Adjustable adaptable vertical launching system

A reconfigurable missile launcher that avoids some of the costs and disadvantages associated with missile launchers in the prior art. In particular, the illustrative embodiment of the present invention uses a variable-size receptacle for locating and holding a missile canister chosen from a set of missile canister types. The illustrative embodiment also includes a controller that includes data sets that are specific to each of a plurality of missile types.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The present invention relates to missilery in general, and, more particularly, to missile launchers.

BACKGROUND OF THE INVENTION

A missile is propelled by fuel and a chemical-propulsion engine. A chemical-propulsion engine propels a missile by the reaction that results from the rearward discharge of gases that are liberated when the fuel is burned. For the purposes of this specification, a “missile” is defined as a projectile whose trajectory is not necessarily ballistic and can be altered during flight (as by a target-seeking radar device and control elements).

Multi-cell missile launchers have been developed for several types of missiles. FIG. 1 depicts two such multi-cell missile launchers mounted to the deck of warship 100 as is known in the prior art. In some prior art arrangements, the multi-cell missile launchers are mounted below the deck. Each launcher is capable of locating, holding, and launching a plurality of a single type of missile canister. The type(s) of launcher is chosen based on the desired capability of the weapons platform, such as warship 100.

FIG. 2 depicts a perspective-view of a Lockheed-Martin MK 41 multi-cell missile launcher, which is an example of a multi-cell missile launcher known in the prior art. Each cell of the multi-cell missile launcher is the same (i.e., only one type of missile is launched from the launcher). A characteristic of modern warfare is the need to derive multi-functional capability from weapons platforms used in battle. A warship, for example, might need to launch surface-to-surface missiles during one phase of a battle, and surface-to-air missiles during a different phase of the same battle. Currently, multi-functionality is derived at the level of the systems platform, such as warship 100, by providing multiple missile launching systems wherein each missile launching system has different functionality. In order to attain multi-functional capability for the weapons platform, multiple launchers are required, which leads to added infrastructure, space requirement, and expense for the weapons platform.

The multi-cell missile launcher depicted in FIG. 2 comprises a 2×4 array of MK-41 launch cells, each of which contains a missile of the same type. Each cell is controlled by a MK-41 controller, which contains data and information that is specific to the type of guided missile contained in the launch cells.

In the prior art, missile canisters have been adapted to hold missiles that are smaller than the missiles for which these missile canisters have been designed. However, this leads to wasted space and reduced firepower for the launch system. In addition, the size of the missile canister limits the size of the missile that can be used, which limits the flexibility of existing missile launchers.

Therefore, the need exists for a missile launcher that avoids or mitigates some or all of these problems.

SUMMARY OF THE INVENTION

The present invention provides a missile launch system that can be reconfigured to launch missiles of various types and sizes. In particular, the illustrative embodiment of the present invention uses variable-sized receptacles for locating and holding different types of missile canisters. In addition, the illustrative embodiment uses a controller that contains a data set of information for each type of missile for which the reconfigurable launcher can be configured. This mitigates some of the problems associated with launching multiple missile types in the prior art.

The illustrative embodiment comprises: a missile canister, a missile contained in the missile canister, a reconfigurable receptacle for locating and holding any one of a plurality of missile canister types, an reconfigurable exhaust system for venting fumes from missile canisters in any allowed launcher configuration, and a controller for controlling a plurality of missile types.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a representational diagram of a naval launch system according to the prior art.

FIG. 2 depicts a perspective view of a multi-cell missile launcher according to the prior art.

FIG. 3 depicts a representational diagram of a naval launch system in accordance with the illustrative embodiment.

FIG. 4 depicts a block diagram of reconfigurable launcher 302 in accordance with the illustrative embodiment.

FIG. 5 depicts a block diagram of a launch cell in accordance with the illustrative embodiment.

FIG. 6 depicts a block diagram of a multi-missile controller in accordance with the illustrative embodiment.

FIG. 7 depicts a cross-sectional view of a launch cell in accordance with the illustrative embodiment.

FIG. 8 depicts a cross-sectional view of an exhaust system in accordance with the illustrative embodiment.

