Programmed material consolidation processes for fabricating electrical contacts and the resulting electrical contacts
An electrical contact for use with a semiconductor device, a carrier, a probe card, or another substrate includes a dielectric core, a conductive coating on at least a portion of the core, or both that are at least partially fabricated by a programmed material consolidation process, such as, but not limited to, stereolithography, in which unconsolidated material is selectively consolidated in accordance with a program. The electrical contact may be flexible and resilient or it may be rigid. Protective structures may accompany flexible, resilient contacts to prevent deformation thereof beyond their elastic limits.
This application is a divisional of application Ser. No. 10/788,941, filed Feb. 27, 2004, pending.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to electrical contacts for use with semiconductor devices. The electrical contacts of the present invention may be used to provide temporary electrical connections as semiconductor devices are being burned in or otherwise tested. More specifically, the present invention relates to electrical contacts which include stereolithographically fabricated portions. The present invention also includes semiconductor devices, carriers, probe cards, and other substrates that employ such electrical contacts. Additionally, the present invention includes methods relating to fabrication of the electrical contacts of the present invention and structures incorporating same.
2. Background of Related Art
Numerous types of electrical contacts that are configured to provide temporary communication between the bond pads or other contacts of a semiconductor device and corresponding terminals or other contacts of a test substrate, carrier substrate, or other electronic component have been developed and used in the art.
Several examples of temporary electrical contacts have been developed by FormFactor, Inc., of Livermore, Calif., and are described in U.S. Pat. No. 5,476,211, as well as in other U.S. Patents referenced hereinbelow that have been assigned to FormFactor (hereinafter collectively “the FormFactor Patents”). Each of these temporary electrical contacts is a compressible, resilient element which is secured to a bond pad of a semiconductor device. They may include a core and an outer coating, both of which are formed from electrically conductive materials. The core may comprise a relatively soft material, or material which is subject to plastic deformation, while the outer coating may comprise a more rigid material, which imparts the electrical contact with elastic properties. Alternatively, the core may be formed from a more rigid, elastic material, while the coating is formed from a material that enhances adhesion of the electrical contact to a bond pad of a semiconductor device.
The electrical contacts that are described in the FormFactor Patents are represented to be useful for providing temporary electrical connection between the bond pads of a semiconductor device and the contacts of a test or burn-in substrate. They may also provide permanent electrical connections between the bond pads of the semiconductor device and corresponding contacts (i.e., bond pads, terminals, leads, etc.) of another semiconductor device, a carrier, another semiconductor device component, or another electronic device.
The FormFactor Patents teach that wire-bonding apparatus may be used to form the core of an electrical contact of the type described therein, while conventional deposition or plating methods may be used to coat each core with another layer of conductive material. As conventional wire-bonding apparatus are typically configured to form only a single conductive element (e.g., bond wire, electrical contact, or other conductive structure) at a time, and since there may be thousands of bond pads on a substrate (e.g., silicon wafer) upon which numerous semiconductor devices are carried, the electrical contact fabrication processes that are described in the FormFactor Patents may be extremely and undesirably time consuming. Furthermore if, as described in the FormFactor Patents, gold is used to form the cores of numerous electrical contacts, the cost of forming the cores may be extremely and undesirably expensive.
The contacts described in the FormFactor Patents may be used, for example, in probe cards, which are used to establish a temporary connection between a semiconductor device and a test substrate or burn-in substrate. The contacts are positioned at locations that correspond to the locations of corresponding bond pads of the semiconductor device and terminals of the test substrate or burn-in substrate. Thus, the contacts are positioned so as to align between corresponding bond pads and terminals when the probe card is aligned between the semiconductor device and the test substrate or burn-in substrate. The compressibility of such contacts imparts the probe card with dimensional tolerance for the spacing between the semiconductor device and the test substrate or burn-in substrate.
Whether the Form Factor contacts are used with a probe card or another type of semiconductor device component, they may be compressed or deformed beyond their elastic limits, which will render them useless.
