Process for preparing a melt-processable polyamide composition

The invention relates to a process for preparing a melt-processable polylactam by contacting caprolactam monomer with an anionic polymerization catalyst chosen from the group consisting of magnesium-lactamates and magnesium-lactamate forming compounds and acyllactam, polymerizing said monomer and contacting the resulting polylactam with a protic compound. The resulting polylactam has a good meltstability and a low degree of branching.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

The invention relates to a process for preparing a melt-processable polylactam composition by contacting caprolactam monomer with an anionic polymerization catalyst and an activator, polymerizing said monomer under anhydrous conditions at a temperature above the melt temperature of the resulting polylactam, and contacting the resulting polylactam in the melt or in solid form with a protic compound.

Such a process is known from DE-10118453. In the known process a dried lactam monomer is first melted and then contacted with an anionic polymerization catalyst and subsequently polymerized in the melt. In the examples a polymerization temperature of 270° C. is applied. After the polymerization a protic compound is added to the melt to deactivate the catalyst. Thereafter the polyamide can be granulated for further purposes or directly be used for the manufacture of shaped articles. Alternatively, the polyamide obtained from the polymerization is first granulated, then contacted with the protic compound, remelted and extruded. As the lactam monomer in the known process all known lactam monomers can be considered, including Lactam-6, (i.e. caprolactam). However, all examples concern Lactam-12. Catalysts suitable for the known process are mentioned to be catalysts and catalyst systems described in the literature and include metal lactamates, respectively lactamate forming compounds, such as sodium lactamate and magnesium lactamate, among others. As the catalyst primarily commercially available sodium lactamate dissolved in lactam is mentioned to be used. This is likewise also the case in the examples described. Suitable activators are mentioned to include acylated lactams, isocyanates and carbodiimides. The system actually applied in the examples is indicated by reference to DE-19715679-A1, which patent application only describes carbodiimides, isocyanates and diisiocyantes as activator and primarily sodium lactamate as catalyst. As protic compounds are mentioned compounds with an acidity constant pKa less than about 14. The polyamide prepared by the known process is reported to have in particular good melt stability, characterized by a reduced viscosity degradation when the polyamide is remelted.

A disadvantage of the known process using the combination of sodium lactamate with isocyanate or carbodiimide activators for the polymerization of caprolactam is that the resulting polycaprolactam has a high degree of branching. Due to this branching the polylactam obtained with the known process gives rise to formation of gel particles and irregularities in critical processes such as melt spinning of fibres and extrusion of thin films. This makes the known polylactam less attractive for use in applications such as fibers and films.

The aim of the invention is to provide a process for preparing a melt-processable polycaprolactam that has a much lower degree of branching than the polylactam obtained by the known process.

This aim has been achieved with the process wherein the anionic polymerization catalyst is chosen from the group consisting of magnesium-lactamates and magnesium-lactamate forming compounds, and wherein the activator is an acylamide.

Surprisingly, the polycaprolactam obtained with the inventive process, wherein a catalyst/activator combination of magnesium-lactamates or magnesium-lactamate forming compounds/acyl amide is used, has a much lower branching degree than the polylactam obtained with the known process using the catalyst/activator combination of sodium lactamate/isocyanate or carbodiimide. Moreover it has been found that the process with the catalyst/activator combination according to the invention also gives a lower degree of branching than the process using a catalyst/activator combination of either magnesium-lactamates or magnesium-lactamate forming compounds forming compounds/isocyanate or carbodiimide or sodium lactamate/acyl amide.

Furthermore, the molecular weight, or relative viscosity, of the resulting polylactam can be better regulated with the amount of acyllactam. A higher amount of acyllactam results in a polylactam with a lower molecular weight, whereas a lower amount of acyllactam results in a higher molecular weight polylactam. Moreover, though the polymerization is carried out as a melt polymerization, i.e. above the melting temperature of the polylactam, the relative viscosity of the polylactam at maximum conversion has a reduced dependency on the temperature at which the lactam is polymerized. This in contrast with hydrolytic polymerization, where the relative viscosity of the polylactam at maximum conversion is much more dependent on the temperature at which the polymerization is carried out.

In the context of the application a melt-processable polylactam is understood to be polylactam that, after being prepared, can be made free of, or essentially so, of volatile components, and can be processed by melt-processing into products like polyamide compounds and/or can be shaped into shaped products like fibers, films and molded articles.

In the context of the application anhydrous conditions are understood to be represented by a lactam monomer with a moisture content of less than 1000 ppm, and by an optional surrounding gas atmosphere with a moisture content of less than 100 ppm. These anhydrous conditions are more critical where a small amount of catalyst is used, since this might otherwise lead to a premature deactivation of the catalyst and very long polymerization times if any polymerization at all. With a large amount of catalyst, the moisture content is less critical. Preferably, the lactam monomer has a moisture content of less than 500 ppm, more preferably less than 300 ppm, most preferably less than 150 ppm. Preferably, the optional surrounding gas atmosphere comprises less than 20 ppm moisture, even more preferably less than 10 ppm moisture. The advantage of a lower moisture content is that the polymerization is more reproducible in terms of conversion speed and in terms of relative viscosity of the resulting polyamide.

The magnesium-lactamate forming compounds can be any magnesium compound that reacts upon contacting with caprolactam monomer to form a magnesium-lactamate. The lactam in said formed magnesium -lactamate typically is caprolactam.

Suitable magnesium-lactamate forming compounds that can be used in the inventive process include organo-magnesium-halides, diorgano-magnesium compounds, amido-magnesium halides, and magnesium bisamides, but are not limited thereto.

Organo magnesium halides are halide compounds, which are considered to comprise a hydrocarbon radical bound to a magnesium halide, wherein the hydrocarbon radical can be an alkyl, cycloalkyl, aryl, aralkyl or alkaryl radical. The halides can be F, Cl, Br or I, preferably Cl, Br, or I, more preferably Br. The halides can be F, Cl, Br or I.

Diorgano magnesium compounds are compounds having two hydrocarbon radicals bound to a magnesium halide, wherein the hydrocarbon radicals can both or either be an alkyl, cycloalkyl, aryl, aralkyl or alkaryl radical.

