Ultra low-loss CMOS compatible silicon waveguides
A low loss optical waveguiding structure for silicon-on-insulator (SOI)-based arrangements utilizes a tri-material configuration including a rib/strip waveguide formed of a material with a refractive index less than silicon, but greater than the refractive index of the underlying insulating material. In one arrangement, silicon nitirde may be used. The index mismatch between the silicon surface layer (the SOI layer) and the rib/strip waveguide results in a majority of the optical energy remaining within the SOI layer, thus reducing scattering losses from the rib/strip structure (while the rib/strip allows for guiding along a desired signal path to be followed). Further, since silicon nitirde is an amorphous material without a grain structure, this will also reduce scattering losses. Advantageously, the use of silicon nitride allows for conventional CMOS fabrication processes to be used in forming both passive and active devices.
The present application claims the benefit of U.S. Provisional Application No. 60/638,216, filed Dec. 21, 2004.
TECHNICAL FIELDThe present invention relates to the formation of low loss silicon optical waveguides in a silicon-on-insulator (SOI) structure and, more particularly, to the inclusion of a rib/slab of a CMOS-compatible material having a refractive index intermediate that of silicon and silicon dioxide to achieve the desired lower loss.
BACKGROUND OF THE INVENTIONThe optical waveguides typically formed in SOI-based structures comprise silicon (with a refractive index of approximately 3.47), the silicon formed in a “slab”, “rib” or “strip” geometry on the surface of the SOI substrate. A strip waveguide typically comprises crystalline silicon, where crystalline silicon is known to exhibit less loss that a polysilicon form of the same material. However, strip waveguides tend to exhibit relatively high optical loss through their (relatively rough) sidewalls, which serve as scattering surfaces for a propagating optical signal. That is, since an etching process is used to form the sidewalls of the strip, the etchant tends to roughen the exposed sidewall surfaces. Any geometry that introduces sharp corners in the strip waveguide also serves to introduce scattering centers and increase optical loss.
A “rib” waveguide structure conventionally comprises a polysilicon rib formed over the surface silicon layer (often referred to as the “SOI layer”) in SOI-based applications. The bulk losses of polysilicon are greater than that of crystalline silicon, resulting in higher optical losses along the rib waveguide.
One prior art attempt to address the loss experienced by these optical waveguides is discussed in U.S. Pat. No. 6,850,683, issued to K. K. Lee et al. on Feb. 1, 2005. In the Lee et al. arrangement, a post formation oxidation process is used at a high temperature to smooth the rough sidewalls of a silicon waveguide. While this method is somewhat successful in reducing scattering losses, it cannot be used in applications involving “active” waveguide structures, since such a high temperature process will result in unwanted dopant migration within the SOI layer.
An alternative method of creating low loss silicon waveguides is disclosed in US Patent Application Publication 2005/0158002, published for J. A. Kubby et al. on Jul. 21, 2005. In the Kubby et al. arrangement, a silicon nitride cladding layer is formed over a silicon rib waveguide to entrap the propagating optical signal and minimize scattering losses through the sidewalls of the rib structure.
SUMMARY OF THE INVENTIONThe need remaining in the prior art is addressed by the present invention, which relates to the formation of low loss silicon optical waveguides in a silicon-on-insulator (SOI) structure and, more particularly, to the inclusion of a rib/slab of a CMOS-compatible material having a refractive index intermediate that of silicon and silicon dioxide to achieve the desired lower loss.
In accordance with the present invention, a rib/slab of a material having a refractive index less than that of silicon, but greater than that of silicon dioxide is formed over a portion of the surface SOI layer of a SOI-based structure. In a preferred embodiment, silicon nitride may be used as this material (inasmuch as it is particularly well-suited for CMOS-based fabrication processes). The thickness of the rib/slab is controlled as a trade-off between optical coupling into the rib/slab and optical loss. By virtue of using a material with a refractive index less than that of silicon, the contrast in refractive index helps in confining the majority of the optical signal within the SOI layer, thus significantly reducing optical loss through the rib/slab portion of the waveguide.
Since silicon nitride is an amorphous material (as are other appropriate semiconductor materials, such as SiON and SiC), scattering losses through rib sidewalls of such a structure are significantly less than in the prior art silicon structure. The formation of such a rib/slab uses straightforward CMOS fabrication processes, various dopants may first be deposited within the SOI layer and will not migrate within SOI layer during deposition of the overlying rib/slab structure.
Other and further aspects and features of the present invention will become apparent during the course of the following discussion and by reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGSReferring now to the drawings,
In some cases, when forming a rib waveguide, polysilicon is generally used to form the rib structure. For situations where low optical loss is desired, polysilicon is not well-suited since it experiences relatively high levels of optical loss.
In accordance with the present invention, the use of a pure silicon material to form the rib/slab portion of an optical waveguide is replaced with an alternative material that is compatible with conventional CMOS processing and exhibits a refractive index intermediate that of silicon (approximately 3.47) and silicon dioxide (approximately 1.46).
For the purposes of the present discussion, reference will be made to the formation of a silicon nitride rib waveguide or slab waveguide. This reference is merely for the purpose of simplifying the discussion of the present invention and should not be considered to limit the scope of the various materials that may be used within the tri-layer structure of the present invention. Layer 30 is disposed to surround rib waveguide 28, as well as the exposed surface 23 of SOI layer 22. In accordance with the present invention, layer 30 is formed to comprise a material with a refractive index less than that of rib waveguide 28. In most cases, an oxide (such as silicon dioxide) will be used to form layer 30.
