Method for operating a multi-channel optoelectronic module
One example of a method for operating a transceiver includes selecting a first operating wavelength from a set of operating wavelengths. Next, a first control value is accessed that corresponds to the first operating wavelength. The first control value also corresponds to a first operating temperature of the transceiver, and the first operating temperature resides within a range of about 30° C. to about 50° C. Finally, the transceiver is operated substantially at the first operating temperature.
This application is a division, and claims benefit, of U.S. patent application Ser. No. 10/725,871, entitled CALIBRATION OF A MULTI-CHANNEL OPTOELECTRONIC MODULE WITH INTEGRATED TEMPERATURE CONTROL, filed Dec. 2, 2003 which, in turn, is a continuation of U.S. patent application Ser. No. 10/700,845, filed Nov. 4, 2003 (the “'845 Application). The '845 Application in turn claims priority to and benefit of U.S. Provisional Patent Application No. 60/423,969, filed Nov. 5, 2002, and both of which are entitled “Calibration of a Multi-channel Optoelectronic Module with Integrated Temperature Control.” All of the aforementioned applications are incorporated herein in their respective entireties by this reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates generally to optoelectronic components. More particularly, the present invention relates to methods for calibrating a multi-channel, fiber-optic laser transmitter.
2. Related Technology
The proliferation of communication technologies creates increases in demand for data transfer channels. Optical networks are a highly-reliable and efficient way to satisfy this demand. As a result, there is a desire to achieve higher data throughput in existing optical networks. A current means for satisfying this desire is the use of Dense Wave Division Multiplexing (DWDM). As shown in
There are several standards for a signal traveling through an optical network. These standards specify acceptable wavelengths of a signal (channel) and the distance or spacing between neighboring channels. There exists a need, therefore, for optoelectronic transceivers capable of operating on specific wavelengths. Currently, the most popular standards are 200 GHz (gigahertz) spacing, which is equivalent to 1.6 nm (nanometers) spacing between neighboring channels, 100 GHz, equivalent to 0.8 nm spacing, 50 GHz, equivalent to 0.4 nm spacing, and 25 GHz equivalent to 0.2 nm spacing between channels. The specific wavelengths (i.e., channels) acceptable for data transfer in an optical network are prescribed by the International Telecommunications Union (ITU).
Optical amplifiers, used to increase the strength of an optical signal before it enters an optical network, typically have an optimal operational wavelength range. For modern Erbium-Doped Fiber Amplifiers (EDFA) the typical operational wavelength range is 1523 to 1565 nm. If the network is using a 200 GHz standard for channel spacing, the number of available channels is 22. For a 100 GHz standard, the number of channels is 45; for a 50 GHz standard there are 90 channels; for a 25 GHz standard there are 180 channels.
The wavelength emitted by the laser shifts as the laser emitter ages. In order to calculate how much the laser emitter wavelength can shift before it starts encroaching on a neighboring channel, several parameters of laser emitter calibration must be taken into account.
When calculating the allowable pass band of a laser emitter, an allowance must be made for an initial setup tolerance 16 (
There are several factors determining the wavelength of a signal produced by traditional laser sources. These factors include current density, temperature of the laser emitter, as well as specific inherent characteristics of the laser emitter. The relationship between the temperature of the laser emitter and the wavelength produced is typically around 0.1 nm/° C. for Distributed Feedback (“DFB”) sources that are commonly used in DWDM applications. This means that if the laser emitter temperature is increased by 10° C., the wavelength of the emitted light will shift about +1 nm.
Since the wavelength produced by a transceiver at a specified laser emitter temperature and current density differs from one laser emitter to the other, the optoelectronic transceivers are initially calibrated before being installed in an optical network. The calibration includes monitoring the wavelength of optical signals produced by the laser emitter while varying its temperature as well as other operating conditions, and then storing calibration information in the memory of a microprocessor. It also includes receiving analog signals from sensors in the optoelectronic device and converting the analog signals into digital values, which are also stored in the memory. As a result the device generates control signals based on the digital values in the microprocessor to control the temperature of the laser emitter. The method of calibrating an optoelectronic transceiver is described in detail in United States patent application entitled “Control Circuit for Optoelectronic Module With Integrated Temperature Control,” identified by Ser. No. 10/101,248, and filed on Mar. 18, 2002, which is incorporated herein by reference.