Amido-magnesium halides are magnesium halide compounds, which are considered to comprise an ionic bound between an amide ion, i.e. a deprotonated amide, and a magnesium halide. The magnesium halide can be the reaction product of an organo magnesium halide with an amide. Suitable amides from which the amido-magnesium halide may be prepared, include non-cyclic amides and cyclic amides. Suitable cyclic amides include, for example, cyclic hexamethylene adipamide and lactams. Suitable lactams are, for example, ε-caprolactam, enantholactam, caprylolactam, decanolactam, undecanolactam and dodecanolactam.

Magnesium bisamides are compounds comprising two amide groups bound magnesium. These compounds can be prepared for example by reacting a di-organo magnesium compound and for instance a lactam. Suitable amides from which the magnesium bisamides can be prepared are the same as mentioned above for the amido-magnesium halides.

The lactam in the magnesium-lactamates can be selected from all known lactam monomers. Suitable lactamates are, for example, the magnesium-lactamates of lactam monomers having 5-12 C atoms. Preferably, the magnesium-lactamate is a lactamate of caprolactam, since this corresponds with the monomer that is polymerized in the inventive process.

Preferably the anionic polymerization catalyst chosen from the group consisting of magnesium lactamates and magnesium lactamate forming compound, is chosen form the group consisting of organomagnesium halides, diorganomagnesium compounds, amidomagnesium halides, and magnesiumbisamides.

The advantage of the use of a catalyst chosen form said group consisting of magnesium compounds in the process according to the invention is they can be prepared in a simple way from Grignard compounds and ensure fast polymerization. Illustrative examples of suitable organomagnesium halides are methyl-magnesiumbromide, methyl-magnesiumchloride, methyl-magnesiumiodide, ethyl-magnesiumbromide, ethyl-magnesiumchloride, ethyl-magnesiumiodide, isopropyl-magnesiumbromide, isopropyl-magnesiumchloride, n-propyl-magnesiumiodide, tertiary-butyl-magnesiumbiromide, iso-butyl-magnesiumchloride, n-butyl-magnesiumiodide, cyclohexyl-magnesiumbromide, cyclohexyl-magnesiumchloride, cyclohexyl-magnesiumiodide, 2-ethylhexyl-magnesiumbromide, 2-ethylhexyl-magnesiumchloride, 2-ethylhexylmagnesiumiodide, n-octadecyl-magnesiumbromide, n-octadecyl-magnesiumchloride, n-octadecyl-magnesiumiodide, benzyl-magnesiumbromide, benzyl-magnesiumchloride, benzyl-magnesiumiodide, phenyl-magnesiumbromide, phenyl-magnesiumchloride, phenyl-magnesiumiodide, mesityl-magnesiumbromide, mesityl-magnesiumchloride, mesityl-magnesiumiodide, naphthyl-magnesiumbromide, naphthyl-magnesiumchloride, naphthyl-magnesiumiodide.

Suitable diorganomagnesium compounds are, for example, dimethylmagnesium, diethylmagnesium, dipropylmagnesium, dibutylmagnesium, diphenylmagnesium, dibenzylmagnesium. Suitably, the diorganomagnesium compound is contacted with an appropriate magnesium halide in the presence of the lactam at a temperature above the melting point of the lactam to form a lactam magnesium halide.

Suitable amido-magnesium halides are, for example, the amido magnesium halides prepared from cyclic hexamethylene adipamide, caprolactam, enantholactam, caprylolactam, decanolactam, undecanolactam and dodecanolactam. The amido-magnesium halide can be the reaction product of an organomagnesium halide with an amide.

Preferably, the amido-magnesium halide is a lactam-magnesium-halide. The lactam-magnesium halide is, for example, a lactam-magnesium iodide, lactam-magnesium bromide, lactam-magnesium chloride.

More preferably, the lactam is the same as the lactam that is polymerized. The advantage is that the composition that is polymerized does not contain additional components.

The lactam magnesium halide may be prepared in-situ by contacting an organomagnesium halide with the lactam or lactam mixture that is to be polymerized at a temperature above the melting temperature of the lactam. This has the advantage that no separate preparation step for preparing the lactam magnesium halide is needed.

Suitable magnesiumbisamides that can be used are magnesium compounds comprising two amides and/or lactams from the group mentioned above, bonded to magnesium.

In a preferred embodiment of the invention, the catalyst is an organomagnesium halide or an amidomagnesium halide. This has the advantage that process shows a higher polymerization speed, which allows the use of the catalyst in a lower concentration.

More preferably, the organomagnesium halide or amidomagnesium halide is an organomagnesium bromide or an amidomagnesium bromide. The advantage is readily availability of alkylmagnesium bromide compounds (Grignard) Also more preferably, the organomagnesium halide comprises a lower alkyl group i.e. methyl, ethyl, propyl and butyl. The advantage is that when the organomagnesium halide reacts with the lactam, a volatile alkane will be formed, which can more easily be removed from the melt during or after polymerization.

The catalyst is generally used in an amount of 0.001-5 weight %, relative to the weight of lactam monomer. A higher amount may be used but is not effective as the increase in the conversion rate generally levels off with higher amount of catalyst.

Preferably the amount of catalyst 0,01-2 weight % and more preferably 0.025 -1 weight %, relative to the weight of lactam monomer. The advantage of the use of the catalyst in a higher minimal amount is a higher polymerization speed. The advantage of the use of the catalyst in a lower maximum amount is that the resulting composition has a lower residual catalyst content, which allows addition a lower amount of protic compound to deactivate the catalyst and to obtain a melt-processable polylactam with improved melt-stability. Improved melt-stability is characterized in that the polylactam, when kept for a longer period at elevated temperature, retains its intrinsic viscosity over a longer time or with only small variations in the same time period.

The optimal amount of catalyst can in principle be determined experimentally by a person skilled in the art of preparing polylactams through systematic research.

Suitable acyllactam activators that can be used in the process according to the invention are, for example, N-acetylcaprolactam adipoylbiscaprolactam, isophthaloylbiscaprolactam, terephthloylbiscaprolactam, n-propionylcaprolactam and n-butylcaprolactam. The acyllactam can be obtained as the reaction product of the reaction of a lactam with a carboxylic acid chloride or carboxylic acid anhydride. The hydrochloric acid or carboxylic acid formed in said preparation preferably is removed from said reaction.

More preferably, the activator is acetyl-caprolactam.

The activator is generally used in an amount of 0.05-5 weight %, preferably 0.1-3 weight %, relative to the weight of the lactam that is polymerized. The activator is more preferably used in an amount of 0.2-2 weight %, relative to the weight of the lactam that is polymerized. A higher minimum amount results in a faster polymerization, whereas a lower maximum amount results in a polylactam with a higher molecular weight.

