Medical electrical lead with interchangeable fixation member
A medical electrical lead, a system for providing electrical stimulation or sensing using such a lead, and methods of implanting, making and using same are described. The lead includes a rapidly connectable and/or interchangeable distal line that may be attached to a connector located distally from a distal end of a stimulating electrode. The rapidly connectable or interchangeable line may be sutured to a patient's muscle or other tissue. A physician may select a distal suture line of the present invention on the basis of the desired characteristics of the line, and then connect, secure or attach same to the lead body just prior to the surgical operation in which the stimulating or sensing medical electrical lead of the present invention is to be employed. The desired characteristics of the suture line may relate to thickness or diameter, length, the material from which the line is made, biodegradability, and the like.
Latest Medtronic, Inc. Patents:
This application is a continuation application of U.S. application Ser. No. 10/132,513, filed Apr. 26, 2002, now pending, which is a continuation-in-part of U.S. application Ser. No. 09/487,787, filed Jan. 20, 2001, now issued, U.S. Pat. No. 6,434,431 issued Aug. 13, 2002. The entire content of each of these U.S. Applications is incorporated herein by reference.
FIELD OF THE INVENTIONThe present invention relates to medical electrical medical leads, including intramuscular medical electrical leads.
BACKGROUND OF THE INVENTION Surgically implanted medical electrical leads for temporary stimulation of various organs in the human body are known in the art, some examples of which may be found in the issued U.S. Patents listed in Table 1 below.
Medical electrical leads and other medical devices having various types of loops disposed therein or thereon are also known in the art, some examples of which may be found in the issued U.S. Patents listed in Table 2 below.
Incorporated by reference herein, each in its respective entirety. As those of ordinary skill in the art will appreciate readily upon reading the Summary of the Invention, Detailed Description of the Preferred Embodiments and Claims set forth below, at least some of the devices and methods disclosed in the patents of Tables 1 and 2 may be modified advantageously in accordance with the teachings of the present invention.
In respect of known intramuscular medical stimulation leads, sliding members disposed on the lead bodies thereof may act as a source of bacterial infection. See, for example, the '758 patent referenced in Table 1 hereinabove. Additionally, non-conductive polypropolene monofilaments employed in known intramuscular leads have been criticized as being too stiff and difficult to tie into a knot. Moreover, fixation of the aforementioned sliding members to muscle tissue is not always possible. Indeed, such sliding members have a tendency to move after a suture has been applied around the barrel anchor thereof. There also exists the problems of temporary electrical stimulating leads having suture wires affixed thereto which are determined to be difficult to suture by the physicians who implant them, or which should or must be removed post-operatively from the patient.
Thus, there exists a need to implant temporary stimulation leads for intramuscular and other applications which employ suture wires that are not prone to infection, need not be removed post-operatively from patients, or which are easier to implant.
SUMMARY OF THE INVENTIONThe present invention has certain objects. That is, the present invention provides solutions to problems existing in the prior art. It is an object of the present invention to provide an intramuscular or other medical electrical lead, which may be reliably and quickly affixed to muscle or other issue. It is further object of the present invention to provide an intramuscular or other medical electrical lead, which is quickly and easily attached to human muscle or other tissue. It is a still further object of the present invention to provide an intramuscular or other medical electrical lead which easier to implant than prior art leads.
Various embodiments of the present invention have one or more advantages, including one or more of the following: (a) reducing the amount of time required to implant an intramuscular lead in muscle tissue; (b) permitting one or more electrodes to be reliably and fixedly implanted within is human muscle tissue; (c) reducing patient trauma; (d) reducing the number of puncture sites in the muscle tissue; (e) is easy to use; (f) attaching to external pacemakers, defibrillators, monitoring equipment and other external electrical apparatus quickly, easily, securely and reliably; (g) increasing patient safety owing to shortened implantation times, quicker connection to external stimulation or monitoring equipment, and more reliable fixation to muscle tissue; (h) eliminating the requirement for post-operative removal of suture wires from the patent; (i) permitting the implanting physician to select from an array of different suture wires that may be quickly connected to the lead.
Various embodiments of the intramuscular medical electrical lead of the present invention have certain features, including one or more of the following: (a) an intramuscular lead having at least one proximal fixation member; (b) an intramuscular medical electrical lead having at least one distal fixation member; (c) an intramuscular medical electrical lead having proximal and distal fixation members, (d) an intramuscular medical electrical lead having a proximal or distal fixation member, where the fixation member is selected from a group consisting of a trumpet-shaped member, a tined member, and a helical screw; (e) an intramuscular medical electrical lead having an electrode section which may be elongated or compressed during the implantation procedure; (f) an intramuscular or other medical electrical lead having an absorbable or resorbable suture wire section; and (g) an intramuscular or other medical electrical lead having a suture wire section which may be readily installed, swapped or replaced, according to the is particular requirements of the physician who implants the lead.