Accordingly, processes are needed by which electrical contacts may be more efficiently and cost-effectively fabricated, as are electrical contacts that are formed by such processes, protective structures for preventing damage to such electrical contacts, and semiconductor devices, carriers, probe cards, and other substrates with which such electrical contacts may be assembled.
SUMMARY OF THE INVENTIONThe present invention, in several embodiments, includes electrical contacts, which are also referred to herein as “contacts” for simplicity, that may be at least partially fabricated by use of stereolithographic fabrication processes, as well as semiconductor devices, carriers, probe cards, and other substrates that include such contacts.
A contact, in an exemplary embodiment, includes a core which is stereolithographically formed or fabricated, as well as a conductive coating on at least a portion of the core. As the core is stereolithographically fabricated, it may include a single layer or multiple layers that are at least partially superimposed, contiguous, and mutually adhered to one another. The contact may be rigid or comprise a compressible, resilient member.
In another exemplary embodiment, a contact according to the present invention includes a conductive core disposed within a stereolithographically fabricated shell. The shell, which may include a single layer or a plurality of superimposed, contiguous, mutually adhered layers, may be formed with a channel extending therethrough. The channel may then be filled with the conductive material of the core, which is exposed at both ends of the shell.
In yet another aspect, the present invention includes methods for fabricating contacts. One exemplary embodiment of a contact fabrication method according to the present invention includes stereolithographically fabricating a core of the contact, then coating at least portions of the core with one or more layers (or sublayers) of conductive material.
A method for fabricating a contact in accordance with teachings of the present invention may include the formation of recesses within a fabrication, or sacrificial, substrate and coating the surfaces of the fabrication substrate with one or more material layers that will facilitate the subsequent release of contacts therefrom. Cores of the contacts may then be formed at the locations of the recesses, with the configuration of the base of each contact being at least partially defined by the recess within which it is formed. Thereafter, the cores may be at least partially coated with one or more layers (or sublayers) of conductive material. Once the contacts have been fabricated, they may be released from the fabrication substrate, which may then be discarded or reused to fabricate more contacts.
In another, similar embodiment of the method, the fabrication substrate may lack recesses.
In another embodiment of contact fabrication method according to the present invention, the foregoing processes may be used to form contacts that incorporate teachings of the present invention directly on the contact pads of a semiconductor device, an interposer, a carrier substrate, or the like.
Accordingly, another aspect of the present invention involves semiconductor device components that include the inventive contacts.
In another aspect, the present invention includes probe cards, which are useful in testing and burning-in semiconductor devices that include the inventive contacts. An exemplary embodiment of a probe card according to the present invention may include contact pads with one or more types of compressible, resilient electrical contacts.
In addition, methods for fabricating probe cards are within the scope of the present invention.
One embodiment of a method for fabricating a probe card may employ the above-described processes for forming contacts and, prior to releasing the contacts from the sacrificial substrate, fabricating a support plate around intermediate sections of the contacts. Accordingly, the base of each contact is located on one side of the support plate and the tip of each contact is located on the other side of the support plate. As such, the support plate is fabricated in such a way that the contacts become trapped thereby. Nonetheless, it may be possible for the contacts to move relative to the support plate, along their lengths and in a direction which is transverse to a plane in which the support plate is located. The resulting structure may comprise a probe card which is useful for testing semiconductor devices with bond pads that are arranged complementarily to the arrangement of contacts on the support plate, as well as with a test or burn-in substrate that includes terminals that are positioned correspondingly to the positions of contacts on the support plate.
Alternatively, in another embodiment, a probe card may be fabricated by forming apertures through a substrate at areas where contacts are to be located. Of course, the apertures are also positioned correspondingly to the locations of corresponding terminals of a test or burn-in substrate with which the probe card is to be used, as well as to the locations of bond pads of a semiconductor device with which the probe card is to be used. Outer shells of the contacts are then formed within the apertures and in such a way as to protrude from the opposite major surfaces of the substrate. A channel may be formed through each outer shell as that outer shell is being fabricated or following fabrication of the outer shell. Conductive material, which may be introduced into the channels or maintained in position within the apertures of the substrate while at least portions of outer shells are being fabricated, extends completely through each outer shell to form a conductive core of the corresponding contact. The conductive material is exposed at each end of the contact to facilitate connection of a bond pad of a semiconductor device with a corresponding terminal of a test substrate or burn-in substrate.
