is CMP planarized and etched to provide contact holes, which are then metallized to provide contacts. Conventional layers of conductors and insulators may also be used to interconnect the structures and to connect the pixel to peripheral circuitry.
The processes and devices described above illustrate preferred methods and typical devices of many that could be used and produced. The above description and drawings illustrate embodiments, which achieve the objects, features, and advantages of the present invention. However, it is not intended that the present invention be strictly limited to the above-described and illustrated embodiments. Any modifications, though presently unforeseeable, of the present invention that come within the spirit and scope of the following claims should be considered part of the present invention.
Claims
1. A pixel sensor cell comprising:
- a photoconversion device; and
- at least one gate stack, said at least one gate stack having at least one portion covered by a spacer layer comprising high dielectric constant material.
2. The pixel sensor cell of claim 1, wherein said high dielectric material is selected from the group consisting of metal oxide, aluminum oxide, hafnium oxide, tantalum oxide, silicon nitride and barium strontium titanate.
3. The pixel sensor cell of claim 1, wherein said at least one gate stack is part of a transistor selected from the group consisting of a transfer transistor, storage transistor, high dynamic range transistor, source follower transistor, row select transistor and a global shutter transistor.
4. The pixel sensor cell of claim 3, wherein said transistor is part of a pixel sensor cell selected from the group consisting of a four transistor, five transistor, six transistor and seven transistor pixel sensor cell.
5. The pixel sensor cell of claim 1, wherein said pixel sensor cell is part of a CCD sensor.
6. The pixel sensor cell of claim 5, wherein the CCD sensor is a single gate CCD sensor.
7. The pixel sensor cell of claim 5, wherein the CCD sensor is an overlapping gate sensor.
8. The pixel sensor cell of claim 1, wherein the photoconversion device is selected from the group consisting of a photodiode, a photogate and a photosensor.
9. The pixel sensor cell of claim 8, wherein said photodiode is a pnp photodiode.
10. The pixel sensor cell of claim 8, wherein said photodiode is an npn photodiode.
11. The pixel sensor cell of claim 1, wherein said gate stack is part of an n-channel transistor.
12. The pixel sensor cell of claim 1, wherein said gate stack is part of a p-channel transistor.
13. The pixel sensor cell of claim 1, wherein said gate stack is formed of a gate oxide layer and a conductor layer.
14. The pixel sensor cell of claim 1, wherein said gate stack is formed of a gate oxide layer, a conductor layer and an insulator layer.
15. The pixel sensor cell of claim 13, wherein said conductor layer is formed of at least one of poly, poly/silicide, poly WSix, poly/TiSix, poly/metal and poly/WNx/W.
16. The pixel sensor cell of claim 14, wherein said insulator layer is formed of at least one of oxide, nitride, aluminum oxide, hafnium oxide, tantalum oxide and BST.
17. The pixel sensor cell of claim 13, wherein said gate oxide layer is a grown layer.
18. The pixel sensor cell of claim 17 wherein said grown oxide layer is formed of at least one of silicon oxide, silicon nitride, and silicon oxide/silicon nitride.
19. The pixel sensor cell of claim 13, wherein said gate oxide layer is a deposited layer.
20. The pixel sensor cell of claim 19, wherein said deposited oxide layer is formed of at least one of nitride, metal oxide, aluminum oxide, hafnium oxide, tantalum oxide and BST.
21. The pixel sensor cell of claim 1, wherein said high dielectric constant material spacer has a thickness of about 100 Åto about 1500 Å.
22. The pixel sensor cell of claim 1, wherein said high dielectric constant material spacer has a thickness of about 200 Å to about 800 Å.
23. The pixel sensor cell of claim 1, wherein said pixel sensor cell is part of a CMOS imager.
24. An imager integrated circuit comprising:
- a doped layer formed in a substrate;
- an array of pixel sensor cells formed in said doped layer, wherein each pixel sensor cell has at least one gate stack, said at least one gate stack having at least one portion covered by a spacer layer of high dielectric constant material; and
- signal processing circuitry formed in said substrate and electrically connected to the array for receiving and processing pixel signals representing an image acquired by the array and for providing output data representing said image.
25. The imager integrated circuit of claim 24, wherein said high dielectric material is selected from the group consisting of metal oxide, aluminum oxide, hafnium oxide, tantalum oxide, silicon nitride and barium strontium titanate.