Other objects, features, advantages and embodiments of the present invention will become apparent upon reading the Detailed Description of the Preferred Embodiments and the Claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Prior to implanting electrode 44, an optimum electrode implantation location may be determined as follows. To determine the best location for muscle implant 44, threshold measurements at various test locations may be carried out on the muscle. One consideration in evaluating such a location is whether a location requires only a low threshold stimulation signal (and hence low energy consumption) to cause muscle contraction. Obviously, locations having the lowest stimulation thresholds are preferred. Another consideration in evaluating a stimulation location is whether stimulation at such a location causes muscle contractions to be large. It is generally preferred that muscle contractions be large. The foregoing two considerations are generally weighed together in determining an optimum electrode location.
In the present invention, an optimal electrode position may be determined by using needle 32, and more particularly needle point 32a, as a is test electrode probe. Needle point 32a is placed in, contact with various test locations on the surface of a muscle. Temporary conductor or test wire 10 is provided for supplying electrical current to needle 32 from an external pulse generator (not shown). Because needle 32 must be gripped by the surgeon during the testing of prospective implant electrode locations, the outside surface of the proximal gripping portion of needle 32 spaced from sharp muscle-contacting probe end 32a thereof may be provided with a suitable insulating coating 32b such as a polyurethane adhesive. Distal end 32a of needle 32 must make electrical contact with the muscle tissue being tested and therefore is not insulated. It will be understood by those skilled in the art that needle 32 need not be coated to be functional.
Use of needle 32 for testing relation of a muscle tissue area is accomplished by gripping the insulated surface 32b thereof and holding the uninsulated contact point area 32a and electrical contact for selected test areas of the muscle tissue. There is a risk of local tissue damage if sharp point 32a of needle 32 penetrates the surface of the muscle. Non-penetrating contact has therefore been found to be preferable to inserting the sharp end of the needle into the tissue.
After testing the various prospective implant locations, determining the optimum location, temporary conductor or test wire 10 is severed adjacent to its attachment point with needle 32. Needle 32 is then employed by the surgeon to penetrate the targeted muscle and permit electrode 44 of lead 30 to be drawn into an optimum position for periodic stimulation.
In a preferred embodiment to the present invention, line 33 is electrically nonconductive and is made of an absorbable or bioabsorbable suture material so that it is eventually absorbed by the muscle tissue after implant. Such materials include DEXON®, VICRYL®, MAXON® and PDS®.
In another embodiment of the present invention, nonconductive line 33 is replaced with a thin conductor wire having an outer insulative coating such as is preferably the case with temporary conductor or test wire 10. Connector 38 is connected to implantable pulse generator 5 (not shown in
Continuing to refer to
The insulation disposed over the electrical conductor is most preferably formed of flourinated ethylenepropylene ((FEP), polytetrafluoroethylene (PTFE), or any other suitable medical grade, biocompatible dielectric insulating coating such as co-polymer polytetrafluoroethylene, polyethylene, silastic, neoprene, polypropylene, or polyurethane. Likewise, proximal and distal fixation members 10 and 15 may be formed of the same or similar materials.
Electrode 44 is most preferably formed of a platinum/iridium alloy, wherein platinum comprises 90 percent of the alloy and iridium comprises 10%. Electrode 44 is mechanically and electrically connected by an electrical conductor disposed within lead body 36 (not shown in the Figures). The electrical conductor, in turn, is attached to the distal end of IPG connector 38. Lead 30 includes current needle 32 for piercing muscle tissue preparatory to drawing electrode 44 within the muscle tissue. The proximal end of curved needle 32 is connected to line or strand 33.
Referring now to
In preferred embodiments of the present invention, lead 30 is configured to provide satisfactory stimulation thresholds for appropriate muscle contraction of muscle tissue 27. Needle 32 is appropriately shaped and of appropriate length to provide optimum results. The length of lead 30 should be sufficient to provide adequate slack in lead body 36 to permit bi-lateral implants. Moreover, in a preferred embodiment of the present invention proximal and distal affixation members 15 and 10, respectively, optionally include structures for suturing or anchoring same to muscle tissue 27 once electrode 44 has been appropriately positioned within same. It is also desired that at least portions of lead 30 be visible using x-ray imaging techniques.
Referring now to
FIGS. 6(a) through 6(c) illustrate various embodiments of the proximal and distal fixation members of the present invention. In
In
As shown in FIGS. 7(a) and 7(b), an alternative embodiment of electrode 44 comprises relatively tightly wound electrode wire which is capable of being pulled apart to thereby elongate electrode 44 and to increase the flexibility thereof. Additionally, electrode 44 may also be shaped such that spaces are initially disposed between adjoining windings thereof. In such an embodiment of the present invention, those windings may be pushed together to increase the stiffness of electrode 44 or pulled apart to increase the flexibility thereof.