The present invention also includes protective structures that prevent damage to contacts according to the present invention. Such a protective structure may include one or more elements that are located adjacent to regions of contacts that protrude from a substrate, such as a semiconductor device, a carrier, a probe card, or another electronic component. In addition, a protective structure of the present invention is configured to prevent a contact of the present invention from being bent or otherwise deformed beyond its elastic limit (i.e., the limit from which it will not return substantially to its original configuration). Each element of the protective structure may protrude a lesser distance from the substrate than the adjacent protruding portion. Alternatively, if the protective structure is formed from a material that imparts it with some compressibility or flexibility, it may protrude substantially the same distance from the substrate as, or even a greater distance than, the adjacent protruding portion of the contact protrudes from the substrate.
Some embodiments of protective structures according to the present invention include at least one receptacle that laterally surrounds at least a portion of at least one contact. A height of the protective structure (i.e., the distance the protective structure protrudes from the substrate), a distance walls of the receptacle are spaced apart from the contact, or some combination of these dimensions may prevent compression, flexure, or bending or other deformation of the contact beyond its elastic limit.
Other embodiments of protective structures that incorporate teachings of the present invention include at least one element (e.g., a post) that protrudes from a substrate adjacent to a corresponding contact. The at least one protruding element has a height which will prevent compression or flexion of the contact beyond its elastic limit as that contact is biased against a corresponding bond pad, terminal, or other contact element.
Other features and advantages of the present invention will become apparent to those of ordinary skill in the art through consideration of the ensuing description, the accompanying drawings, and the appended claims.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGSIn the drawings, which depict features of exemplary embodiments of various aspects of the present invention:
Contact 10 includes a core 18 that may be formed from a dielectric material or a conductive material. A layer of conductive material, which is also referred to herein as a “conductive coating 20,” covers at least portions of the exterior surface 19 of core 18 so as to facilitate the transmission of electrical signals along contact 10.
Core 18 may have any suitable configuration known in the art. As such, core 18 may be rigid or flexible. By way of example only, a rigid core 18 may be shaped as a point, a tip, a truncated cone or pyramid, a cup cross, or the like. Examples of flexible core 18 shapes include structures with levered arms, such as those described in the FormFactor Patents, including without limitation U.S. Pat. No. 5,476,211, 5,772,451, 5,820,014, 5,832,601, 5,852,871, 5,864,946, 5,884,398, 5,912,046 and 5,998,228, the disclosures of which patents are hereby incorporated herein in their entireties by this reference. Of course, in addition to their configurations, the materials from which cores 18 are formed may also lend to their relative rigidity or flexibility.
Conductive coating 20 may include one or more layers of conductive material suitable for use in forming or coating electrical contacts of semiconductor devices or other electronic components. By way of example only, conductive coating 20 may include one or more of a conductive layer, a barrier layer, and a noble layer.
An exemplary embodiment of the manner in which contact 10 may be fabricated is illustrated in
Photoresist 104 is disposed upon a surface 103 of hard mask layer 102 and patterned, as known in the art (e.g., by exposing the same, through a reticle, to one or more appropriate wavelengths of radiation, then developing the same), to form a photomask 106. Photomask 106 includes apertures 108 through which regions of hard mask layer 102 may subsequently be exposed to one or more etchants which are suitable for removing the material of hard mask layer 102. The removal of material from hard mask layer 102 results in the formation of a hard mask 110 with apertures 112 formed therethrough, as shown in
Turning now to
As shown in
Once hard mask layer 116 has been formed, a sacrificial layer 118 is formed thereover, as shown in
Thereafter, as shown in
Turning now to
For example, as shown in
Controller 1700 may comprise a computer or a computer processor, such as a so-called “microprocessor,” which may be programmed to effect a number of different functions. Alternatively, controller 1700 may be programmed to effect a specific set of related functions or even a single function. Each controller 1700 of stereolithographic apparatus 1000 may be associated with a single system thereof or a plurality of systems so as to orchestrate the operation of such systems relative to one another.
