Systems and methods for wafer polishing
An electromagnetic polish head (100) comprises at least one electromagnet. An embodiment may also include the addition of a slurry component or components that can be affected by an electromagnetic field. During polishing or planarization, a field or fields may be generated by the polish head (100) to affect the polishing of a wafer by attracting or repelling the slurry to a portion or portions of the substrate.
Latest Patents:
This patent application is a continuation-in-part of, and claims priority to, co-pending and commonly-assigned U.S. patent application Ser. No. 11/063,384, filed Feb. 22, 2005, entitled “Systems and Methods for Wafer Polishing,” which is incorporated in its entirety herein by reference.
BACKGROUNDA. Technical Field
The present invention relates generally to the field of semiconductor wafer fabrication, and more particularly, to chemical mechanical planarization or polishing (CMP) of wafers.
B. Background of the Invention
The manufacturing of semiconductor devices, including integrated circuits, microchips, or chips, often involves multiple processes. For example, a semiconductor device may comprise a substrate on which a number of films of various chemical compositions are layered. During manufacturing, a layer's thickness or uniformity may need to be within a set limit for the final device to function properly. Thus, at one or more times during the manufacturing of a semiconductor device, the wafer under development may need to be planarized. One method for planarizing substrates utilized in semiconductor manufacturing is called chemical mechanical polishing or planarization. Chemical mechanical polishing or planarization (CMP) is a polishing process that uses a combination of mechanical removal and chemical etching to planarize a wafer's surface.
A typical CMP apparatus comprises a polish head (also referred to as a carrier head) and a polishing pad. The polish head is a tool fixture that holds a wafer during the CMP process. Typically, the wafer is held in place, in an inverted position, against the polish head through vacuum pressure. A polishing pad faces the wafer when the wafer is positioned on the polish head. During a CMP process, the polish head presses the wafer against the polishing pad. Depending on the particular CMP apparatus configuration, both the polishing pad and the polish head may rotate to create the mechanical polishing. Typically, a chemical etching solution is continuously pumped onto the polishing pad during the CMP process.
The chemical etching solution, also referred to as the “slurry,” is normally a mixture of an abrasive or abrasives and other chemicals. For example, a slurry may contain silica or alumina particles dispersed and suspended in an acidic or a basic etching solution, depending on the application.
CMP processes are normally used to planarize silicon wafers at both post-ingot wafer slicing and at various levels of the chip development. For example, once the bare silicon wafer is cut from the silicon ingot, its surface is usually rough and uneven. Generally, there are strict tolerances as to the planarity of the wafer before it can be used to produce yielding chips. To achieve an acceptable level of planarity, CMP is typically employed to planarize the wafer.
Also, during the production of an integrated circuit, it is typically very desirable that the wafer's surface be planar throughout each process. However, due to the nature of certain processes, a non-planar surface may be produced. This non-planar surface may lead to various problems in production, which generally leads to a reduced yield of functional chips. For example, due to uneven topography of the wafer, possibly resulting from prior deposition cycles or other manufacturing processes, reactants may grow uneven layers onto the surface of the wafer. Once again, CMP is often used to reduce the wafer's altitude variations so that subsequent process steps can be performed.
Although the use of CMP processing during the manufacturing of semiconductor manufacturing helps increase yield, the CMP process has limits. Currently, the CMP process may not be able to planarize sufficiently a wafer that possesses too great a disparity in wafer surface altitude. Furthermore, current CMP process may introduce defects into wafers by over-polishing or under-polishing certain areas. These problems may lead-to decreased yields of semiconductor products.