Referring now to FIGS. 7(c) and 7(d) there are shown two different embodiments for securing wound electrode 44 illustrated in FIGS. 7(a) and 7(b) to distal portions of lead 30. Cone-shaped member 15b may be configured to crimpingly engage distal portions of wound electrode 44 in the region of sleeve 35. Alternatively, crimp sleeve 35 may be configured such that portions of lead 30 disposed distally therefrom may be separated from lead 30 using surgical scissors or mechanical breaking or snapping of a weakened zone.
The present invention includes within its scope methods of implanting, using and making the leads described hereinabove. For example, the invention includes a method for implanting an intramuscular lead having distal and proximal ends, the lead being suitable for electrical stimulation or sensing of muscle tissue and comprising at least one stimulating and/or sensing electrode, the lead further comprising at least one of a proximal fixation member located proximally from the electrode and a distal fixation member located distally from the electrode, the method comprising: (a) positioning the at least one electrode in electrical contact with at least a portion of muscle tissue, the electrode being electrically connected to at least one electrical conductor, the conductor having a proximal end connected electrically to a proximal connector, the connector being configured for attachment to an external electrical apparatus; (b) securing the electrode to the at least portion of the muscle tissue; and (c) positioning at least one of the proximal fixation member and the distal fixation member in or on the muscle issue to prevent or inhibit movement or relocation of the at least one electrode in the distal or proximal directions.
The Figures show disk-shaped fined, trumpet-shaped, sleeve-shaped, cone-shaped, and helical screw proximal and distal fixation members 10 and 15, respectively, but any suitably shaped or configured fixation member, whether proximal or distal, may be employed. The fixation member may be formed of polyurethane, silicon rubber, medical grade plastic, suitable to biocompatible polymers, stainless steel or any other suitable biocompatible, biostable material. Additionally, either or both of the proximal and distal fixation members may be fixedly attached to regions near the proximal and distal ends of the electrode, respectively, or may be attachable to such regions after the electrode has been implanted in the muscle tissue at the desired site. For example, a fixation member may assume a split disk configuration or shape having two portions which snap together when closed upon one another, where the two portions are opened for placement around the lead body, electrode crimping sleeve, cone-shaped member or the electrode, and are then closed therearound by snapping the two portions together. As discussed above, one of the fixation members may slide onto the line or member 33, and then be moved in the distal or proximal directions into a position where the fixation member snappingly or otherwise engages at least portions of a locking member or cone to thereby be secured into position.
It is also not a requirement of the present invention that the fixation members be located precisely “at” the proximal or distal end of the electrode. Instead, either fixation member may be attached, by way of example only, to a location disposed proximally or distally from the electrode, to a location on the lead body disposed distally from the electrode, to a location disposed proximally from the electrode, to member 33, or even to other members or portions of lead 10. What is important is that the electrode be reliably and relatively fixedly positioned within the muscle tissue at a desired site through means of the one or more fixation members, and that such positioning of the electrode be so maintained over a desired period of time.
Line or member 33 need not be electrically nonconductive, and may be formed integrally with, by way of example only, electrode 44 or lead body 36. Line or member 33 may also include a coil affixation member, such as a pigtail, therein.
For example, the physician himself may crimp, glue, tie or otherwise attach the two ends of suture 33 to the proximal end of needle 32 and/or to distal connector 51. The interchangeable nature of suture 33 of the present invention permits a physician to select suture 33 on the basis of desired length, diameter, material, biocompatbility characteristics, biodegradability characteristics, and so on.
Examples of materials from which suture 33 may be formed or made include, but are not limited to, polydioxanone (PDS II), coated VICRYL RAPIDE (polyglactin 910), surgical gut suture, monocryl (poliglecaprone 25), polypropylene, NURULON braided nylon, PERMA-HAND silk, MERSILENE polyester fiber, ETHIBOND EXCEL polyester, surgical stainless steel, ETHILON nylon, and PROLENE polypropylene sutures.
It is preferred that suture 33 range between about 10 cm and about 20 cm in length, and have a diameter no larger than that of the electrode tip (e.g., less than or equal to about 0.6 mm). Additionally, it may be another feature of suture 33 of the present that suture 33 be formed or made of a material which is absorbable, resorbable, and/or biodegradable within the human body after lead 30 has been implanted. Such characteristics of suture 33 can eliminate the need for a physician to post-operatively perform surgery on a patient within whom lead 30 has been implanted for the purpose of retrieving suture 33 or portions thereof. The rate at which suture 33 degrades or decomposes within the patient can be controlled by appropriately selecting the material and/or physical dimensions from which suture 33 is made Examples of appropriate biodegradable, decomposable, absorbable and/or resorbable materials suitable for use in suture 33 of the present invention include, but are not limited to, polydioxanone (PDS II), VICRYL RAPIDE (polyglacbn 910), coated VICRYL RAPIDE (polyglactin 910), plain surgical gut suture, chromic surgical gut suture, and MONOCRYL (poliglecaprone 25) sutures.