The optimal amount of activator can in principle be determined experimentally by a person skilled in the art of preparing polylactams through systematic research.

The protic compounds that can be used in the process according to the invention can in principle be any protic compound that is capable to deactivate the catalyst. Suitable protic compounds are compounds with an acidity constant pKa of less than about 14. Examples of such protic compounds carboxylic acids, and acids of phosphorous and boron.

Also protic compounds with a pKa larger than 14 be used in the process according to the invention, for example, aliphatic alcohols (such as methyl alcohol, having a pKa of about 15.5, ethanol having a pKa of about 15.9, and tert-butanol, pKa 18) and water (pKa 15.7). Suitable protic compounds also include compounds containing crystal water and water forming metal hydroxides. A water forming metal hydroxide is defined here as a metal hydroxide that releases water at the temperature at which the metal hydroxide is contacted with the polylactam. The water that is released is supposed to be the species that deactivates the catalyst. Metal hydroxides are therefore considered for the purpose of this application to have the same pKa as water, i.e. 15.7. During said release of water, the metal hydroxide is typically converted in a metal oxide. This metal oxide is generally harmless for the polylactam. Suitable metal hydroxides are, for example, magnesium hydroxide, aluminum hydroxide.

Preferable the protic compound is water or a water forming metal hydroxide. The advantage of the use of water or a water forming metal hydroxide as the protic compound in the process according to the invention is that the protic compound may be used in larger excess over the catalyst without having a significant effect on the oxidative stability of the polylactam at elevated temperature. A further advantage is that when the polyamide is subjected to a drying step, for example applied before the polyamide is being processed in a compounding or moulding step, the water removed from the polyamide in said drying step is not contaminated with volatile organic compounds as would be the case with low molecular organic compounds, such as low molecular weight alcohols or carboxylic acids, used as the deactivator.

Most preferably, the protic compound is water. Water is a polyamide-compatible compound and constitutes a component that is generally present in nylon obtained by conventional mass melt polymerization processes. The advantage of the use of water as the deactivator is that it avoids the introduction of an additional, alien substance. A further advantage is that water has a very short reaction time, resulting in very effective, almost immediate, deactivation. In addition, water can be added to solidified polylactam, for example by soaking the solidified polylactam in the form of granules in water during a subsequent extraction step, which step eliminates a separate addition step at elevated temperature. Furthermore, the polylactam obtained by the process according to the invention wherein the catalyst is deactivated with water, has a very good melt-stability, and which polylactam, upon extraction of caprolactam and drying of the polylactam, can be maintained for a longer time period at elevated temperature without reformation of caprolactam monomer.

The polymerization of the caprolactam monomer in the process according to the invention may be carried out in the presence of components that are copolymerizable with caprolactam, thereby forming a polylactam comprising caprolactam and the copolymerizable components. Caprolactam and the copolymerizable components together are detined here as the polymerizable components.

Suitable components that are copolymerizable with caprolactam include, for example, other lactam monomers and polyols bearing hydroxide groups modified with acyllactam groups.

Suitable lactam monomers that can be copolymerized with caprolactam include C5-lactam and lactam monomers containing at least 7 carbon atoms in the lactam ring, for example enantholactam, caprylolactam, decanolactam, undecanolactam dodecanolactam, and mixtures thereof.

Preferably, the lactam monomer that is copolymerized with caprolactam is dodecanolactam. The process according to the invention wherein caprolactam is copolymerized with dodecanolactam is advantageously applied for preparing amorphous polylactam that can be used in fish yarns and films with improved transparency and/or less mottling of the surface of said products.

Copolymerization of caprolactam monomer with polyols bearing hydroxide groups modified with acyllactam groups is advantageously applied for the preparation of nylon block copolymers. Suitable polyols bearing hydroxide groups that can be modified with acyllactam groups for use in the inventive process include polyester polyols (such as polyethylene terephthalate, polybutylene terephthalate and mixtures thereof), and polyether polyols, for example polyglycol ethers (such as polyethyleneglycol ether, polypropyleneglycol ether, and polybutyleneglycol ether and copolymers of polyethers, for instance polypropylene-ethylene ether).

Preferably the polyol has a glass transition temperature (Tg) of at most 0° C., more preferably at most −20° C. and even more preferably at most −40° C. The advantage of the process according to the invention wherein caprolactam is copolymerized with a acyllactam modified polyol with a lower Tg, is that the resulting polylactam has improved low temperature flexibility and toughness The mechanical characteristics of the copolymer compounds will depend on the ratio of polyamide and polyol backbone in the composition, higher amounts of polyamide will result in more rigid copolymer while higher amounts of for instance polyethers will result in tougher copolymers.

The copolymerizable components that can be used in the process according to the invention constitute a quality that is suited for anionic polymerization. Such copolymerizable components generally comprise a low amount of water, typically below 0.1 weight %, relative to the weight of the copolymerizable component. Higher amounts may be used, but generally require a higher amount of catalyst.

Preferably, the amount of water in the copolymerizable component is below 0.05 weight %, more preferably below 0.03 weight %, and most preferably below 0.015 weight %, relative to the weight of the copolymerizable component. A lower amount of water is preferred, since this gives more reproducible results in terms of conversion speed of the polymerization reaction and in terms of molecular weight, or relative viscosity, of the resulting polylactam at maximum conversion.

In a preferred embodiment of the process according to the invention caprolactam constitutes at least 50 weight %, more preferably at least 75 weight % and even more preferably at least 90 weight %, relative to the total weight of polymerizable components. Most preferably, the polymerizable components only consist of lactam. The higher the weight % of caprolactam relative to the total weight of polymerizable components, the higher the conversion rate of caprolactam at maximum conversion.

In an additional variant of the process according to the invention the polymerization step or the catalyst deactivation step is carried out in the presence of at least one additive. In this variant the at least one additive is added before, during or immediately after polymerization of the caprolactam, or during the catalyst deactivation step to form a polylactam compound comprising the polylactam and the at least one additive. With “immediately after polymerization of the caprolactam” is understood in the context of this invention, that the additive is added to the polylactam melt before the catalyst deactivation step. The advantage of this variant is that a separate compounding step for preparing the compound can be omitted. A further advantage of the inventive process is that the polymerization can be performed in a relative small reactor, even for large scale production, allowing preparation of small batches of different polylactam compounds comprising different additives and fast changes between different compounds, this in contrast to conventional mass melt polymerization processes involving hydrolytic polymerization in a so-called VK-column. Also the loss of material of intermediate quality due to changes between different compounds can be reduced.