26. The imager integrated circuit of claim 24, wherein said at least one gate stack is part of a transistor selected from the group consisting of a transfer transistor, storage transistor, high dynamic range transistor, source follower transistor, row select transistor and a global shutter transistor.
27. The imager integrated circuit of claim 26, wherein said transistor is part of a pixel sensor cell selected from the group consisting of a four transistor, five transistor, six transistor and seven transistor pixel sensor cell.
28. The imager integrated circuit of claim 24, wherein said pixel sensor cell is part of a CCD sensor.
29. The imager integrated circuit of claim 28, wherein the CCD sensor is a single gate CCD sensor.
30. The imager integrated circuit of claim 28, wherein the CCD sensor is an overlapping gate sensor.
31. The imager integrated circuit of claim 24, wherein the photoconversion device is selected from the group consisting of a photodiode, a photogate and a photosensor.
32. The imager integrated circuit of claim 31, wherein said photodiode is a pnp photodiode.
33. The imager integrated circuit of claim 31, wherein said photodiode is an npn photodiode.
34. The imager integrated circuit of claim 24, wherein said gate stack is part of an n-channel transistor.
35. The imager integrated circuit of claim 24, wherein said gate stack is part of a p-channel transistor.
36. The imager integrated circuit of claim 24, wherein said gate stack is formed of a gate oxide layer and a conductor layer.
37. The imager integrated circuit of claim 24, wherein said gate stack is formed of a gate oxide layer, a conductor layer and an insulator layer.
38. The imager integrated circuit of claim 36, wherein said conductor layer is formed of at least one of poly, poly/silicide, poly WSix, poly/TiSix, poly/metal and poly/WNx/W.
39. The imager integrated circuit of claim 37, wherein said insulator layer is formed of at least one of oxide, nitride, aluminum oxide, hafnium oxide, tantalum oxide and BST.
40. The imager integrated circuit of claim 36, wherein said gate oxide layer is a grown layer.
41. The imager integrated circuit of claim 40, wherein said grown oxide layer is formed of at least one of silicon oxide, silicon nitride, and silicon oxide/silicon nitride.
42. The imager integrated circuit of claim 36, wherein said gate oxide layer is a deposited layer.
43. The imager integrated circuit of claim 42, wherein said deposited oxide layer is formed of at least one of nitride, metal oxide, aluminum oxide, hafnium oxide, tantalum oxide and BST.
44. The imager integrated circuit of claim 24, wherein said high dielectric constant material spacer has a thickness of about 100 Å to about 1500 Å.
45. The imager integrated circuit of claim 24, wherein said high dielectric constant material spacer has a thickness of about 200 Å to about 800 Å.
46. The imager integrated circuit of claim 24, wherein said pixel sensor cell is part of a CMOS imager.
47. A processing system comprising:
- a processor; and
- an imager coupled to said processor, having pixel sensor cells, wherein each pixel sensor cell has at least one gate stack, said at least one gate stack having at least one portion covered by a spacer layer of high dielectric constant material.
48. The system of claim 47, wherein said high dielectric material is selected from the group consisting of metal oxide, aluminum oxide, hafnium oxide, tantalum oxide, silicon nitride and barium strontium titanate.
49. The system of claim 47, wherein said at least one gate stack is part of a transistor selected from the group consisting of a transfer transistor, storage transistor, high dynamic range transistor, source follower transistor, row select transistor and a global shutter transistor.
50. The system of claim 49, wherein said transistor is part of a pixel sensor cell selected from the group consisting of a four transistor, five transistor, six transistor and seven transistor pixel sensor cell.
51. The system of claim 47, wherein said pixel sensor cell is part of a CCD sensor.
52. The system of claim 51, wherein the CCD sensor is a single gate CCD sensor.
53. The system of claim 51, wherein the CCD sensor is an overlapping gate sensor.
54. The system of claim 47, wherein the photoconversion device is selected from the group consisting of a photodiode, a photogate and a photo sensor.
55. The system of claim 54, wherein said photodiode is a pnp photodiode.
56. The system of claim 54, wherein said photodiode is an npn photodiode.
57. The system of claim 47, wherein said gate stack is part of an n-channel transistor.
58. The system of claim 47, wherein said gate stack is part of a p-channel transistor.
59. The system of claim 47, wherein said gate stack is formed of a gate oxide layer and a conductor layer.
60. The system of claim 47, wherein said gate stack is formed of a gate oxide layer, a conductor layer and an insulator layer.
