Sealed surgical access device
A surgical access device is adapted to facilitate access through an incision in a body wall having an inner surface and an outer surface, and into a body cavity of a patient. The device includes first and second retention members adapted to be disposed in proximity to the outer surface and the inner surface of the body wall, respectively. A membrane extending between the two retention members forms a throat which is adapted to extend through the incision and form a first funnel extending from the first retention member into the throat, and a second funnel extending from the second retention member into the throat. The throat of the membrane has characteristics for forming an instrument seal in the presence of an instrument and a zero seal in the absence of an instrument. The first retention member may include a ring with either a fixed or variable diameter. The ring can be formed in first and second sections, each having two ends. Couplings can be disposed between the ends to accommodate variations in the size of the first retention member. The first retention member can also be formed as an inflatable toroid, a self-expanding foam, or a circumferential spring. A plurality of inflatable chambers can also provide the surgical access device with a working channel adapted for disposition across the body wall. A first retention member with a plurality of retention stations functions with a plurality of tethers connected to the membrane to change the shape of the membrane and the working channel. A stabilizing platform can be used to support the access device generally independent of any movement of the body wall.
Latest Patents:
This is a non-provisional application claiming the priority of provisional application Ser. No. 60/241,953 filed on Oct. 19, 2000, entitled “Hand-Assisted Laparoscopy Apparatus and Method”, as well as the PCT application serial no. PCT/US01/29682, filed on Sep. 21, 2001, and entitled “Surgical Access Apparatus and Method,” both of which are fully incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of Invention
This invention relates generally to surgical access devices, and more specifically to access devices adapted for use in minimal invasive surgery to provide sealed instrument access across a body wall and into a body cavity.
2. Discussion of Related Art
Surgical access to a body cavity, such as the abdominal cavity, is referred to as “open laparotomy” or “closed laparoscopy.” An open procedure involves an incision of sufficient size to allow a surgeon to place hands and instruments within the surgical site. In addition, the site must be open enough for the surgeon to clearly see what he or she is doing. There is often a need for multiple retractors, clamps, and sponges. All of these devices compete for room within the surgical site.
Laparoscopic or closed surgery eliminates many of the issues surrounding open laparotomy. In a typical pressurized laparoscopy, the abdominal wall is punctured and at least one trocar is inserted into the peritoneum. Gas is introduced into the abdominal cavity and to elevate the abdominal wall away from the internal organs. This results in a large, clear operating field. Additional trocars can be inserted as needed for various procedures. A laparoscope is used to provide visualization of the surgical site. The instrumentation for laparoscopic procedures has developed prolifically in recent years and the surgeons have become comfortable with a “remote-control” approach to various aspects of surgery. Cutting, dissecting, cauterizing, stapling and suturing have all been addressed by laparoscopic device manufacturers.
Despite the many advantages of laparoscopic surgery, there remain a few complex procedures that make laparoscopy difficult or risky. In some of these cases, a hybrid procedure makes the most sense. If one could have the visibility and open field of a laparoscopic procedure and the control of an open procedure, one would truly have it all. However, the two modalities tend to obviate each other. Indeed, there are some who would argue that the advances of laparoscopy would be in vane if an open procedure were added as a default.
In recent years, a few enterprising surgeons have advanced a method that they call “hand-assisted” laparoscopy or “handoscopy.” This involves placing one of the surgeon's hands inside the patient through an enlarged incision, while under laparoscopic visualization. With no protruding instrumentation normally used in closed laparoscopy, it is not required to perform overly challenging maneuvers
The challenge now facing the surgeon in this procedure is providing an adequate sealing means within the enlarged incision. The surgeon's hand must be comfortable, properly placed and free to move with a normal range of motion. In addition, the surgeon should be able to remove and replace his/her hand into the abdominal cavity without loss of pneumoperitoneum.
Several devices have been proposed in an attempt to satisfy the requirements of the “handoscopist.” They generally involve an elastomeric seal that fits through an incision and is held in place by retention means on either or both sides of the abdominal wall. The devices are generally complex and require several steps to place. One of the devices requires an adhesive to be placed on the exterior abdominal wall (skin) as the seal is adhered to the skin. This requires not only application of the adhesive but also a drying time. Allergic reactions and other complications must be considered when using this product. Another device makes use of a “toroidal balloon” that inflates to position the device and seal the incision. The surgeon must overcome the friction and sealing pressure of this device when inserting and withdrawing his/her hand from the surgical site. A further device involves the use of a built-in glove or sleeve. This arrangement diminishes the range of motion and the tactile sensation of the hand.