Addition of the additive to a melt of caprolactam before substantial polymerization of the caprolactam has taken place is particular advantageous for additives which don't interfere with the catalyst or with the polymerization process, or hardly so, and which additives are sensitive to mechanical degradation when added to and mixed with a highly viscous polymer melt under high shearing forces. Another advantage is that the additive can be perfectly wetted. Furthermore, with such a process, high filling degrees of additives in high molecular weight polylactam are easier attainable than with addition of additives to polyamides in a conventional compounding process. Also, higher glass fiber contents with limited fiber break down can be achieved, which are unachievable in conventional compounding processes.

Whether an additive does interact or not with the catalyst or the polymerization process, or in a limited acceptable manner only, can simply be determined experimentally by a person skilled in the art by comparison of, for example, the polymerization speed, maximum conversion and melt viscosity of the process in the presence or in the absence of the additive.

The additive may already be present in caprolactam flakes, or be mixed with molten lactam, and added together to the polymerization unit.

Additives, which need good dispersion in the polymer melt, are advantageously added to the polymer melt.

Additives that can interact with the catalyst are preferably added at the end of the polymerization, for instance just before or simultaneous with the addition of the protic compound.

Suitable additives that can be used in this variant of the process according to the invention include, for example, dispersed reinforcing materials [such as chopped or milled glass fibers, chopped or milled carbon fibers, nano-fillers, clays, wollastonite and micas], flame retardants, fillers [such as calcium carbonate], pigments, processing aids [such as mould release agents], stabilizers [such as antioxidants and UV stabilizers], plasticizers, impact modifiers, carrier polymers, etc. In contrast to dispersed reinforcing materials, continuous reinforcing materials are explicitly excluded, since this would prevent further melt processing of the composition.

The amount of additive can vary from very small amounts such as 1 or 2 volume %, or even lower, up to 70 or 80 volume % or more, relative to the volume of the compound formed.

Suitably, the amount of additives chosen from the group consisting of reinforcing agents, flame retardants and fillers, is between 0.5 and 150 weight %, relative to the weight of the polylactam formed in the inventive process. Preferably, the amount is between 5 and 100 weight %, more preferably between 20 and 50 weight %, relative to the weight of the polylactam formed in the inventive process.

Suitably, the amount of additives chosen from the group consisting of pigments, processing aids, stabilizers, impact modifiers, plasticizers and carrier polymers, is between 0.1 and 25 weight %, relative to the weight of the polylactam formed in the inventive process. Preferably, the amount is between 0.2 and 10 weight %, more preferably between 0.5 and 5 weight %, relative to the weight of the polylactam formed in the inventive process.

The polymerization step in the process according to the invention is carried out at a temperature above the melting temperature of the resulting polylactam. Such a polymerization is also called mass melt polymerization.

The temperature at which the mass melt polymerization in the process according to the invention is carried out is above the melting temperature of the polylactam. Typically, the temperature is between 5° C. and 80° C. above said melting temperature. Preferably, the temperature is between 5° C. and 50° C., more preferably between 5° C. and 30° C. above the melting temperature of the polylactam. The advantage of a smaller difference between the temperature at which the anionic polymerization is carried out and the melting temperature of the polylactam is that at maximum conversion of the polymerization a polylactam is formed with a lower content of unreacted caprolactam.

In such a process, the caprolactam, the catalyst, the activator and where applicable, copolymerizable components and additives, all together mentioned ingredients, may be metered as separate streams to a reactor wherein the ingredients are mixed, the ingredients may also be metered to a mixing device and metered together from the mixing device to the reactor. Preferably the caprolactam, catalyst, activator and copolymerizable component are metered in liquid form. For this purpose, the caprolactam has to be in a melt form, i.e. at a temperature that is above the melting temperature of caprolactam. The catalyst and/or activator may also be added as a melt, or as separate solutions of respectively the catalyst and/or activator in the lactam. The additives may be metered to the reactor in solid form, liquid form, or as a gas, depending on the nature of the ingredient. When metered to the mixing device, the additive is preferably added in solid or liquid form. If the additive is a solid, also at elevated temperature, i.e. at the polymerization temperature, the additive can, for example, also be added as a dispersion in caprolactam.

When the ingredients are first added to the mixing device prior to metering to the reactor, the temperature at which the ingredients are mixed in said mixing device is preferably between the melting temperature of the lactam and the melting temperature of the polylactam. This has the advantage that the conversion speed of the polymerization, if already taking place in the mixing device, remains relatively low.

Preferably, the temperature at which the ingredients are mixed in the mixing device is between 5° C. to 50° C., more preferably between 5° C. to 25° C. above the melting temperature of the lactam. The advantage of a lower mixing temperature is that the conversion speed is even lower.

After completion of the mass melt polymerization, the catalyst in the polymer may be deactivated, for example, by adding the protic compound to the polylactam melt, or by cooling the polylactam melt to solidify the polylactam, granulating the solidified polylactam and contacting the granulated polylactam with water, for example, by soaking the granulated polylactam in water or extracting the granulated polylactam with water.

The mass melt polymerization process of the invention can be carried out in any type of polymerization unit suitable for melt mass polymerization of lactams. Examples of suitable polymerization units are, for instance, stirred tank reactors (including continuous stirred tank reactors), flow-through reactors [such as tubular reactors], vertical column reactors, extruders and so on.

Preferably, the reactor is a continuous stirred tank reactor or a tubular reactor. The advantage is that the process can be carried out as a continuous process with a reactor with a relative small reactor volume and/or that the process allows a better temperature control.

The process according to the invention can be carried out in different ways, for example, as a batch process, a cascade process or as a continuous process.

Preferably, the process is carried out as a continuous process. This has the advantage that the polymerization can be performed in a relative small reactor, even for large-scale production. A further advantage is that the process can easier be combined with further processing steps without the need of intermediate cooling and remelting of the polylactam

The process according to this preferred embodiment of the invention can for example be carried out by continuously dosing the lactam, the catalyst, the activator and optionally other components, (together referred to hereinafter as the ingredients) to a polymerization unit and continuously mixing and conveying said ingredients meanwhile heating the ingredients to a temperature above the melting temperature of the caprolactam and at least partially polymerizing the caprolactam in said polymerization unit, thereby continuously forming a polylactam melt. After the polymerization the polymer melt can optionally be treated in a catalyst deactivation step, a degassing step, a compounding step, and/or a polymer-shaping step, such as a melt extrusion or injection molding step.