DETAILED DESCRIPTION

FIG. 3 depicts a representational diagram of a naval launch system in accordance with the illustrative embodiment. Although reconfigurable multi-cell missile launcher 302 (hereinafter referred to as “reconfigurable launcher” 302) is mounted on the deck of warship 100, it will be clear to those skilled in the art, after reading this disclosure, how to make and use alternative embodiments of the present invention in which reconfigurable launcher 302 is mounted below the deck of warship 100, is terrestrially-based, or is mounted on another type of vehicle (e.g., a truck, a railroad car, a submarine, a space vehicle, a satellite, etc.)

FIG. 4 depicts a block diagram of reconfigurable launcher 302 in accordance with the illustrative embodiment. Although only a one-dimensional array of four launch cells is shown in FIG. 4, it will be clear to those skilled in the art, after reading this disclosure, how to make and use alternative embodiments of the present invention in which launch system 302 comprises a single reconfigurable launch cell, a one-dimensional array of any number of reconfigurable launch cells, or a two-dimensional array of any number of reconfigurable launch cells.

Reconfigurable launcher 302 comprises Type-A launch cell 4041, two Type-B launch cells 4042 and 4044, Type-C launch cell 4043, exhaust system 406, cable 410, and multi-missile controller 408. The missile types, A, B, and C represent three different nonspecific missile types, each having a different canister size.

Exhaust system 406 is connected to all launch cells 4041 through 4044 via exhaust outlets such that exhaust system 406 vents exhaust fumes generated during the launch of a missile in one or all of launch cells 4041 through 4044. Exhaust system 406 is described in detail below and with respect to FIGS. 7 and 8.

Multi-missile controller 408 contains multiple data sets, wherein each data set contains the data and information specific to the control and launch of each missile type for which reconfigurable launcher 302 is configured. Multi-missile controller 408 is connected to each launch cell 4041 through 4044 via cable 410, so as to provide bi-directional communications between multi-missile controller 408 and each launch cell. Multi-missile controller 408 is described in detail below and with respect to FIG. 6.

FIG. 5 depicts a block diagram of launch cell 404i, wherein i is a positive integer in the set {1, . . . , 4}, in accordance with the illustrative embodiment. Launch cell 404i comprises receptacle 512i, missile canister 514i, missile 516i, and exhaust outlet 518i.

Receptacle 512i locates and secures missile canister 514i, which includes missile 516i. Exhaust outlet 518i provides a path through which the exhaust fumes generated by missile 516i during launch can escape from launch cell 404i. The size of receptacle 512i determines the type of missile canister 514i. Different types of missiles are contained in missile canisters of different sizes. Therefore, in order to enable reconfigurable launcher 302 to accommodate different missile types, the size of receptacle 512i is reconfigurable, as well as the position of exhaust outlet 518i. The reconfigurability of receptacle 512i and exhaust outlet 518i is described in detail below and with respect to FIG. 7.

FIG. 6 depicts a block diagram of multi-missile controller 408 in accordance with the illustrative embodiment. Multi-missile controller 408 comprises processor 620 and memory 622. Memory 622 comprises N data sets 624i, wherein i is a positive integer in the set {1, . . . , N}. Each data set 624i includes data and information specific to the control and launch of one of the N missile types for which reconfigurable launcher 302 can be configured.

FIG. 7 depicts a cross-sectional view of launch cell 404i in accordance with the illustrative embodiment. Launch cell 404i comprises missile canister 514i, exhaust outlet 518i, platform 720, movable supports 722i and 722i+1, missile 516i, missile canister connector 724i, and missile canister-to-missile umbilical 726i.

Platform 720 and movable supports 722i and 722i+1 locate and support missile canister 514. The position of movable supports 722i and 722i+1 can be changed such that the spacing between them accepts a missile canister different than missile canister 514i, and therefore a missile different than missile 516i. Movement of movable supports 722i and 722i+1 can be accomplished using hydraulics, electric motors, or manual means. It will be clear to those skilled in the art how to position movable supports 722i and 722i+1.

The total size of reconfigurable launcher 302 is fixed and each of movable supports 722 may be shared between two adjacent launch cells 404i and 404i±1. Therefore, as the size of launch cell 404i is changed, the size of adjacent launch cell 404i−1 or 404i+1 is changed as well. For example, as movable support 722i is moved toward the left to enable location of a larger missile canister in receptacle 512i, the opening between movable support 722i and 722i−1 (not shown) is made smaller. Thus, the type of missile canister that can be located by receptacle 512i−1 is changed. In some configurations, reconfigurable launcher 302 will have less than four launch cells, while in other configurations reconfigurable launcher 302 will have more than four launch cells.

