Electrochemically polishing conductive films on semiconductor wafers
An electropolish process may remove a conductive film from a semiconductor wafer. An electropolish apparatus having a pad over a platen may make surface-to-surface electrical contact with the conductive film of the wafer across the entire surface of the pad and the conductive film on the wafer. An electric field may be applied through openings in the pad and electrodes which receive potential by feedthroughs that extend through the platen to those electrodes. The electrodes in the feedthroughs may be electrically isolated from the pad and the platen. As a result, more uniform application of electrical potential across the surface to be polished may be achieved in some embodiments.
This application is a divisional of U.S. patent application Ser. No. 10/722,801, filed on Nov. 26, 2003.
BACKGROUNDThis invention relates generally to processing integrated circuits.
In the course of semiconductor wafer fabrication, a metal film formed on a semiconductor wafer may be polished. Conventionally, electrochemical polishing may be utilized. An abrasive fluid may be applied between the metal surface of the semiconductor wafer and a polishing platen. A potential may be applied between the semiconductor wafer and the polishing platen and the platen and semiconductor wafer may be counter rotated. As a result, the metal film may be polished.
Generally electropolish processes need uniform electrical contact to the metal film being polished. One limitation of electropolish processes is that the electrical contact to the film is made via contact to the edge of the wafer or at a few discrete points on the front of the wafer.
Thus, the electropolish process is dependent on the resistance of the film between the contact point and the area of the film being polished. As the film is thinned, the resistance of the film increases and eventually the film becomes discontinuous. As a result, the removal process is significantly slowed and may subsequently be halted in some areas.
Thus, conventional electropolish processes suffer from an inability to remove the entire metal film due to the increase in resistivity at the end of the process. Patches of metal may remain at the end of the conventional process.
Thus, there is a need for better ways to implement electrochemical polishing.
BRIEF DESCRIPTION OF THE DRAWINGS
Referring to
In some cases, an abrasive polish fluid material may be used between the semiconductor wafer 10 and the pad 12. Pressure may or may not be exerted.
Referring to
Referring to
An insulative film 24 separates the feedthrough 20 and the counter electrode 16 from the pad 12 and the platen 14. In one embodiment, the pad 12 and the platen 14 are electrically conductive so that an electrical potential may be conveyed through the platen 14 to the pad 12 and thereafter to the film 22. Thus, the film 22 is at one polarity and the counter electrode 16 is at another polarity, setting up an electric field. The circularly shaped edge of the cut-out region 16a may be effective in providing a polishing action.
An electrical potential may be provided through the insulative film 24 upwardly from below to the feedthrough 20 to the electrode 16 in one embodiment of the present invention. A potential of the opposite polarity is applied from below the platen 14 to the film 22 via the conductive platen 14 and pad 12, in one embodiment. The electric field between the film 22 and the counter electrode 16 may be proportional to the voltage difference between the platen 14 and the electrode 16 in one embodiment of the present invention. That electric field drives the electrochemical polish process. The pad 12 serves the dual function of providing an abrasive surface, as well as electrical contact to the film 22 being polished.
Thus, in some embodiments, uniform electrical contact may be made to the film 22 being polished. As a result, the electropolish process may be less dependent on the resistance of the film 22 because a wide contact surface may be had between the film 22 and the pad 12 in some embodiments. As a result, the film 22 removal process may not be significantly slowed or halted in some areas. This may improve the ability to remove the entire film 22 in some embodiments.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
Claims
1. A polishing pad for an electrochemical polishing process comprising:
- a conductive body and a plurality of regularly spaced openings through said body; and
- an electrode in said openings connectable to a potential, said electrode insulated from said body.
2. The pad of claim 1 wherein said openings have a circular shape.
3. The pad of claim 1 including an insulator between said electrode and said body.
4. An electrochemical polishing apparatus comprising:
- a platen;
- a pad positioned over said platen, said pad being conductive; and
- a plurality of electrodes formed within openings in said pad, said electrodes being electrically isolated from said pad.
5. The apparatus of claim 4 wherein said platen is electrically conductive.
6. The apparatus of claim 4 including insulators to insulate said electrode electrically from said pad.
7. The apparatus of claim 4 wherein said electrodes extend through said pad and said platen.
Type: Application
Filed: Mar 29, 2006
Publication Date: Aug 3, 2006
Inventor: Joseph Steigerwald (Forest Grove, OR)
Application Number: 11/392,136
International Classification: H01L 21/306 (20060101);