U.S. Pat. No. 5,848,992 discloses a surgical access device that allows the conversion of an open procedure to a laparoscopic procedure. In addition, the '992 patent discloses the use of such a device in a case where a large organ is to be removed. In this instance, an incision of adequate size is made initially and sealed with the device at the same time the trocars are being inserted
Notwithstanding these proposed devices, there remains a continuing need for a surgical access device that provides a flexible, simple and complete seal within an incision of adequate size for introduction of a human hand.
SUMMARY OF THE INVENTIONThe present invention satisfies the requirements of a surgical access device for use with surgical instruments including the surgeon's hand. With this access device, “hand-assisted” laparoscopy is greatly facilitated within a closed surgical environment.
The present invention makes use of an internal retention member and an external retention member connected by a flexible, lubricious material. At least one of the retention members is tensionable to provide adequate stability to the incision site.
The present invention also provides a sealing portion that allows the largest range of hand motion without leakage of insufflation gas. The seal is formed of a material that responds well to the presence of glove material such as Natural Latex, Poly-isoprene, Nitrile, Vinyl or Polyurethane.
In one aspect of the invention, the surgical access device is adapted to facilitate access through an incision in a body wall having an inner surface and an outer surface, and into a body cavity of a patient. The device includes a first retention member configured to surround the incision in proximity to the outer surface of the body wall. A second retention member is configured to surround the incision in proximity to the inner surface of the body wall. A membrane extending between the first retention member and second retention member forms a throat adapted for disposition through the incision. A first funnel extends from the first retention member into the throat and a second funnel extends from the second retention member into the throat. The throat of the membrane has characteristics for forming an instrument seal in the presence of an instrument, any zero seal in the absence of an instrument.
In another aspect of the invention, the first retention member comprises a ring having a first section with a first end and a second end, and a second section with a third end moveable relative to the first end to the first retention member and a fourth end moveable relative to the second end of the first retention member. A coupling is disposed between the first end of the first retention member and the third end of the second retention member. This coupling is operable to vary the distance separating the first end and the third end to control the shape of a working channel formed by the membrane. A second coupling or a hinge may be provided between the second end of the first retention member and the fourth end of the second retention member.
In a further aspect of the invention, the first retention member has a shape that is variable to control the shape of the working channel formed by the membrane. The first retention member can be formed as an inflatable structure such as a toroid. The first retention member may also include self expanding foam for a circumferential spring.
In still a further aspect of the invention, a surgical access device can include a plurality of inflatable chambers each extending in a plane passing through the axis of the device. These chambers collectively define a working channel that is adapted for disposition across the body wall. The chambers may have a straight or U-shaped configuration.
In another aspect of the invention, the device includes a first retention member including a ring with a plurality of retention stations. The membrane is attached to a plurality of tethers that can be coupled to the ring at an associated one of the retention stations to provide the membrane with a desired shape.
In still a further aspect of the invention, a stabilizing platform is proposed to support the access device generally independent of any movement associated with the body wall.
These and other features and advantages of the invention will become more apparent with a description of preferred embodiments in reference to the associated drawings.
DESCRIPTION OF DRAWINGS
In
In
The access device 50 is placed through the surgical incision 100,
With particular reference to
A preferred embodiment of the access device 50 employs an overlapping leaf spring 56 that is biased to the open condition. As opposing ends 57, 58 of the spring 56 spread apart, appropriate tension is exerted upon the sleeve/membrane 75. The applied tension causes a pulling force to be exerted through the communicating middle portion 53. This force approximates the second, internal, or distal end 52 of the access device 50 to the inner surface of the abdominal wall 18.
The second retaining portion 65 is preferably constructed of a flexible material that allows it to be inserted into the surgical incision 100 in a folded form or reduced profile. The second retaining portion 65 is preferably self-deploying or, at least, has sufficient memory to return to a preferred, somewhat circular, or pre-determined shape or condition without manipulation. The material choices for such a configuration may include flexible vinyl, rubber, silicone, or other elastomeric. The materials may also include rigid materials like rigid plastic or metal with a hinged or flexible portion.