For performance and reliability reasons, it is desirable to operate a laser emitter at a temperature between 15° C. and 50° C. In some embodiments the useful operating temperature range of the laser emitter is 20° C. to about 70° C. There are several factors limiting the acceptable range of operating temperatures. First, a laser emitter ages more rapidly when operated at temperatures above 50° C., and may cause reliability concerns at typical end of life conditions (20-25 years). The quantum efficiency of the laser emitter decreases with age and, therefore, forces the transceiver to operate at higher currents in order to provide a fixed optical power, which further accelerates the aging of the laser emitter. In addition, temperature performance characteristics of the device used to control the laser temperature determine the lower limit of the available range of temperatures. A well-designed thermal system using a single-stage thermo-electric cooler (TEC) as a temperature control device can typically provide up to 40° C. cooling. Since the standard maximum operating temperature of a transceiver is 70° C., the 40° C. cooling capability of the TEC means that the effective operating range of the laser emitter in the transceiver is restricted to temperatures between 30° C. and 50° C.
In previously known devices a single transceiver is only calibrated to produce a signal at one specific wavelength. If a service provider of an optical network wants to utilize all available channels, it must, therefore, keep an inventory of separate transceivers for each channel used in the network. It becomes problematic for an optical network provider to keep such a large inventory.
SUMMARY OF AN EXAMPLE EMBODIMENT OF THE INVENTIONOne embodiment of a method of operating a transceiver includes selecting a first operating wavelength from a set of operating wavelengths. Next, a first control value is accessed that corresponds to the first operating wavelength. The first control value also corresponds to a first operating temperature of the transceiver, and the first operating temperature resides within a range of about 30° C. to about 50° C. Finally, the transceiver is operated substantially at the first operating temperature.
BRIEF DESCRIPTION OF THE DRAWINGS
A number of embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described. It will be appreciated that in the development of any such embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
Suitable housings, including metallic, plastic, potting box and other housing structures are well known in the art. In one embodiment, the protective housing 30 is as follows: width, 3 cm or less; length, 6.5 cm or less, and height, 1.2 cm or less. A GBIC standard (SFF-8053 GBIC standard version 5.5) requires the dimensions of a module housing to be approximately 3 cm×6.5 cm×1.2 cm. Thus, the protective housing 30 of this embodiment meets the form factor requirements of the GBIC standard. In another embodiment, the physical dimensions of the module housing are: width, 0.54 inches or less; length, 2.24 inches or less; and height, 0.34 inches or less. The SFP MSA (Small Form Factor Pluggable Multisource Agreement) requires the dimensions of a compliant module housing to be approximately 0.54″×2.24″×0.34″. Thus, the module housing in that embodiment meets the form factor requirements of the SFP standard. Note that the present invention is not limited to the form factor requirements described above. A person of ordinary skill in the art having the benefit of this disclosure will appreciate that the present invention is adaptable to various existing or yet to be determined form factors, some of which can be smaller than the ones identified here.
The transmit circuitry of transceiver 100 consists of a Transmitter Optical Subassembly (TOSA) 106 and a laser driver integrated circuit 108, with signal inputs obtained from the TX+ and TX− pins 90. TOSA 106 contains a mechanical fiber receptacle and coupling optics, as well as a thermo-electric cooler (TEC) and a laser diode or LED. The laser driver circuit 108 provides AC drive and DC bias current to the laser. The signal inputs for the driver are obtained from I/O pins (not shown) of transceiver 100. In other embodiments, the TEC is external to the TOSA 106. In yet other embodiments, the TEC is integrated within a laser transistor-outline (TO) package.