Yet another desirable feature of the present invention when employed in intramuscular applications is that needle 32 possess a point which is blunt and not sharp. Such a blunt point does not pierce muscle tissue and instead splices such tissue, thereby resulting in less traumatic injury to the muscle issue. For example, ETHICON's ETHIGUARD Blunt Point Needle is desirably employed in conjunction with other components of the present invention, as are any one of ETHICON's ¼ circle, 3/18 circle, ½ curve, 1/2 circle, 5/8 circle and straight needles. Moreover, needle insertion force may be diminished by applying a slippery coating to needle 32 such as silicone rubber, PTFE, and other materials which become or remain slippery when wetted.
Because the connectors of the present invention are required to be in electrical contact with the electrical conductors of lead 30, the conductors are preferably attached to the distal ends of the connectors by a combination of compressing, inserting and crimping steps. Other methods of electrically conductive attachment such as brazing, soldering or welding may of course be utilized. The connectors of the present invention are not limited to pin connectors, but include any plurality of connectors having suitable configurations for attachment to the blunt end. The proximal ends of the connectors need not be removed from the needle by manual means only. Specially configured tools may be used to break or pull the connectors free of the needle.
Furthermore, the present invention is not limited to embodiments where all electrodes are attached to the same lead body, where one electrode must necessarily be disposed proximally or distally of the other electrode or electrodes, or where the electrodes are crimpingly attached to the conductors. For example, an electrode of the present invention may be formed by merely stripping away insulation overlying bare wire at a suitable location, by attaching a clip to bare wire, or by heat shrinking electrically conductive heat shrink over selected portions of bare wire.
The scope of the present invention is not limited to intramuscular electrical stimulation or sensing applications, but extends to neural, defibrillation, cardiac mapping, abdominal stimulation, and other medical and medical device applications and methods. Moreover, lead 30 of the present invention may be employed at numerous different muscle implant locations, and is not limited to use in cardiomyoplasty or graciloplasty applications. For example, lead 30 of the present invention may be employed in gluteus muscle implantation procedures to correct fecal or urinary incontinence, and may further be employed in rectal muscle implants in bladder myoplasty procedures. The scope of the present invention is not limited to applications where a human organ or plurality of organs is sensed monitored, paced, or defibrillated, but includes similar applications in animals.
The present invention also includes within its scope methods of making the leads, electrodes, and fixation members disclosed hereinabove. Although only a few exemplary embodiments of the present invention have been described in detail above, those skilled in the art will appreciate readily that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the invention. Accordingly, all such modifications are intended to be included within the scope of the present invention as defined in the following claims.
In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts a nail and a screw are equivalent structures.
All patents, patent applications and/or printed publications disclosed hereinabove are hereby incorporated into the specification hereof, each in its respective entirety.
Claims
1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. (canceled)
14. (canceled)
15. (canceled)
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. A method of selecting a location for and implanting a muscular lead, wherein the muscular lead comprises: a needle having a needle point; a test wire that is configured to supply current to needle; a lead that is connected to the needle comprising the steps of:
- (a) placing the needle point in contact with at least one test location on the surface of a muscle;
- (b) providing current to the needle point with the test wire;
- (c) observing the response of the contacted muscle to the current from the needle point;
- (d) selecting a location for implantation of the muscular lead;
- (e) severing the test wire adjacent to its attachment point with the needle: and
- (f) penetrating the selected muscle location with the needle to draw the lead into the muscle.
23. The method of claim 22, wherein steps (a)-(c) are carried out more than once.
24. The method of claim 22, wherein the current that is provided in step (b) is varied and the variable response of the contacted muscle is observed.
25. The method of claim 22, wherein step (d) is based at least in part on the amount of current provided in order to observe a response, the magnitude of the muscle response, or some combination thereof.
26. The method of claim 22, wherein the step (a) is accomplished by gripping a portion of the needle that is insulated.
Type: Application
Filed: Aug 16, 2005
Publication Date: Aug 17, 2006
Applicant: Medtronic, Inc. (Minneapolis, MN)
Inventors: Antoine Camps (Eys), Victor Duysens (Grevenbicht), Leo Kretzers (Sittard), Martin Gerber (Maple Grove, MN)
Application Number: 11/204,749
International Classification: A61N 1/05 (20060101);