Missile canister 514i includes a fly-through cover on one end, and a missile canister back plate on the other end. The missile canister back plate either opens or bursts upon ignition of missile 516i to provide access to exhaust outlet 518i for exhaust fumes from missile 516i. Exhaust outlet 518i vents exhaust fumes into exhaust plenum 728, where they combine with the exhaust fumes from other launch cells. It will be clear to those skilled in the art how to make and use a missile canister back plate that provides access to exhaust outlet 518i upon ignition of missile 516i. The position of exhaust outlet 518i is reconfigurable to accommodate any of the missile types for which reconfigurable launcher 302 is configured.

Missile 514i communicates with multi-missile controller 408 via cable 410. Cable 410 is connected to missile 514i through cable connector 726i, missile canister connector 724i, and missile canister-to-missile umbilical 726i. In the illustrative embodiment, cable connector 726 is a universal connector that can mate to any of the missile canister connectors associated with each missile canister type for which reconfigurable launcher 302 is suitable. In some embodiments, cable 410 includes a plurality of cable connectors, one for each type of missile canister type for which reconfigurable launcher 302 is suitable.

FIG. 8 depicts a cross-sectional view of exhaust system 406 in accordance with the illustrative embodiment. Exhaust system 406 comprises exhaust plenum 728, exhaust outlets 518i, wherein i is a positive integer in the set {1, . . . , 5}, and exhaust uptake 830. Each launch cell 4041 through 4044 includes an exhaust outlet 5181 through 5184, such that the exhaust fumes generated during a missile launch in that cell are directed into exhaust plenum 728. An additional exhaust outlet 5185 provides access to exhaust uptake 830 for the exhaust fumes in exhaust plenum 728. Exhaust uptake 830 provides egress for the exhaust fumes into the atmosphere that surrounds reconfigurable launcher 302.

In some embodiments of the present invention, exhaust system 406 includes a plurality of exhaust uptakes 830. In some embodiments of the present invention, exhaust uptake 830 is located in the interior of reconfigurable launcher 830, i.e. between two launch cells such as launch cells 4042 and 4043. In some embodiments of the present invention, platform 720 comprises through-holes that allow exhaust fumes to vent directly through platform 720 and into and out of exhaust plenum 728, obviating discrete exhaust outlets 5181 through 5185.

It is to be understood that the above-described embodiments are merely illustrative of the present invention and that many variations of the above-described embodiments can be devised by those skilled in the art without departing from the scope of the invention. For example, in this Specification, numerous specific details are provided in order to provide a thorough description and understanding of the illustrative embodiments of the present invention. Those skilled in the art will recognize, however, that the invention can be practiced without one or more of those details, or with other methods, materials, components, etc.

Furthermore, in some instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the illustrative embodiments. It is understood that the various embodiments shown in the Figures are illustrative, and are not necessarily drawn to scale. Reference throughout the specification to “one embodiment” or “an embodiment” or “some embodiments” means that a particular feature, structure, material, or characteristic described in connection with the embodiment(s) is included in at least one embodiment of the present invention, but not necessarily all embodiments. Consequently, the appearances of the phrase “in one embodiment,” “in an embodiment,” or “in some embodiments” in various places throughout the Specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, materials, or characteristics can be combined in any suitable manner in one or more embodiments. It is therefore intended that such variations be included within the scope of the following claims and their equivalents.

Claims

1. An apparatus comprising:

(1) a first receptacle for positioning a missile canister, wherein said first receptacle has a physical adaptation that enables said first receptacle to accept missile canisters of different sizes; and
(2) an exhaust system for venting fumes from said missile canister.

2. The apparatus of claim 1 further comprising a controller capable of controlling a plurality of different types of missiles.

3. The apparatus of claim 2, wherein said controller comprises a data set for each of said plurality of different types of missiles.

4. The apparatus of claim 1 further comprising:

a first missile canister; and
a first missile, wherein said first missile is contained in said first missile canister and said first missile is selected from said plurality of different types of missiles.

5. The apparatus of claim 1 further comprising a second receptacle for positioning a missile canister, wherein said second receptacle has a physical adaptation that enables said second receptacle to accept missile canisters of different sizes.