61. The system of claim 59, wherein said conductor layer is formed of at least one of poly, poly/silicide, poly WSix, poly/TiSix, poly/metal and poly/WNx/W.
62. The system of claim 60, wherein said insulator layer is formed of at least one of oxide, nitride, aluminum oxide, hafnium oxide, tantalum oxide and BST.
63. The system of claim 59, wherein said gate oxide layer is a grown layer.
64. The system of claim 63, wherein said grown oxide layer is formed of at least one of silicon oxide, silicon nitride, and silicon oxide/silicon nitride.
65. The system of claim 59, wherein said gate oxide layer is a deposited layer.
66. The system of claim 65, wherein said deposited oxide layer is formed of at least one of nitride, metal oxide, aluminum oxide, hafnium oxide, tantalum oxide and BST.
67. The system of claim 47, wherein said high dielectric constant material spacer has a thickness of about 100 Å to about 1500 Å.
68. The system of claim 47, wherein said high dielectric constant material spacer has a thickness of about 200 Å to about 800 Å.
69. The system of claim 47, wherein said pixel sensor cell is part of a CMOS imager.
70. A method of forming a pixel sensor cell comprising:
- forming at least one gate stack;
- forming a spacer over at least one portion of said at least one gate stack, wherein said spacer is comprised of a high dielectric constant material.
71. The method of claim 70, wherein said forming a spacer step comprises forming the spacer with a thickness of about 100 Å to about 1500 Å.
72. The method of claim 70, wherein said forming a spacer step comprises forming the spacer with a thickness of about 200 Å to about 600 Å.
73. The method of claim 70, further comprising etching said spacer layer.
74. The method of claim 73, wherein said pixel sensor cell is masked before said etching step.
75. The method of claim 70, wherein said high dielectric material is selected from the group consisting of metal oxide, aluminum oxide, hafnium oxide, tantalum oxide, silicon nitride and barium strontium titanate.
76. The method of claim 70, wherein said at least one gate stack is part of a transistor selected from the group consisting of a transfer transistor, storage transistor, high dynamic range transistor, source follower transistor, row select transistor and a global shutter transistor.
77. The method of claim 76, wherein said transistor is part of a pixel sensor cell selected from the group consisting of a four transistor, five transistor, six transistor and seven transistor pixel sensor cell.
78. The method of claim 70, wherein said pixel sensor cell is part of a CCD sensor.
79. The method of claim 78, wherein the CCD sensor is a single gate CCD sensor.
80. The method of claim 78, wherein the CCD sensor is an overlapping gate sensor.
81. The method of claim 70, wherein said gate stack is part of an n-channel transistor.
82. The method of claim 70, wherein said gate stack is part of a p-channel transistor.
83. The method of claim 70, wherein said gate stack is formed of a gate oxide layer and a conductor layer.
84. The method of claim 70, wherein said gate stack is formed of a gate oxide layer, a conductor layer and an insulator layer.
85. The method of claim 84, wherein said conductor layer is formed of at least one of poly, poly/silicide, poly WSix, poly/TiSix, poly/metal and poly/WNx/W.
86. The method of claim 84, wherein said insulator layer is formed of at least one of oxide, nitride, aluminum oxide, hafnium oxide, tantalum oxide and BST.
87. The method of claim 83, wherein said gate oxide layer is a grown layer.
88. The method of claim 87, wherein said grown oxide layer is formed of at least one of silicon oxide, silicon nitride, and silicon oxide/silicon nitride.
89. The method of claim 83, wherein said gate oxide layer is a deposited layer.
90. The method of claim 89, wherein said deposited oxide layer is formed of at least one of nitride, metal oxide, aluminum oxide, hafnium oxide, tantalum oxide and BST.
91. The method of claim 70, wherein said high dielectric constant material spacer has a thickness of about 100 Å to about 1500 Å.
92. The method of claim 70, wherein said high dielectric constant material spacer has a thickness of about 200 Å to about 800 Å.
93. The method of claim 70, wherein said pixel sensor cell is part of a CMOS imager.
Type: Application
Filed: Jun 14, 2004
Publication Date: Dec 15, 2005
Inventor: Howard Rhodes (Boise, ID)
Application Number: 10/865,762