Preferably, the process according to the invention comprises a polymerization step thereby forming a polylactam melt, and a melt-shaping step for shaping said polylactam melt into a shaped article.

In a more preferred embodiment the process is a continuous process, comprising a degassing step and a melt-shaping step. Generally the degassing step requires formation of gas/liquid interface between the polymer melt and the surrounding gas environment, whereby a large ratio between the gas/liquid interface and melt volume is realized. In an even more preferred embodiment the degassing step and melt-shaping step are combined. This has the advantage that there is no need to collect the degassed polylactam melt in a separate apparatus before the melt is melt-shaped into a shaped article. Such a combination is advantageously applied, for example, in a process comprising fiber spinning as the melt-shaping step.

In another more preferred process the degassing step is carried out in the apparatus that is used for the melt-shaping step. This has the advantage that the two steps can be carried out in a single apparatus and no extra apparatus is needed. This process is advantageously applied, for example, in a process comprising injection molding, as the melt-shaping step, and using an extruder for both the degassing and melt-shaping.

Suitable processing steps, which may be linked to the continuous process according to one of the above preferred embodiments of the invention are, for example, degassing, compounding and/or a polymer shaping.

The process according to the invention may advantageously comprise a degassing step, wherein, after the caprolactam is polymerized to form a melt comprising the polylactam and the catalyst in the melt is deactivated with a protic compound, the polylactam melt is degassed to remove, at least partially, unreacted caprolactam monomer retained in the polylactam melt. The advantage of the inventive process comprising said degassing step is that reformation of caprolactam due to depolymerization of polylactam forced by the thermodynamic equilibrium between polylactam and unreacted lactam is very limited if not eliminated at all and a polylactam melt with a lower content of unreacted caprolactam monomer can be obtained without the need of a separate extraction step, while if a separate extraction step is applied to reach an even lower residual caprolactam content, less caprolactam has to be extracted and less extraction medium is needed.

Preferably, the unreacted caprolactam is removed to a residual caprolactam content of below 1 weight %, more preferably below 0.5 weight %, even more preferably below 0.3 weight % and most preferably below 0.2 weight % (relative to the weight of the polylactam). The advantage of a lower residual lactam content is that also for more critical applications there is less need or no need at all for an intermediate cooling and extraction step and that the polymer can directly be shaped from the melt into the end-product while having a low residual lactam content.

Degassing is in particular advantageously used in combination with the continuous process according to the invention wherein as the protic agent water is used in an amount in excess of the catalyst. This has the advantage that in the degassing step the excess water is removed by evaporation simultaneously with the caprolactam monomer, whereby the water works as an entrainment agent and the evaporation of water contributes to a faster evaporation of the lactam.

Preferably, the polylactam is degassed to a water content below 0.2 weight %, more preferably below 0.1 weight %, relative to the weight of the polylactam. A lower water content has the advantage that it will meet the specifications for injection moulding or fiber forming polyamide without the need of a separate drying step during manufacturing Suitable degassing units that can be used for the degassing step in the process according to the invention, are, for example, falling film evaporators [for example, such as described in DE-A-10016894], spinning disc film evaporators, flash apparatus, film extruders, fiber extruders, and film scrapers. The degassing step may also be carried out in a degassing unit in which vacuum is applied, or in which a liquid entrainment agent, [for example, such as described in WO-A-0174925] is used.

The invention also relates to a process, wherein the degassed material, obtained by the degassing step as described herein above and comprising lactam and optionally small amounts of other volatile components, is recycled into the same polymerization process or into another polymerization process, such as a hydrolytic polymerization process. The advantage of this process is that the degassed material comprises almost no water, if any, which eliminates the necessity of a separate step drying step, as is often used for a lactam extraction process in a conventional hydrolytic process for production of fiber grade polyamide-6.

In another variant of the process of the invention, the polylactam obtained after polymerization is cooled to solidify and is then extracted with water. The advantage of such a process is the simultaneous removal of residual unreacted caprolactam and deactivation of the catalyst. This results in a polylactam with a very good melt stability.

In a further embodiment, the process according to the invention comprises a compounding step, wherein, after deactivation of the catalyst with the protic agent, at least one additive is added to the polylactam to form a polylactam compound comprising the polylactam and the at least one additive. The advantage of the process according to this variant is that an intermediate cooling and remelting step of the polylactam can be omitted, thereby making the compounding process economically more favorable. A further advantage is that the polymerization can be performed in a relative small reactor, even for large scale production, allowing preparation of small batches of different polylactam compounds comprising different additives and fast changes between different compounds, this in contrast to conventional mass melt polymerization processes involving hydrolytic polymerization in a so-called VK-column. Also the loss of material of intermediate quality due to changes between different compounds can be reduced.

Suitable additives that can be used in this variant of the process according to the invention include, for example, reinforcing materials [such as glass fibers and carbon fibers, nano-fillers like clays, including wollastonite, and micas], pigments, fillers [such as calcium carbonate], processing aids, stabilizers, antioxidants, plasticizers, impact modifiers, flame retardants, mould release agents, etc.

The amount of additive can vary from very small amounts such as 1 or 2 volume % up to 70 or 80 volume % or more, relative to the volume of the compound formed.

The compound formed in the process according to the above variant may be further processed, for e)(ample, by cooling and granulating.

For the purpose of the polymer compounding the polymerization unit may be combined with a polymer-compounding unit. Suitable apparatus that can be used as the polymer-compounding unit are, for example, single-screw extruder and twin-screw extruders.

In a further embodiment of the process according to the invention, the process comprises a polymer-shaping step. In this variant, the melt of the polylactam obtained by polymerization of the lactam and deactivation of the catalyst with the protic agent, is subjected to the polymer-shaping step. The polymer processing industry is widely involved in preparing polymers and in preparing intermediate polymer products, such as polymer based compounds to be used for the manufacturing of final products like molded articles, as well as preparing final products such as fibers and films. The state of the art is to first prepare the polymers and in a separate process step to prepare the compounds, films and fibers. A substantial part of the industry is involved in preparing, respectively processing, of polymers of the group consisting of thermoplastic polyamides. Both preparation and processing of thermoplastic polyamides is generally performed at high temperature.