In addition, the optoelectronic transceiver 100 includes a thermo-electric cooler (TEC) driver 116 and additional circuitry that is not shown for controlling the temperature of the TOSA 106. An embodiment of the TEC driver 116 and the additional circuitry is described in greater detail below in connection with
Also shown in
Importantly, the bias current level and the AC modulation level both affect the optical output wavelength of transceiver 100. Persons skilled in the art recognize that increases in the bias current and, to a lesser extent, increases in the AC modulation can increase the temperature of the active region of a laser chip. More specifically, as the bias current and AC modulation increase, so does the power dissipation of the laser chip. And as the power dissipated in the laser chip increases, so does the temperature of the laser chip, which has a fixed thermal resistance. This is true even though the temperature at the base of the laser chip is typically controlled by the TEC 116.
Temperature and/or other physical conditions of various components of transceiver 100 may be acquired using sensors that are coupled to microprocessor 200. In some embodiments, conditions of the optical links may also be acquired using the sensors.
In addition to, and sometimes in conjunction with these control functions, there are a number of other tasks that may be handled by microprocessor 200. These tasks include, but are not necessarily limited to, the following:
Setup functions. These generally relate to the required adjustments made on a part-to-part basis in the factory to allow for variations in component characteristics such as laser diode threshold current.
Identification. This refers to the storage of an identity code within a general purpose memory (e.g., an EEPROM). Additional information, such as sub-component revisions and factory test data, may also be stored within the general purpose memory for purposes of identification.
Eye safety and general fault detection. These functions are used to identify abnormal and potentially unsafe operating parameters and to report these to the host device and/or perform laser shutdown, as appropriate. Sensors may be used to identify such abnormal or potentially unsafe operating parameters.
Receiver input optical power measurement. This function is used to measure the input optical power and a report of this measurement may be stored in the memory.
Laser diode drive current. This function is used to set the output optical power level of the laser diode.
Laser diode temperature monitoring and control. In one embodiment, a temperature controller (e.g., a thermal-electric cooler (TEC)) is disposed in or near TOSA 106 for controlling the temperature of the laser emitter therein. In this embodiment, microprocessor 200 is responsible for providing control signals to the temperature controller.
Note that transceiver 100 has a serial interface 202 for communicating with a host device. As used herein, a host device refers to a link card to which a transceiver is attached and/or a host system computer to which a transceiver provides an optical connection. Host systems may be computer systems, network attached storage (NAS) devices, storage area network (SAN) devices, optoelectronic routers, as well as other types of host systems and devices.
In some embodiments the optoelectronic transceiver 100 includes an integrated circuit controller that may perform some of the functions listed above. For example, an integrated circuit controller performs the tasks of identification and eye safety and general fault detection, while the microprocessor provides control signals to the temperature controller and also may perform other tasks.
Further, the optoelectronic transceiver may also include the TX disable 91 and TX fault 92 pins described in the GBIC (Gigabit Interface Converter) standard. In the GBIC standard (SFF-8053), the TX disable pin 91 allows the transmitter to be shut off by the host device, while the TX fault pin 92 is an indicator to the host device of some fault condition existing in the laser or associated laser driver circuit.
In some embodiments, the laser temperature sensor 110 is a thermistor. Any other device suitable for measuring the temperature of the laser diode may also be used. The laser temperature sensor 110 generates a signal (VTL) that varies as a function of the temperature of the laser diode. As described above, and as is well known to those skilled in the art, the wavelength of optical signals generated by a laser diode varies as a function of the temperature of the laser diode. Accordingly, in other embodiments, a sensor that measures the wavelength of the optical signals directly may be substituted for the laser temperature sensor 110. In still other embodiments, a device measuring an operating condition of the laser diode that varies as a function of the temperature of the laser diode is used instead of the laser temperature sensor 110.
With reference still to
An additional input is provided to the microprocessor 200 by an ambient temperature sensor 120, which measures the ambient temperature surrounding the TOSA 106 and generates a signal (VTA) for the microprocessor 200 that varies as a function of the ambient temperature. Although a laser temperature sensor 110 is preferably placed in the proximity of a laser emitter, the temperature reading from the laser temperature sensor 110 generally differs from the actual temperature of the laser emitter because the laser temperature sensor 110 is physically separated from the laser emitter. As a consequence, the temperature reading from the laser temperature sensor 110 and its signal VTL vary as a function of the outside temperature. By receiving the ambient temperature signal VTA, the microprocessor 200 is able to compensate for the effect of the ambient temperature on the temperature reading from the laser temperature sensor.