SUMMARY OF THE INVENTIONIn general, exemplary embodiments of the invention are concerned with an electromagnetic polish head comprising at least one electromagnet. An embodiment may also include employing a slurry component or components that can be affected by an electromagnetic field, such as, for example, a polarized or polarizable slurry component or components. In one embodiment, during polishing or planarization, a field or fields may be generated by the polish head to affect the polishing of a wafer by attracting or repelling the slurry component or components to a portion or portions of the substrate. In an embodiment, the field or fields generated by an electromagnetic polish head may be varied during the polishing process. An embodiment of the present invention may include a contoller, computer system, or processing unit to monitor and/or control the fields generated by the electromagnetic polish head.
BRIEF DESCRIPTION OF THE DRAWINGSReference will be made to embodiments of the invention, examples of which may be illustrated in the accompanying figures. These figures are intended to be illustrative, not limiting. Although the invention is generally described in the context of these embodiments, it should be understood that it is not intended to limit the scope of the invention to these particular embodiments.
In the following description, for purposes of explanation, specific details are set forth in order to provide an understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these details. Furthermore, one skilled in the art will recognize that embodiments of the present invention, described below, may be performed in a variety of ways and using a variety of means, including software, hardware, firmware, or a combination thereof. Accordingly, the embodiments described below are illustrative of specific embodiments of the invention and are meant to avoid obscuring the invention.
Reference in the specification to “one embodiment,” “a preferred embodiment,” or “an embodiment” means that a particular feature, structure, characteristic, or function described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment,” “in an embodiment,” or the like in various places in the specification are not necessarily all referring to the same embodiment.
In
Because slurry component or components may be drawn to or repelled from a region, the present invention provides greater control over a CMP process. The present invention may provide for more or less polishing on portions of a wafer by attracting or repelling slurry to a particular portion of a wafer, depending upon the polarizations of the slurry and the electromagnetic field or fields. By controlling the polishing rates at different locations on the wafer, the present invention may be employed to create a desired profile on a wafer. Furthermore, wafers that previously may have possessed surface variations too severe for a CMP process to correct may, through application of the present invention, be planarized. Accordingly, greater outputs in yield may be achieved.
For example,
In one embodiment, electromagnetic polish head 100 may be electrically coupled to an alternating current or a direct current for energizing an electromagnetic field or zones. In an embodiment, controller 604 may comprise a processor or computer system that controls the magnitude, polarity, and rate of change of one or both of the magnitude or polarity of the electromagnetic fields generated by the different zones of polish head 100.
One skilled in the art will recognize that a number of open loop and closed loop feedback systems may be employed as part of the present invention to provide information to controller 604. In an embodiment, a processor may receive profile information to determine the desired electromagnetic field strength and polarity needed to produce the desired wafer profile. A desired slurry/electromagnetic profile may be determined and applied during the CMP process in a number of ways. For example, sample wafers may be inspected to determine the profile resulting from the manufacturing process. In an alternate embodiment, the desired profile may be determined given the known wafer geographies and/or previous manufacturing processes. In another embodiment, the wafer, itself, may be examined to determine its specific profile. In yet another embodiment, the polish head motor current may be used to provide closed-loop feedback. The layers of a wafer with their varying material property also vary in the amount of energy required to polish them. As the polish head passes from one layer to a different layer, changes in the motor current can be detected. In one embodiment, reflectance/transmittance methods may be used to profile a wafer's surface. A polish pad may be equipped with one or more areas through which light may be transmitted to detect a wafer's surface during a polishing process. It should be noted that no particular feedback system or configuration is critical to the practice of the present invention.
One skilled in the art will recognize that the electromagnetic fields generated by the electromagnets need not be held constant during the entire CMP process. Rather, the fields may be changed during the process to adjust the rates of polishing during the CMP process. It should also be noted that although each zone is capable of generating an electromagnetic field of different magnitude and polarity than the other zones, two or more zones may be set to generate electromagnetic fields of the same magnitude and polarity. One skilled in the art will recognize factors to consider regarding changes to the electromagnetic field include, but may not be limited to, the strength of polarity of slurry component, the size of polish head, the polish head pressure on the substrate, the rate at which the polish head rotates, and the slurry flow rate.