Fabrication tank 1100 includes a chamber 1110 which is configured to contain a support system 1130. In turn, support system 1130 is configured to carry one or more substrates 100.
Fabrication tank 1100 may also have a reservoir 1120 associated therewith. Reservoir 1120 may be continuous with chamber 1110. Alternatively, reservoir 1120 may be separate from, but communicate with, chamber 1110 in such a way as to provide unconsolidated material 1126 thereto. Reservoir 1120 is configured to at least partially contain a volume 1124 of unconsolidated material 1126, such as a photoimageable polymer, or “photopolymer,” particles of thermoplastic polymer, resin-coated particles, or the like.
Photopolymers believed to be suitable for use with a stereolithography apparatus 1000 according to the present invention include, without limitation, ACCURA® SI 40 Hc and AR materials and CIBATOOL SL 5170 and SL 5210 resins for the SLA® 250/50HR and SLA® 500 systems, ACCURA® SI 40 ND material and CIBATOOL SL 5530 resin for the SLA® 5000 and 7000 systems, and CIBATOOL SL 7510 resin for the SLA® 7000 system. The ACCURA® materials are available from 3D Systems, Inc., of Valencia, Calif., while the CIBATOOL resins are available from Ciba Specialty Chemicals Company of Basel, Switzerland.
Reservoir 1120 or another component associated with one or both of fabrication tank 1100 and reservoir 1120 thereof may be configured to maintain a surface 1128 of a portion of volume 1124 located within chamber 1110 at a substantially constant elevation relative to chamber 1110.
A material consolidation system 1200 is associated with fabrication tank 1100 in such a way as to direct consolidating energy 1220 into chamber 1110 thereof, toward at least areas of surface 1128 of volume 1124 of unconsolidated material 1126 within reservoir 1120 that are located over substrate 100. Consolidating energy 1220 may comprise, for example, electromagnetic radiation of a selected wavelength or a range of wavelengths, an electron beam, or other suitable energy for consolidating unconsolidated material 1126. Material consolidation system 1200 includes a source 1210 of consolidating energy 1220. If consolidating energy 1220 is focused, source 1210 or a location control element 1212 associated therewith (e.g., a set of galvanometers, including one for x-axis movement and another for y-axis movement) may be configured to direct, or position, consolidating energy 1220 toward a plurality of desired areas of surface 1128. Alternatively, if consolidating energy 1220 remains relatively unfocused, it may be directed generally toward surface 1128 from a single, fixed location or from a plurality of different locations. In any event, operation of source 1210, as well as movement thereof, if any, may be effected under the direction of controller 1700.
When material consolidation system 1200 directs focused consolidating energy 1220 toward surface 1128 of volume 1124 of unconsolidated material 1126, stereolithographic apparatus 1000 may also include a machine vision system 1300. Machine vision system 1300 facilitates the direction of focused consolidating energy 1220 toward desired locations of features on substrate 100. As with material consolidation system 1200, operation of machine vision system 1300 may be proscribed by controller 1700. If any portion of machine vision system 1300, such as a camera 1310 thereof, moves relative to chamber 1110 of fabrication tank 1100, that portion of machine vision system 1300 may be positioned so as provide a clear path to all of the locations of surface 1128 that are located over each substrate 100 within chamber 1110.
Optionally, one or both of material consolidation system 1200 (which may include a plurality of mirrors 1214) and machine vision system 1300 may be oriented and configured to operate in association with a plurality of fabrication tanks 1100. Of course, one or more controllers 1700 would be useful for orchestrating the operation of material consolidation system 1200, machine vision system 1300, and substrate handling system 1600 relative to a plurality of fabrication tanks 1100.