In addition to the V(Ilaser bias), VTL and VTA signals, the microprocessor 200 receives inputs from a host device 220 through serial interface circuitry 202 (
The TEC Command signal is provided to the TEC driver circuitry 116. The TEC driver circuitry 116 is configured to generate an output signal VTEC to drive the TEC 114 in accordance with the TEC Command signal.
The microprocessor 200 may also include one or more volatile and/or nonvolatile memory devices, such as a general purpose EEPROM (electrically erasable and programmable read only memory) device 204, as shown in
Also as shown in
Lastly, as illustrated in
As described in detail above, the wavelength intervals of a channel spacing standard at 100 GHz is 0.8 nm. In order to operate at two channels, therefore, the transceiver 100 must be able to adjust the wavelength output by at least 0.8 nm. Similarly, to operate at three channels, the transceiver 100 must be able to adjust the wavelength output by at least 1.6 nm. The degree to which the wavelength output must be adjusted continues in this fashion for each additional channel. But as indicated above, the channel limit of a 100 GHz channel spacing standard is 45. The channel spacing, and thus the ability of the transceiver 100 to adjust the wavelength output varies proportionally with the channel spacing standard.
In order to control the wavelength output of the transceiver 100, the temperature of laser emitters is adjusted as described in detail below. And as indicated above, the relationship between the temperature of the laser emitter and the wavelength produced is typically around 0.1 nm/° C. This means that if the wavelength output of the transceiver 100 must be adjusted by, for example, is 0.8 nm, the laser emitter temperature must be adjusted by approximately 8° C. Similarly, if the wavelength output of the transceiver 100 must be adjusted by, for example, is 1.6 nm (to support 3 channel selectability), the laser emitter temperature must be adjusted by approximately 16° C.
Generally, operating laser diodes above the ambient temperature allows TECs to function more efficiently. TECs are more efficient when heating than cooling because the thermoelectric effect and resistive heating are working together when the TECs are heating the laser diodes, rather than opposing one another as is the case when the TECs are cooling the laser diodes. Efficiency is of particular importance in pluggable transceiver applications, where the available power, and thus the ability of TECs to function, is limited to specified levels. But operating laser diodes at high temperatures may shorten the useful life of the laser diodes.
It is therefore preferable for many applications to tune a laser diode by adjusting the TEC Command signal so that the laser diode emits optical signals that fall within a desired ITU channel wavelength for a selected DWDM frequency when the operating temperature of the laser diode is as high as possible, but not more than 50° C.
With reference to
And as indicated below, the process of calibrating the transceiver 100 to operate within two or more channels typically proceeds from the highest channel to the lowest channel. So when step 901 is executed for the first time, the target wavelength typically corresponds to the highest channel. The calibration process then steps through the channels sequentially as steps 901-918 are executed for each channel.
The computer 804 then commands the microprocessor 200 to set the temperature of the laser emitter in the laser assembly 112 (via the TEC Command signal) (step 902). The first time step 902 is executed, the temperature is preferably set to Tsetup or 50° C., which is the maximum operating temperature of the laser assembly 112 in some embodiments. During subsequent executions of step 902, however, the temperature is set differently. As described below in connection with step 916, a final temperature for a given channel is selected. When calibrating the next channel, the temperature set in step 902 is preferably this final temperature offset by a predefined amount. For example, if the channel spacing is 0.8 nm, this predefined offset may be 7 or 8° C. (i.e., the temperature set in step 902 would be approximately 7 or 8° C. less than the final temperature for the previously calibrated channel).
Additionally, the computer 804 may communicate with the microprocessor 200 through the serial interface 202. The computer 804 may also set Ilaser bias and the AC modulation to default values.