The polymer-shaping step may be preceded, for example, by a degassing step and/or a compounding step as described herein.

For the purpose of the polymer shaping the polymerization unit may be combined with a polymer-shaping unit. These units may optionally be combined with a degassing unit and or compounding unit.

Suitable apparatus that can be used as the polymer-shaping unit include, for example, equipment for injection molding, film extrusion, shape extrusion, film blowing, and fiber spinning.

The invention also relates to a polylactam composition, comprising a polylactam obtainable by the process according to the invention, residues of the acyllactam and the reaction product of a protic compound an anionic polymerization catalyst chosen from the group consisting of magnesium-lactamates and magnesium-lactamate forming compounds forming compounds, or the residues thereof. The polylactam composition according to the invention has a good melt stability, characterized by a limited variation in molecular properties such as relative viscosity and/or end groups when the polyamide composition is kept at elevated temperature for an extended time period. A further advantage is that the inventive polylactam composition has very good anti-stain properties, hydrolytic stability and thermal stability.

Compositions comprising the reaction product of benzyl alcohol and ethyl magnesium bromide, or residues thereof, in an amount of 0.4 to 0.5 mole %, relative to caprolactam monomer units in the polylactam and compositions comprising dimethylsulfoxide (DMSO) have been excluded from the invention. The excluded compositions are known from the publication of K. Ueda, M Nakai, M. Hosoda and K. Tai in Polymer Journal, Vol. 28, No. 12, pp 1084-1089 (1999), the advantageous properties thereof as according to the present invention are not described in said publication. Ueda et al. describe a process for preparing a polylactam having good melt-stability. This process comprises contacting caprolactam monomer with N-acetyl-ε-caprolactam as chain initiator and ethyl magnesium bromide as the anionic polymerization catalyst, polymerizing said monomer under anhydrous conditions at 150° C., dissolving the polymer in DMSO, adding a protic compound to the solution, followed by a reprecipitation step to isolate the polymer from which the catalyst is removed. In the said publication Ueda et al. teach that the catalyst has to be removed to obtain a polylactam having good melt stability. Polymer degradation was said to be inhibited by catalyst removal treatment using an acid whose pKa is between 3 and 7. In one of the experiments in said publication benzyl alcohol was used as the protic component to remove the catalyst, starting with a catalyst concentration of 0.5 mole %. This resulted however in a residual catalyst concentration of about 0.44 weight %. Though this is not reported, the amount likewise is relative to the amount of caprolactam. Nothing is mentioned in said publication about the degree of branching of the polymer let alone about the effect on the degree of branching when the polymerization is executed at a temperature above the melt temperature of the resulting polylactam. Nothing is mentioned either about the stability of the polymer when the catalyst treated with a protic agent is retained in the polylactam, or the advantageous properties thereof as according to the present invention.

Preferably, the polylactam composition is a polylactam composition obtainable by any of the preferred embodiments of the process according to the invention.

The polylactam in the polylactam composition according to the invention is characterized by a low content of amine end-groups. Typically, the content of amine end-groups is below 0.0015 meq/g polylactam. Preferably the content is below 0.010, more preferably below 0.007 and most preferably below 0.005 meq/g polylactam. The advantages of the polylactam having a lower content of amine end-groups, include improved intrinsic anti-stain properties, better hydrolytic stability and improved thermal stability.

Also more preferably, the polylactam composition is a polylactam composition obtainable by the process wherein as the protic agent water has been used. The advantage thereof is that the polylactam does not contain additional polyamide-alien substances and the polyamide can easily be freed of excess of water by drying.

More preferred is also the polylactam composition obtainable by the process according to the invention wherein as the activator an acyllactam has been used. The advantage thereof is that the polylactam has a lower degree of branching.

In another preferred embodiment, the polylactam composition is a polylactam composition obtainable by the inventive process comprising a degassing step. The advantage of a polylactam composition obtained by the process comprising a degassing step is that the polymer is directly suitable for application in processes requiring a low lactam content.

More preferably the polylactam composition obtainable by the inventive process comprising a degassing step has a lactam content below 0.3 weight % and a cyclic dimer content below 0.1 weight %. The advantage of the polylactam according this embodiment is that the polylactam composition has a good melt stability, and is more suitable for applications such as fibers spinning and film extrusion, which are more critical for deposits of volatile materials.

In a further preferred embodiment, the polylactam in the polylactam composition according to the invention consists for at least 50 weight % of lactam monomers, more preferably for at least 75 weight % of lactam monomers for at least 90 weight % of lactam monomers, relative to the total weight of the polylactam. Most preferably, the polylactam only comprises lactam as the monomer. In general, the higher the content of lactam in the polylactam, the more sensitive the polylactam is to degradation and to weight loss due to loss of depolymerized lactam monomer at elevated temperature. The higher the content of lactam in the polylactam according to the invention, the larger the effect of improved melt-stability is on the reduced weight loss of the polylactam when melted.

The polylactam composition according to the invention preferably consists of

    • a) polylactam, consisting for at least 50% by weight of caprolactam and optionally including the residues of chain initiator molecules,
    • b) 0.01-2 weight % of a reaction product or reaction products of a protic compound and an anionic polymerization catalyst chosen from the group consisting of magnesium-lactamates and magnesium-lactamate forming compounds, or residues thereof,
    • c) 0-10 weight % caprolactam monomer,
    • d) 0-2 weight % caprolactam oligomers, including 0-0.2 weight % cyclic dimer,
    • e) 0-150 weight % of additives chosen from the group consisting of reinforcing agents, flame retardants and fillers,
    • f) 0-25 weight % of additives chosen from the group consisting of pigments, processing aids, stabilizers, impact modifiers, plastizisers and carrier polymers, and
    • wherein all the weight % are relative to the weight of the polylactam.

More preferably, the polylactam composition according to the invention consists of

    • g) polylactam, consisting for at least 75% by weight of caprolactam and optionally including the residues of chain initiator molecules
    • h) 0.01-1 weight % of a reaction product or reaction products of a protic compound and an anionic polymerization catalyst chosen from the group consisting of magnesium-lactamates and magnesium-lactamate forming compounds, or residues thereof
    • i) 0-1 weight % caprolactam monomer
    • j) 0-1 weight % caprolactam oligomers, including 0-0.2 weight % cyclic dimer
    • k) 0-100 weight % of additives chosen from the group consisting of reinforcing agents, flame retardants and fillers,
    • l) 0-10 weight % of additives chosen from the group consisting of pigments, processing aids, stabilizers, impact modifiers, plastizisers and carrier polymers, and
    • wherein all the weight % are relative to the weight of the polylactam.