As mentioned above, a significant aspect of the present invention is the index mis-match between SOI layer 22 and rib waveguide 28. As a result, a majority of the optical energy will remain within SOI layer 22 (although guided along the waveguiding structure formed by the patterning of rib 28). Therefore, the opportunity for leakage of optical signal through sidewalls 27 and 29 of rib 28 are significantly reduced over the prior art structure. Moreover, inasmuch as silicon nitride (or any other suitable material) is an amorphous material with no grain structure, scattering losses along sidewalls 27 and 29 will be minimal. The use of a lower refractive index material also enables the use of wider waveguides that retain single mode operation. This also reduces sidewall losses since the optical intensity at the sidewalls is significantly reduced when compared to silicon single mode waveguides.
As mentioned above, an advantage of the CMOS-compatible structure of the present invention is that dopants may be included within SOI layer 22 to form active optical devices, without the problem of dopant migration associated with prior art structures that utilized thermal post-processing.
Advantageously, there is no need to structural transition regions between active and passive optical devices using the arrangement of the present invention, allowing for various monolithic structures incorporating both passive and active devices (as well as electronic devices) to be formed. The doping profile for regions 22-N and 22-P (as well as the placement of contacts 42 and 44) may be optimized on a case-by-case basis, as function of the desired speed and optical loss requirements.
An advantage of using a CMOS-compatible material to form the rib waveguiding structure of the present invention is that conventional processes (patterning, etching, etc.) may be used to modify the geometry of the rib waveguide for various purposes.
The doping profile within SOI layer 22 itself may be used to form a pseudo-taper and minimize the presence of optical reflections within a structure formed in accordance with the present invention.
In another method of reducing optical loss within a rib structure, the SOI layer itself may be “rounded” into a rib structure, using the fabrication steps as shown in
Referring to
It is to be understood that the various arrangements described above are merely a few examples of optical devices (both active and passive) that may be formed using a tri-material arrangement with a rib/slab structure formed to exhibit a refractive index intermediate that of silicon and silicon dioxide. It is not possible to illustrate all of the various structures that may be formed. Indeed, the present invention is intended to be lilmited only by the scope of the claims appended hereto.
Claims
1. A low loss silicon-on-insulator (SOI)-based optical waveguiding structure comprising
- a silicon substrate;
- an insulating layer disposed over the silicon substrate, the insulating layer having a first refractive index value;
- a relatively thin silicon surface layer disposed over at least a portion of the insulating layer, the silicon exhibiting a refractive index value greater than the first refractive index value of the insulating layer; and
- an optically transparent semiconductor waveguiding structure disposed over a portion of the relatively thin silicon surface layer, the optically transparent waveguiding structure having a refractive index value less than the refractive index value of silicon but greater than the first refractive index value of the insulating layer.
2. A low loss SOI-based optical waveguiding structure as defined in claim 1 wherein the optically transparent waveguiding structure is formed as a rib waveguide.
3. A low loss SOI-based optical waveguiding structure as defined in claim 1 wherein the optically transparent semiconductor waveguiding structure comprises a material selected from the group consisting of SiN, SiON and SiC.
4. A low loss SOI-based optical waveguiding structure as defined in claim 1 wherein the structure further comprises a relatively thin oxide layer disposed between the relatively thin silicon surface layer and the optically transparent semiconductor waveguiding structure.
5. A low loss SOI-based optical waveguiding structure as defined in claim 4 wherein the structure is used to form an active optical device, with the relatively thin silicon surface layer comprising regions of oppositely doped conductivity, and further including electrical contact areas formed within the silicon surface layer.
6. A low loss SOI-based optical waveguiding structure as defined in claim 5 wherein the regions are disposed to form a p-n junction within the relatively thin silicon surface layer.
7. A low loss SOI-based optical waveguiding structure as defined in claim 6 wherein the doped regions are disposed in a horizontal configuration.
8. A low loss SOI-based optical waveguiding structure as defined in claim 6 wherein the doped regions are disposed in a vertical configuration.
9. A low loss SOI-based optical waveguiding structure as defined in claim 1 wherein the optically transparent waveguiding structure includes a tapered region to reduce optical reflections therealong.
10. A low loss SOI-based optical waveguiding structure as defined in claim 9 wherein the silicon surface layer includes a tapered region to further reduce optical reflections.
11. A low loss SOI-based optical waveguiding structure as defined in claim 1 wherein the silicon surface layer exhibits a tapered doping profile between a first, passive device region and a second, active device region.
12. A low loss SOI-based optical waveguiding structure as defined in claim 1 wherein the insulating layer comprises silicon dioxide with a refractive index of approximately 1.47 and the optically transparent semiconductor waveguiding structure comprises silicon nitride with a refractive index of approximately 2.0.
13. A low loss SOI-based optical waveguiding structure as defined in claim 1 wherein the structure further comprises a cladding layer disposed to surround the exposed portions of the optically transparent waveguiding structure.
14. A low loss SOI-based optical waveguiding structure as defined in claim 13 wherein the cladding layer comprises a CMOS-compatible oxide layer.
Type: Application
Filed: Dec 21, 2005
Publication Date: Jun 22, 2006
Inventors: Vipulkumar Patel (Breinigsville, PA), David Piede (Allentown, PA), Margaret Ghiron (Allentown, PA), Prakash Gothoskar (Allentown, PA)
Application Number: 11/314,305
International Classification: G02B 6/10 (20060101);