The computer 804 then checks the wavelength of the optical signals via the wave meter 802 (step 904). If the measured wavelength is not approximately equal to the target wavelength (step 906-No), the computer 804 adjusts the temperature of the laser emitter in the laser assembly 112 (step 908). Preferably, the measured wavelength is not approximately equal to the target wavelength until they are within 10 pm of each other. The direction of the adjustment depends upon whether the measured wavelength is greater than or less than the target wavelength. Preferably, the first adjustment is a reduction since the temperature must be less than or equal to Tsetup. Further, the adjustment of the temperature in step 908 represents a coarse adjustment such that it preferably corresponds to a 3-10 pm adjustment of the optical signal's wavelength (depending on the resolution of the D/A 210 and the configuration of the transceiver generally). The goal of steps 904-908 is to get the wavelengths to approximately match, not exactly match so the amount of the reduction in step 908 does not have to be very fine. The computer 904 then repeats steps 904-908 until the measured wavelength is approximately equal to the target wavelength.
Once the measured wavelength is approximately equal to the target wavelength (step 906-Yes), the computer 804 adjusts the DC bias and the AC modulation current to achieve the operational target values for laser power and extinction ratio (step 910). The precise operational target values may vary from one embodiment to the next. In an alternate embodiment, step 910 can be skipped during the calibration of channels other than the first channel, if the channels are sufficiently close that the DC bias and AC modulation levels for the first channel are also suitable for use with those other channels.
The computer 804 then checks the wavelength of the optical signals via the wave meter 802 (step 912). If the measured wavelength is not equal to the target wavelength (step 914-No), the computer 804 adjusts the temperature of the laser emitter in the laser assembly 112 (step 916). Typically, the measured wavelength is “equal” to the target wavelength once it is within 1-5 pm (preferably 5 pm) of the target wavelength. Again, the direction of the adjustment depends upon whether the measured wavelength is greater than or less than the target wavelength. Further, the amount of the temperature reduction in step 916 is preferably smaller than the amount of the reduction in step 908. For example, the adjustment in step 916 may correspond to a 1-3 pm adjustment of the optical signal's wavelength (depending on the resolution of the D/A 210 and the configuration of the transceiver generally).
When the measured wavelength is determined to be equal to (or within a predefined margin of) the target wavelength (step 914-Yes), the computer 804 stores values corresponding to (or representing) the temperature of the laser emitter, the DC bias current Ilaser bias, and the AC modulation in a channel lookup table 1000 (
If there is an additional channel for calibration (step 920-Yes), steps 901-918 are executed for the additional channel. If not, the calibration process terminates.
During the operation of the transceiver 100, the microprocessor 200 may receive commands through the serial interface 202 to select one of the channels for which the calibration steps described above have been executed. In still other embodiments, a specific channel is selected just once, in which case the transceiver 100 is then semi-permanently configured to operate at the selected channel. In either case, the microprocessor 200 uses a channel identifier preferably included with the commands to look up corresponding temperature, the DC bias current Ilaser bias, and AC modulation values and configures the transceiver 100 accordingly.
In some embodiments, a transceiver controller (not illustrated) is used to perform some of the functions otherwise performed by the microprocessor 200. For example, a transceiver controller may be used to look up values in tables and outputting these values through one or more digital to analog converters. Accordingly, the lookup table 100 (or portions of the lookup table 100) may also be accessible to or stored by the transceiver controller so that it may output some control signals while the microprocessor 200 outputs other control signals.
The foregoing descriptions of specific embodiments are presented for purposes of illustration and description. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Various modifications may occur to those skilled in the art having the benefit of this disclosure without departing from the inventive concepts described herein. Accordingly, it is the claims, not merely the foregoing illustration, that are intended to define the exclusive rights of the invention.
Claims
1. A method of operating a multichannel optoelectronic assembly, comprising:
- selecting a first operating wavelength from a predefined set of optoelectronic assembly operating wavelengths, each of the wavelengths in the set of wavelengths separated by a predefined channel separation amount;
- accessing from a memory in the optoelectronic assembly a first control value corresponding to the first operating wavelength, wherein the first control value defines a first operating temperature of the optoelectronic assembly between about 30° C. and 50° C.; and
- operating the optoelectronic assembly at the first operating temperature to produce an output wavelength that is within a predefined tolerance range of the selected operating wavelength.
2. The method as recited in claim 1, wherein the first control value defines a first operating value of the optoelectronic assembly.
3. The method as recited in claim 2, wherein the first operating value is selected from a group including DC bias current and AC modulation.