The lactam content (CPL), and cyclic dimer content (CD) and oligomer contents are the contents as determined by means of LC (ISO 15300-2000). The contents of the other ingredients can be measured by standard methods.

Since polycaprolactam is hygroscopic and can absorb water upon exposure to humid air during storage, the invention also encompasses the corresponding compositions mentioned above comprising water as a further component. Preferably the content of water is at most 10 weight %, more preferably at most 5 weight %, relative to the weight of the polylactam.

The invention also relates to the use of a polylactam composition comprising a polylactam obtainable by the process according to the invention, residues of the acyl lactam and the reaction product of a protic compound and an anionic polymerization catalyst chosen from the group consisting of magnesium-lactamates and magnesium-lactamate forming compounds, or residues thereof, for the production of a shaped product.

The invention in particular relates to the use of any of the preferred embodiments of the inventive polylactam composition mentioned here above.

Prior to the use, the inventive compositions may be dried. This holds in particular for the compositions mentioned above comprising water as a further component. Preferably the compositions are dried, prior to their use, to a water content below 0.1 weight %, more preferably below 0.01 weight %, relative to the weight of the polylactam in the composition.

The invention further relates to shaped products made of polylactam obtainable with the process of the invention, and preferred embodiments thereof, and to articles comprising a shaped product according to the invention. These products have the advantageous properties of the polylactam, including intrinsic anti-stain properties, good thermal stability and good hydrolytic stability. These products include extruded polymer strands, fibers and films, polymer compounds and molded articles. In particular the intrinsic anti-stain properties are advantageously employed in fibers and in textile products and carpets made thereof.

The invention is further explained with the following examples, without being limited thereto.

Methods

Residual lactam content (CPL), and cyclic dimer content (CD) were determined by means of LC (ISO 15300-2000).

End group analysis was done by potentiometric titration in non-aqueous medium.

Relative viscosity (RV), was measured in 1 mass % formic acid solution.

Caprolactam conversion by weight was derived from the product loss in weight determined after extraction of the polylactam polymer.

Molecular properties were determined by SEC (ISO 16014) Rheological properties were determined by using a Rheometrics ARES-LS disc rheometer

Materials

  • CPL: ε-caprolactam: AP-caprolactam, flakes (ex DSM, The Netherlands)
  • LMB: Catalyst C-1: 21 weight % of Caprolactam-Magnesiumbromide in caprolactam; flakes (ex DSM, The Netherlands)
    • IPBC: isophthaloylbiscaprolactam, powder (synthetic route according example 1 in U.S. Pat. No. 4,031,164)
  • NaL: Catalyst C-10: 19 weight % of sodiumcaprolactamate in caprolactam (ex DSM, The Netherlands)
  • HMDCC: Activator C-20: Hexamethylene-1,6-dicarbamoylcaprolactam (caprolactam adduct of 1,6-hexanediisocyanate; 80 weight % in caprolactam) (ex DSM, The Netherlands)
  • AcL: N-Acetylcaprolactam

EXAMPLES I-X

100-grams scale polymerization experiments were performed at 230-270° C. at different levels of catalyst (0.7-1.5% relative to CPL) and N-acetylcaprolactam (0.65-1.4 wt % relative to CPL) and water as protic agent. All products were analyzed on RV and caprolactam conversion. Some products were in addition analyzed on molecular- and rheological properties. The results are summarized in Table 1.

TABLE 1 Catalyst-Acetylcaprolactam composition and analytical results. Acti- vator Catalyst Acyl- Con- LMB lactam version RV Exam- Amount Amount T t (weight (1% in ple (%) (%) (° C.) (min) %) HCOOH) Mw/Mn I 1.5 1.0 250 20 88.6 2.33 II 1.2 1.1 250 15 87.1 2.16 III 1.5 1.4 250 15 90.8 2.02 IV 1.2 0.65 250 20 86.0 2.87 V 1.5 1.0 230 30 93.3 2.47 VI 1.5 1.0 270 30 85.7 2.28 VII-a 0.7 0.7 250 20 78.9 2.69 VII-b 0.7 0.7 250 60 82.2 2.70 VII-c 0.7 0.7 250 120 82.0 2.69 VIII 1.1 1.0 250 15 90.1 2.38 2.34 IX 1.1 1.0 250 55 90.0 2.38 2.40 X 1.5 1.0 250 10 88.0 2.37 2.31

The results in Table 1 show that variation in temperature gives a variation in conversion. As a consequence, higher polymerization temperatures produce a somewhat lower viscosity. Variation in acyllactam content results in a systematic variation in RV: with a low amount a high RV is obtained while with a high amount a low RV is obtained. Variation in polymerization time has an effect on the relative viscosity up to a certain time, above which the viscosity does not further increase. A larger, and systematic (i.e. almost linear) variation in relative viscosity values is obtained with variation in the amount of activator. With too low an amount of catalyst the relative viscosity is lower due to an incomplete conversion. With a higher amount of catalyst needed for complete conversion in the predetermined reaction time, there is no significant relation between catalyst amount and viscosity. The linearity of the polyamide chains in the compositions obtained was demonstrated by the linear relation of the Mark-Houwink relation versus log(molecular weight), obtained from SEC analysis.

Comparative EXperiments A-E

Using combinations of LMB/carbamoyllactam, sodiumcaprolactamate (C10)/carbamoyllactam and sodiumcaprolactamate (C10)/acyllactam, anionic polymerizations were performed in the same way as described for example I. The amounts of catalyst and activator used and the results are summarized in table 2.

TABLE 2 Comparative Experiments A-E Catalyst Activator RV Comparative Amount (%) Amount (%) T t (1% in Experiments LMB NaL HMDCC AcL (° C.) (min) HCOOH) A 1.0 1.0 240 45 9.05 B 0.5 3 250 10 5.30 CI 1.0 4.0 240 45 10.44 D 1.0 4.0 265 60 Gel* E 1.0 1.2 265 60 Gel*
*(partly) insoluble in formic acid

Comparison of the results of Examples I-X and the Comparative Experiments A-E reveals the following. The Examples I-X, using a combination of caprolactammagnesiumbromide catalyst and N-acetylcaprolactam activator, resulted in products with a RV which is rather constant in time even when kept at elevated temperature. Moreover, after that the products were stille soluble in formic acid.