Cleaning component 1400 of stereolithographic apparatus 1000 may also operate under the direction of controller 1700. Cleaning component 1400 of stereolithographic apparatus 1000 may be continuous with a chamber 1110 of fabrication tank 1100 or positioned adjacent to fabrication tank 1100. If cleaning component 1400 is continuous with chamber 1110, any unconsolidated material 1126 that remains on a substrate 100 may be removed therefrom prior to introduction of another substrate 100 into chamber 1110.
If cleaning component 1400 is positioned adjacent to fabrication tank 1100, residual unconsolidated material 1126 may be removed from a substrate 100 as substrate 100 is removed from chamber 1110. Alternatively, any unconsolidated material 1126 remaining on substrate 100 may be removed therefrom after substrate 100 has been removed from chamber 1110, in which case the cleaning process may occur as another substrate 100 is positioned within chamber 1110.
Material reclamation system 1500 collects excess unconsolidated material 1126 that has been removed from a substrate 100 by cleaning component 1400, then returns the excess unconsolidated material 1126 to reservoir 1120 associated with fabrication tank 1100.
In use, controller 1700, under control of computer-aided drafting (CAD) or stereolithography (.stl) programming, may orchestrate operation of various components of stereolithographic apparatus 1000 to fabricate cores 18, as well as other features.
With reference to
Next, as shown in
Turning to
When apparatus such as that shown in
Another example of the manner in which core 18 of a contact 10 of the present invention may be fabricated is shown in
In
Each core 18 may then be plated or otherwise coated with conductive material to form a conductive coating 20 thereon, as shown in
As shown in
In
Once layer 132a has been formed, substrate 100 and layer 132a may be submerged within volume 200 of photopolymer a distance which corresponds to a thickness T2 of a next-higher layer 132b of support plate 130 (
After each layer 132a, 132b, etc. of support plate 130 has been formed, substrate 100, contacts 10, and support plate 130 may be removed from volume 200 of photopolymer, as shown in
Turning now to
As an alternative to the process shown in
Referring now to
The present invention also includes probe cards, as well as methods for fabricating probe cards. As depicted in
One example of a probe card 30 according to the present invention is shown in
As shown in
With reference to
Outer shell 20′ may be rigid or flexible, depending at least in part upon the configuration thereof and the materials that are used to form the same. Also, the material or materials from which outer shell 20′ is fabricated may be dielectric or electrically conductive. As illustrated, outer shell 20′ includes two collars 25′ and 26′, which extend radially from the remainder (e.g., a body 22′) of outer shell 20′ and are positioned so as to be located adjacent to opposite surfaces 133′ and 134′, respectively, of support plate 130′ (
As depicted, the ends of conductive core 18′ may be enlarged at ends 23′ and 24′ of contact 10′ and extend onto portions of outer shell 20′ that are located at ends 23′ and 24′. A base 12′ of each core 18′ and, thus, of contact 10′ of which core 18′ is a part establishes electrical communication with a corresponding terminal 52 of test or bum-in substrate 50 (
Turning now to
In
Turning to
If substrate 300 comprises a conductive or semiconductive material, surfaces 312 of apertures 310 may be coated with a layer 314 of dielectric material, as shown in
As shown in
Outer shell 20′ may be fabricated with a channel 21′ extending therethrough, or channel 21′ may be subsequently formed therethrough by known processes (e.g., with a laser drill, mechanical drill, etc.). Optionally, channel 21′ may be formed during the fabrication of outer shell 20′ , then bored to increase one or more cross-sectional dimensions (e.g., radius and circumference) thereof.
Next, as depicted in
As a result of introducing conductive material 316 into channel 21′, a conductive element 320 is formed therein. Conductive element 320 includes a first end 323, which is exposed at and may protrude from end 23′ of contact 10′, and a second end 324, which is exposed at and may protrude from end 24′ of contact 10′.