6. The apparatus of claim 5 further comprising:

a second missile canister; and
a second missile, wherein said second missile is contained in said second missile canister and wherein said second missile is selected from said plurality of different types of missiles.

7. The apparatus of claim 5 further comprising a second missile canister, wherein said second guides locate said missile canister and wherein said exhaust missile canister vents fumes from said first missile canister.

8. The apparatus of claim 1 wherein said exhaust system comprises an exhaust outlet and wherein said exhaust outlet has a physical adaptation that enables the position of said exhaust outlet to be changed.

9. The apparatus of claim 1 wherein said exhaust system comprises a plurality of exhaust outlets.

10. The apparatus of claim 1 wherein said physical adaptation of said first receptacle comprises a plurality of supports, wherein said supports locate and secure said missile canister and wherein the position of at least one said support can be changed.

11. An apparatus comprising:

a platform;
a plurality of first guides for locating a missile canister, wherein said first guides project from a surface of said platform and wherein said first guides are substantially parallel to one another and further wherein a spacing between said first guides is variable such that said first guides locate any one of a plurality of missile canister types; and
an exhaust system for venting fumes from said missile canister.

12. The apparatus of claim 11 further comprising a controller capable of controlling a plurality of different types of missiles.

13. The apparatus of claim 12, wherein said controller comprises a data set for each of said plurality of different types of missiles.

14. The apparatus of claim 13 further comprising:

a first missile canister, wherein said first missile canister is selected from said plurality of missile canister types; and
a first missile, wherein said first missile is contained in said first missile canister and wherein said first missile is selected from said plurality of different types of missiles.

15. The apparatus of claim 14 wherein said controller further comprises a communications cable and a cable connector and further wherein said cable connector can mate to any of said plurality of missile canister types.

16. The apparatus of claim 14 further comprising a first missile, wherein said first missile is contained in said first missile canister and wherein said first missile is one of said different types of missiles.

17. The apparatus of claim 11 wherein said exhaust system comprises an exhaust outlet and wherein the position of said exhaust outlet is fixed.

18. The apparatus of claim 11 wherein said exhaust system comprises an exhaust outlet and wherein the position of said exhaust outlet is variable.

19. The apparatus of claim 11 wherein said exhaust system comprises a plurality of exhaust outlets.

20. The apparatus of claim 11 further comprising a plurality of second guides for locating a second missile canister, wherein said second guides project from a surface of said platform and wherein said second guides are substantially parallel to one another and further wherein a spacing between said second guides is variable such that said second guides locate any one of said plurality of missile canister types.

21. The apparatus of claim 20 further comprising:

a second missile canister, wherein said second missile canister is selected from said plurality of missile canister types; and
a second missile, wherein said second missile is contained in said second missile canister and wherein said second missile is selected from said plurality of different types of missiles.

22. The apparatus of claim 20 wherein said exhaust system comprises an exhaust missile canister, wherein said second guides locate said exhaust missile canister and further wherein said exhaust missile canister vents fumes from said first missile canister.

23. An apparatus comprising:

a controller, wherein said controller is capable of controlling a plurality of different types of missiles; and
a first receptacle for positioning a missile canister, wherein said first receptacle has a physical adaptation that enables said first receptacle to accept a missile canister selected from a plurality of different types of missile canisters.

24. The apparatus of claim 23 further comprising:

a first missile canister, wherein said first missile canister is selected from said plurality of different types of missile canisters; and
a first missile, wherein said missile is selected from said plurality of different types of missiles.

25. The apparatus of claim 23 further comprising a second receptacle for positioning a missile canister, wherein said second receptacle has a physical adaptation that enables said second receptacle to accept a missile canister selected from a plurality of different types of missile canisters.

26. The apparatus of claim 25 further comprising:

a second missile canister, wherein said second missile canister is selected from said plurality of different types of missile canisters; and
a second missile, wherein said second missile is selected from said plurality of different types of missiles.
Patent History
Publication number: 20060117940
Type: Application
Filed: Dec 6, 2004
Publication Date: Jun 8, 2006
Applicant: Lockheed Martin Corporation (Manassas, VA)
Inventors: Tushar Shah (Columbia, MD), Kristian Trauger (Belcamp, MD), Mahendra Maheshwari (Forest Hill, MD)
Application Number: 11/005,378
Classifications
Current U.S. Class: Having Tubular Guide Means (89/1.816)
International Classification: F41F 3/04 (20060101);