4. The method as recited in claim 1, wherein the optoelectronic assembly is previously calibrated to obtain the first control value.
5. The method as recited in claim 1, further comprising monitoring the first operating temperature, the monitoring comprising:
- monitoring a laser temperature from within the optoelectronic assembly;
- monitoring an ambient temperature outside of the optoelectronic assembly; and
- calculating the first operating temperature as a function of both the monitored laser temperature and the monitored ambient temperature.
6. The method as recited in claim 1, wherein the method is performed in connection with a Dense Wavelength Division Multiplexing (DWDM) process.
7. The method as recited in claim 1, wherein the first operating wavelength corresponds to an ITU channel.
8. The method as recited in claim 1, further comprising receiving a command to select the first operating wavelength.
9. The method as recited in claim 1, wherein the command includes a channel identifier that corresponds with a DC bias current value, and with an AC modulation value.
10. A method of operating an optoelectronic device, comprising:
- selecting a first operating wavelength from a predefined set of operating wavelengths of the optoelectronic device;
- accessing a first control value corresponding to the first operating wavelength, the first control value also corresponding to a first operating temperature of the optoelectronic device, and the first operating temperature residing within a range of about 30° C. to about 50° C.; and
- operating the optoelectronic device substantially at the first operating temperature.
11. The method as recited in claim 10, wherein the first control value defines a first operating value of the optoelectronic device.
12. The method as recited in claim 11, wherein the first operating value is selected from a group that includes both DC bias current and AC modulation.
13. The method as recited in claim 10, wherein each of the wavelengths in the set of operating wavelengths of the optoelectronic device is separated from an adjacent wavelength by a channel separation amount.
14. The method as recited in claim 10, wherein the method is performed in connection with a Dense Wavelength Division Multiplexing (DWDM) process.
15. The method as recited in claim 10, wherein the first operating wavelength substantially corresponds to an ITU channel.
16. The method as recited in claim 10, wherein at the first operating temperature, an output wavelength is produced by the optoelectronic device that is within a predefined tolerance range of the selected operating wavelength.
17. The method as recited in claim 10, wherein when the first operating temperature is about 50° C., an output wavelength is produced by the optoelectronic device that is within a predefined tolerance range of the selected operating wavelength.
18. The method as recited in claim 10, wherein the first control value is accessed from a location within the optoelectronic device.
19. The method as recited in claim 10, further comprising receiving a command to select the first operating wavelength.
20. The method as recited in claim 19, wherein the command includes a channel identifier that corresponds with a DC bias current value, and with an AC modulation value.
21. The method as recited in claim 10, further comprising monitoring the output wavelength.
22. The method as recited in claim 10, further comprising:
- monitoring the first operating temperature; and
- adjusting the first operating temperature as necessary to maintain the output wavelength within the predefined tolerance range of the selected operating wavelength.
23. The method as recited in claim 10, further comprising adjusting operation of the optoelectronic device such that the optoelectronic device operates at a second operating temperature that corresponds with a second operating wavelength from the predefined set of operating wavelengths.
24. The method as recited in claim 10, wherein channel spacing of the predefined set of operating wavelengths of the optoelectronic device substantially conforms with one of the following standards: 25 GHz; 50 GHz; 100 GHz; and, 200 GHz.
25. A method of operating a multichannel optoelectronic assembly, comprising:
- selecting a first operating wavelength from a predefined set of optoelectronic assembly operating wavelengths, each of the wavelengths in the set of wavelengths separated by a predefined channel separation amount;
- accessing, from a memory in the optoelectronic assembly, a first control value corresponding to the first operating wavelength, wherein the first control value defines a first operating temperature of the optoelectronic assembly; and
- operating the optoelectronic assembly at the first operating temperature to produce an output wavelength that is within a predefined tolerance range of the selected operating wavelength.
Type: Application
Filed: Dec 2, 2005
Publication Date: Apr 20, 2006
Inventors: James Stewart (San Jose, CA), Lucy Hosking (Santa Cruz, CA), Anthony Ho (Sunnyvale, CA), Andreas Weber (Los Altos, CA)
Application Number: 11/292,658
International Classification: H01S 3/04 (20060101);