Additionally, as shown in
As an alternative to the use of dielectric material to form an outer shell 20′, electrically conductive contacts 10′″ may be formed within at least some apertures 310 of substrate 300, as shown in
As another alternative, thermoplastic material may be sprayed, or “jetted,” onto substrate 300 layer-by-layer. Examples of such processes are described in U.S. Pat. No. 6,532,394, 6,508,971, 6,492,651, 6,490,496, 6,406,531, 6,352,668, 6,347,257, 6,305,769, 6,270,335, 6,193,923, 6,133,355, 5,340,433, 5,260,009, 5,216,616, 5,141,680, 5,134,569, 5,121,329, and 4,665,492, the disclosures of each of which are hereby incorporated herein in their entireties by this reference. Additional examples of such processes are described in Grimm, Todd, “Stereolithography, Selective Laser Sintering and PolyJet™: Evaluating and Applying the Right Technology,” Pamphlet produced by Accelerated Technologies, Inc. of Austin, Tex. (2002), and in the pamphlet entitled “PolyJet 2nd Generation Technology,” which was produced by Objet Geometries Ltd. of Rehovot, Israel, in 2003, the disclosures of both of which are hereby incorporated herein, in their entireties, by this reference.
Of course, when a conductive contact 10″ is formed directly within one or more apertures 310 of substrate 300, it may not be necessary to form a core of another conductive material therein, although doing so (e.g., by the processes described above with reference to
Another exemplary embodiment of a method for fabricating a probe card 30′ (
In
Next, as shown in
As depicted, each portion 20a′ includes a protruding element 27′, a collar 25′, and a tapered alignment element 29′. Protruding element 27′ is an elongate member which may be cylindrical in shape. Collar 25′ is located adjacent to protruding element 27′ and extends outwardly (e.g., radially) therefrom. Alignment element 29′, which may be frustoconical in shape, is positioned adjacent to collar 25′ and on an opposite side thereof from protruding element 27′. Although alignment element 29′ is depicted as abutting collar 25′, it may be spaced apart therefrom by a section of portion 20a′ which has a reduced cross section relative to collar 25′ and alignment element 29′.
Thereafter, as illustrated in
Once substrate 300 has been properly positioned, with alignment elements 29′ of each portion 20a′ being at least partially disposed within a corresponding aperture 310 and a portion of each conductive element 418 extending through the corresponding aperture 310 of substrate 300, a remainder 20b′ of each outer shell 20′ may be fabricated, as illustrated in
Once outer shells 20′ have been fabricated, as depicted in
As
Optionally, one or both ends 323, 324 of conductive element 320 may be drawn, by known techniques, in such a way as to form an extension (e.g., extension 328 of
At some point during the process that has been described with reference to
Such plating may be effected just after the formation of conductive elements 418 (
In another aspect, the present invention includes protective structures that are configured to prevent damage to a contact (e.g., contact 10, 10′) of the present invention.
The embodiment of protective structure 500 shown in
Another exemplary embodiment of protective structure 500′ is shown in
Each of the foregoing embodiments of protective structures 500, 500′, 500″, as well as other embodiments of protective structures that are within the scope of the present invention, may be fabricated by stereolithography processes, such as those described herein with reference to
Protective structures according to the present invention may be fabricated directly on a substrate, or fabricated separately from the substrate, then secured thereto (e.g., with a suitable adhesive material).
Although the foregoing description contains many specifics, these should not be construed as limiting the scope of the present invention, but merely as providing illustrations of some of the presently preferred embodiments. Similarly, other embodiments of the invention may be devised which do not depart from the spirit or scope of the present invention. Moreover, features from different embodiments of the invention may be employed in combination. The scope of the invention is, therefore, indicated and limited only by the appended claims and their legal equivalents, rather than by the foregoing description. All additions, deletions, and modifications to the invention, as disclosed herein, which fall within the meaning and scope of the claims are to be embraced thereby.
Claims
1. A method for forming a contact for a semiconductor device component, comprising:
- fabricating a core of the contact by selectively consolidating material in accordance with a program; and
- coating at least a portion of the core with at least one layer comprising conductive material.
2. The method of claim 1, wherein fabricating comprises:
- directing consolidating energy or radiation toward unconsolidated material.
3. The method of claim 2, wherein directing comprises directing the consolidating energy or radiation toward unconsolidated material comprising uncured photoimagable polymer.