In addition, the construction of either the first or second retention members 55 and 65, respectively, may include the use of elastomeric components that have been fitted with or have been molded to include shape memory metals, such as Nickel-Titanium (NiTinol). In any case, the second retention member 65 is easily deformable to a condition or shape that facilitates introduction into the smallest possible surgical incision 100. It must be kept in mind that the second retention member 65 must be sized and configured to retain the access device 50 in place during the rigors of an active surgical procedure, and do so without causing tissue damage such as tissue necrosis or abrasion. A preferred embodiment of the second retention member 65 comprises a ring 66 of soft silicone or vinyl with an internal, encapsulated or insert molded Nickel-Titanium support ring. This embodiment may be introduced in a very deformed condition and will subsequently recover the preferred shape and size upon completion of introduction into the body cavity 16.
As an alternative, the super-elastic and shape-memory properties of Nickel-Titanium may be drawn from temperature transition properties of the alloy. For instance, the second retention member 65 may be cooled to a temperature where the ring 66 is easily, deformable to a high degree, then, as the alloy warms to body temperature, the retention member 65 returns to a programmed shape, size or configuration.
The sleeve/membrane portion 75 is shaped by the tension between the first retention member 55 and the second retention member 65. The sleeve/membrane 75 may initially define an orifice 78 which may be a slit or a hole or the like that communicates between the exterior and the interior of the body cavity 16 through a lumen 80. The lumen 80 exhibits a first condition when the sleeve/membrane 75 is not under tension and a second condition when the sleeve/membrane 75 is under tension.
In a preferred embodiment, the tensioning of the sleeve/membrane 75 adjusts the lumen 80 to a preferred size and configuration. Such a configuration might be the creation of the radiused, funnel-shaped orifice 78 transitioning to the smaller diameter in the middle portion 53 and again transitioning to a funnel-shaped enlargement 67 distally at the second retention member 65.
The material of a preferred embodiment of the sleeve/membrane 75 may include a non-distensible or non-elastic material such as polyethylene, polyurethane or reinforced elastomeric. The choice of polyethylene for the sleeve/membrane 75 provides the surface 77 with nearly friction-free characteristics against most glove materials. Since the polyethylene material is non-elastic, the sleeve/membrane 75 will fold into discrete “fan-fold” segments 79. Such a condition will allow the material of the sleeve/membrane 75 to be compressed radially by the adjacent body tissue so that it forms a throat 90 or nearly occluded middle portion 53 when no hand or instrument is present within the lumen 80 of the device 50. Thus, in the absence of the hand or instrument, the throat functions as a zero seal. When a hand or instrument is present within the lumen 80, the fan-folded material at the throat 90 of the sleeve/membrane 75 yields to the size and shape of the inserted hand or instrument yet forms an occlusive instrument seal. Bearing in mind that the normal pneumoperitoneum is about 0.18 to 0.28 psi, the throat 90 of the present invention is adequate to form both the zero seal and the instrument seal.
The embodiment of
With reference to FIGS. 7A-D, a preferred embodiment of the surgical access device 50 of the present invention comprises a first retention member 155 that is folded so that it resembles a taco. The folding of the first retention member 155 relaxes the member 75, allowing the second retention member 65 to be easily inserted into a surgical incision 100 (
In a preferred embodiment of the folded first retention member 155 the orifice 78 is elongate and in line with a fold 159 of the sleeve/membrane 75 as well as a pair of hinged portions 158 of the first retention member 155. In an alternative embodiment illustrated in
With reference to
Specifically referring to
With reference to
Referring now to
An elongate orifice 78 may be orientated either in-line or transverse to the direction of stretch. An additional embodiment of the surgical access device 50 may comprise a plurality of the foldable separation members 285, 296 wherein the stretching of the sleeve/membrane 75 is more or less uniform. The foldable separation members 285, 295 may be constructed of metal, with or without a discrete hinge, or plastic having either discrete or “living” hinges.
The position of the coil ends 291 and 292 can be maintained by a series of ratchet teeth 295 and an associated ratchet pawl 296. In the illustrated embodiment, the ratchet teeth 295 are formed on the outer surface 293 and the ratchet pawl 296 is formed on the end 292. Alternatively, a second series of ratchet teeth can be formed on the inner surface 294, and an associated second ratchet pawl can be formed on the end 291. This double-ended, double-sided ratchet configuration results in a very large distention potential for the first retention member 155 and, concomitantly, the sleeve/membrane 75.