In contrast, the products obtained by using sodiumcaprolactamate (Comparative experiments D and E) were gelled and (partly) insoluble in formic acid, due to extensive branching.

The comparative experiments with the combination of caprolactammagnesiumbromide catalyst and carbamoyl activator gave a much higher RV than could be expected on the basis of the amount of carbamoyl activator. For example, using 4 weight % of the carbamoyl-activator, which corresponds with an equimolar amount of 1.24 weighted N-acetylcaprolactam activator, gave a RV viscosity of 10.44 instead of about 2.2 as expected for N-acetylcaprolactam. Comparative experiments A and C also show that the RV increases with the amount of carbamoyl-activator instead of decreasing as with N-acetylcaprolactam. Furthermore, the Mark-Houwink relation versus log(molecular weight) of the products of Comparative Experiment, obtained from SEC analysis deviated from linearity. Al these facts poin to branching of the polyamide chains in the compositions obtained in the comparative Experiments

EXAMPLE XI-XIII Thermal Stability EXAMPLE XI

Polycaprolactam obtained by anionic polymerization of caprolactam, N-acetylcaprolactam and LMB in the melt (RV sulphuric acid 2.57, COOH and amine <1 mmol/kg), was, after cooling, soaked with water (pKa 15.7) as protic agent. After drying, a sample was heated in dry nitrogen at 230° C. After 5, 10 and 15 minutes heating, the melt viscosity of the polycaprolactam was detected by performing rheology analysis. The results are given in table 3.

EXAMPLE XII

Polycaprolactam obtained by anionic melt polymerization of caprolactam, N-acetylcaprolactam and LMB (RV sulphuric acid 2.57, COOH and amine <1 mmol/kg), was in the melt contacted with tert-butyl alcohol (pKa 18) as protic agent. After drying, a sample was heated in dry nitrogen at 230° C. After 5, 10 and 15 minutes heating, the melt viscosity of the polycaprolactam was detected by performing rheology analysis. The results are given in table 3.

EXAMPLE XIII

Polycaprolactam obtained by anionic melt polymerization of caprolactam, N-acetylcaprolactam and LMB (RV sulphuric acid 2.46, COOH and amine <1 mmol/kg), was in the melt contacted with benzoic acid (pKa 3.2) as protic agent. After drying, a sample was heated in dry nitrogen at 230° C. After 5, 10 and 15 minutes heating, the melt viscosity of the polycaprolactam was detected by performing rheology analysis. The results are given in table 4.

Comparative Experiment F

For comparison, a polycaprolactam obtained by hydrolytic polymerization (RV 2.45, COOH 60 mmoles/kg and amine 35 mmoles/kg) was dried and heated in dry nitrogen at 230° C. After 5, 10 and 15 minutes heating, the melt viscosity of the polycaprolactam was detected by performing rheology analysis. The results are given in table 3.

TABLE 3 Analytical results of examples XI-XIII and Comparative Experiment F Melt viscosity (Eta)/Pa · s (230° C.) Time Example Example Example Comparative (min) XI XII XIII Experiment F 5 260 260 218 213 10 272 270 229 235 15 282 280 239 249 Slope 2.2 Pa · 2.0 Pa · 2.1 Pa · 3.6 Pa · Eta s/min s/min s/min s/min

The results in table 3 show improved thermal stability of the polycaprolactam according the invention even in comparison with a polycaprolactam obtained by conventional hydrolytic polymerization.

Claims

1. Process for preparing a melt-processable polylactam by contacting caprolactam monomer with an anionic polymerization catalyst and an activator, polymerizing said monomer under anhydrous conditions at a temperature above the melt temperature of the resulting polylactam and contacting the resulting polylactam in the melt or in solid form with a protic compound characterized in that the anionic polymerization catalyst is chosen from the group consisting of magnesium-lactamates and magnesium-lactamate forming compounds, and the activator is an acylamide.

2. Process according to claim 1, wherein the protic compound is a protic compound with a pKa lower than 14, water or a water forming metal hydroxide.

3. Process according to claim 1, wherein the catalyst is a magnesium lactamate or a magnesium lactamate forming compound.

4. Process according to claim 1, wherein the acylamide is an acyllactam.

5. Process according to claim 1, wherein the polymerization is conducted at a temperature between 5° C. and 80° C. above the melting temperature of the polylactam.

6. Process according to claim 1, wherein the polymerization is carried out as a continuous process.

7. Process according to claim 1, wherein the process comprises at least one additional step, selected from the group consisting of an extraction step, a degassing step, a compounding step, a polymer shaping step and combinations thereof.

8. Polylactam composition, comprising a polylactam obtainable by the process according to claim 1, and the reaction product of a protic compound and an anionic polymerization catalyst chosen from the group consisting of magnesium-lactamates and magnesium-lactamate forming compounds, or residues thereof, with the proviso that the composition does not comprise the reaction product of benzyl alcohol and ethyl magnesium bromide, or residues thereof, in an amount of 0.4 to 0.5 mole %, relative to caprolactam monomeric units in the polylactam and with the proviso that the composition does not comprise dimethylsulfoxide.

9. Polylactam composition according to claim 8, characterized in that the polylactam has a caprolactam content of at most 0.3%.

10. Use of a polylactam composition, comprising a polylactam obtainable by the process according to claim 1, residues of an acyllactam and the reaction product of a protic compound and an anionic polymerization catalyst chosen from the group consisting of magnesium-lactamates and magnesium-lactamate forming compounds, or residues thereof, for the production of a shaped product.

11. Shaped product comprising a polylactam according to claim 8.

12. Article comprising a shaped product according to claim 11.

Patent History
Publication number: 20060194941
Type: Application
Filed: Feb 11, 2004
Publication Date: Aug 31, 2006
Inventors: Albert Van Geenen (Sittard), Cornelia Bronsaer (Stein), Yvonne Frentzen (Venlo), Stanislaus Mutsers (Geleen), Nicolaas Janssen (Stein)
Application Number: 10/545,970
Classifications
Current U.S. Class: 528/323.000; 528/312.000
International Classification: C08G 69/18 (20060101); C08G 69/20 (20060101);