In an embodiment, two or more electromagnetic fields may be generated. It should be noted that these fields may be generated at the same time or at different times during the CMP process. In another embodiment, one or more of the field's magnitude, polarity, or magnitude and polarity may be varied or adjusted 740 during the CMP process. Accordingly, the CMP process may be adjusted to customize the distribution of the slurry to match the changing wafer profile.
The above description is included to illustrate embodiments of the present invention and is not meant to limit the scope of the invention. The scope of the invention is to be limited only by the following claims. From the above discussion, many variations will be apparent to one skilled in the art that would yet be encompassed by the scope of the present invention.
Claims
1. A polish head for polishing a substrate comprising:
- a carrier head for holding the substrate during polishing; and
- an electromagnet within the carrier head for affecting a slurry's distribution across at least a portion of the substrate's surface during polishing with a Polish pad.
2. The polish head of claim 1 wherein an electromagnetic field generated by the electromagnet affects the rate of polishing on at least a portion of the substrate by attracting said slurry to said portion of the substrate.
3. The polish head of claim 1 wherein an electromagnetic field generated by the electromagnet affects the rate of polishing on at least a portion of the substrate by repelling said slurry from said portion of the substrate.
4. The polish head of claim 1 wherein an electromagnetic field generated by the electromagnet is varied during polishing.
5. The polish head of claim 1 further comprising at least one additional electromagnet.
6. The polish head of claim 5 wherein electromagnetic fields generated by the electromagnets affect the rate of polishing on at least a portion of the substrate by attracting said slurry to said portion of the substrate.
7. The polish head of claim 5 wherein at least one of the electromagnets generates an electromagnetic field that is varied during polishing.
8. The polish head of claim 5 wherein the carrier head rotates during polishing.
9. A method for affecting the polishing rate on at least a portion of a substrate comprising:
- using a slurry with at least one component capable of being affected by a electromagnetic field;
- placing the substrate on a polish head comprising an electromagnet;
- using the electromagnet to generate an electromagnetic field to affect the slurry's distribution across at least a portion of the substrate's surface while polishing with a polish pad.
10. The method of claim 9 further comprising a step of using a feedback system to determine an adjustment to the electromagnetic field.
11. The method of claim 10 wherein the feedback system is an open-loop feedback system.
12. The method of claim 11 wherein the step of using the open-loop feedback system comprises obtaining a substrate profile.
13. The method of claim 12 wherein the substrate profile is determined from measuring the profile of a sample substrate.
14. The method of claim 10 wherein the feedback system is a closed-loop feedback system.
15. The method of claim 14 wherein the step of using the closed-loop feedback system comprises obtaining a substrate profile using reflectance/transmittance measurements.
16. The method of claim 14 wherein the step of using the closed-loop feedback system comprises using the polish head's motor current to determine the adjustment to the electromagnetic field.
17. The method of claim 9 wherein the slurry comprises at least one iron, nickel, or cobalt component.
18. The method of claim 9 further comprising the step of generating at least two electromagnetic fields.
19. A slurry for use with a polish head and polish pad for polishing a substrate, said polish head comprising a carrier head for holding the substrate during polishing and an electromagnet within the carrier head that generates an electromagnetic field, the slurry comprising at least one polarizeable component that is affected by the electromagnetic field generated by the electromagnet wherein the slurry's distribution across at least a portion of a substrate's surface may be affected to be non-uniform during polishing.
20. The slurry of claim 19 wherein the polarizeable component is selected from a group comprising a ferromagnetic component, a paramagnetic component and both ferromagnetic and paramagnetic components.
Type: Application
Filed: Jun 21, 2005
Publication Date: Aug 24, 2006
Applicant:
Inventor: Robert Donis (Washougal, WA)
Application Number: 11/158,450
International Classification: B24B 51/00 (20060101); B24B 49/00 (20060101); B24B 1/00 (20060101);