In this embodiment, the first retention member 155, as well as the ratchet teeth 295, and the ratchet pawl 296, are preferably constructed of a rigid plastic material such as polycabonate, ABS, PBC or other filled or non-filled material. In a further embodiment, the first retention member 155 may be formed from a metal so that it is sterilizable and reusable. Such an embodiment may still include the disposable sleeve/membrane 75 and the second retention member 65.
With reference now to
Similarly, the sleeve or membrane 75 can be formed from an elastic material although in a preferred embodiment the membrane 75 is non-distensible. In this embodiment, expansion of the hollow structure 310 also stretches the sleeve/membrane 75 so that the throat 90 of the access device 50 is also placed under tension. This tensioning of throat 90 which connects the first retention member 300 and the second retention member 65, causes the second retention member 65 to be appropriately drawn into sealing engagement with the interior surface of the abdominal wall 18 (
With attention drawn specifically to
An additional embodiment of the access device 50 of the present invention is shown in
A non-distensible or non-elastic material is also stipulated for use in this preferred embodiment so that friction is minimized, and so that the material of the middle section 490 does not gather or fold as a gloved hand or large instrument is repeatedly inserted and withdrawn through the access device 450.
In the illustrated embodiment, the individual inflatable or fillable members 455 form axial chambers and abutments 495 which prevent material motion and also minimize surface contact between a gloved hand and the material which forms the seal with the abdominal wall 18. The lumen of the middle section 490 may be lubricated with a thick or viscous material which can be stored along the seams of the abutting or adjoining inflatable or fillable members 455. The lubricating product may also function to perfect the instrument seal in the present of a gloved hand or instrument, or to perfect the zero seal in the absence of the gloved hand or instrument.
With reference to
In a similar embodiment illustrated in
With reference to
Turning now to
In such an embodiment, it may be desirable to form the slits 710 so that they are tapered toward the bottom of the slit 710. This will facilitate compression of the associated tether 715 to increase the frictional engagement between the tether 715 and the ring 700. In this manner, the tethers 715 can be collectedly adjusted to provide the membrane 75 with the desired shape and seal characteristics. The membrane 75 can be released from the ring 700 by merely lifting the tethers 715 to disengage their associated slits 710. In
In
In this embodiment, the stabilizing platform 800 includes a base having a generally planer configuration with a pair of support flanges 805 and 807 extending perpendicular on opposing sides of the base 803. A pair of upstanding arms 110 and 112 are pivotally, and perhaps releasably attached to the associated flanges 805 and 807. A cross member 814 is pivotally and perhaps releasably connected between the arms 810 and 812. This cross member 814 in a preferred embodiment is perpendicular to the arms 810 and 812 and parallel to the plane of the base 803. The access device 50 is supported by the cross member 814, with its axis 816 generally perpendicular to the cross member 814. With this orientation, the first retention member 855, represented by the ring 700, is disposed in a plane which may be pivoted relative to the upstanding arms 810, 812, as well as the base 803.
In operation, the base 803 is disposed beneath the patient 10 (
The support platform 800 can be of considerable advantage in a hand-assisted laparoscopic procedure which requires that a human hand being inserted and withdrawn several times while maintaining the abdominal pressure or pneumoperitoneum. As noted, the sealing port or throat 90 (
Given the many embodiments disclosed herein for the access device 50, many other embodiments will now become apparent with changes in structure or materials. For that reason, one is cautioned not to limit the scope of the invention only to the disclosed embodiments, but only with reference to the following claims.
Claims
1-23. (canceled)
24. A combination for facilitating a surgical procedure on a patient supported on a surgical table, comprising:
- an access device including a membrane defining a working channel adapted for disposition across a body wall of the patient to provide instrument access into a body cavity of the patient;
- a stabilizing platform supporting portions of the access device generally independent of any movement of the body wall; and
- the stabilizing platform having a base in a fixed relationship with the surgical table, and a cross member in a fixed relationship with the portions of the access device.
25. The combination recited in claim 24, further comprising:
- at least one arm extending between the base and the cross member.
26. The combination recited in claim 25, wherein at least one arm has a pivotal relationship with the base.
27. The combination recited in claim 26, wherein the cross member has an axis and is rotatable on its axis relative to the arm.
28. The combination recited in claim 25 wherein at least one arm is releasably attached to the base.
Type: Application
Filed: Jan 12, 2006
Publication Date: Jul 6, 2006
Applicant:
Inventors: Charles Hart (Summerville, SC), Scott Taylor (Mission Viejo, CA)
Application Number: 11/330,661
International Classification: A61M 29/00 (20060101);