4. The method of claim 1, wherein fabricating comprises stereolithographically fabricating the core.
5. The method of claim 4, wherein fabricating comprises:
- forming at least one layer comprising unconsolidated material; and
- at least partially consolidating selected regions of the at least one layer.
6. The method of claim 5, further comprising:
- repeating forming the at least one layer and the at least partially consolidating at least once.
7. The method of claim 1, wherein fabricating comprises fabricating the core to include at least a portion which is flexible and resilient.
8. The method of claim 1, wherein fabricating comprises fabricating the core to include an enlarged contact tip.
9. The method of claim 1, wherein coating comprises substantially coating the core with the conductive material.
10. The method of claim 1, wherein coating comprises forming a seed layer on at least the portion of the core.
11. The method of claim 10, wherein forming the seed layer comprises at least one of chemical vapor deposition and physical vapor deposition.
12. The method of claim 10, wherein coating further comprises forming at least one additional layer comprising conductive material over the seed layer.
13. The method of claim 12, wherein forming the at least one additional layer comprises at least one of chemical vapor deposition, physical vapor deposition, electrolytic plating, electroless plating, and immersion plating.
14. The method of claim 12, wherein forming the at least one additional layer comprises:
- forming a conductive layer; and
- forming an oxidation-resistant layer over the conductive layer.
15. The method of claim 14, wherein forming the at least one additional layer further comprises:
- forming a barrier layer between the conductive layer and the oxidation-resistant layer.
16. A method for forming a contact for a semiconductor device component, comprising fabricating at least a portion of the contact by a programmed material consolidation process.
17. The method of claim 16, wherein fabricating comprises selectively consolidating unconsolidated material in accordance with a program.
18. The method of claim 17, wherein selectively consolidating comprises directing focused energy or radiation toward the unconsolidated material.
19. The method of claim 16, wherein fabricating comprises fabricating the at least one layer from a dielectric material.
20. The method of claim 16, further comprising forming a conductive coating on at least a portion of an exterior surface of a core formed during the act of fabricating.
21. The method of claim 18, wherein fabricating comprises fabricating at least the portion from a conductive material.
22. The method of claim 21, wherein fabricating comprises fabricating at least the portion from at least one of a conductive polymer and a conductor-filled polymer.
23. The method of claim 16, wherein fabricating comprises stereolithographically fabricating.
24. A contact of a semiconductor device component, comprising a plurality of at least partially superimposed, contiguous, mutually adhered layers.
25. The contact of claim 24, wherein the plurality of at least partially superimposed, contiguous, mutually adhered layers form at least part of a conductive portion of the contact.
26. The contact of claim 25, wherein each layer of the plurality of at least partially superimposed, contiguous, mutually adhered layers comprises at least one of a conductive polymer and a conductor-filled polymer.
27. The contact of claim 25, further including a core that at least partially supports the conductive portion.
28. The contact of claim 27, wherein the core includes a plurality of at least partially superimposed, contiguous, mutually adhered layers.
29. The contact of claim 28, wherein the plurality of at least partially superimposed, contiguous, mutually adhered layers of the core comprises dielectric material.
30. The contact of claim 24, wherein each layer of the plurality of at least partially superimposed, contiguous, mutually adhered layers comprises a dielectric material.
31. The contact of claim 30, wherein the dielectric material comprises photopolymer.
32. The contact of claim 30, wherein the plurality of at least partially superimposed, contiguous, mutually adhered layers form at least a portion of a core of the contact.
33. The contact of claim 31, further including a conductive coating on at least a portion of an exterior surface of the core.
34. A contact of a semiconductor device component, comprising a plurality of adjacent, mutually adhered regions.
35. The contact of claim 34, wherein the plurality of adjacent, mutually adhered regions form at least part of a conductive portion of the contact.
36. The contact of claim 35, wherein each layer of the plurality of adjacent, mutually adhered regions comprises at least one of a conductive polymer and a conductor-filled polymer.
37. The contact of claim 35, further including a core that at least partially supports the conductive portion.
38. The contact of claim 37, wherein the core includes a plurality of adjacent, mutually adhered regions.
39. The contact of claim 38, wherein the plurality of adjacent, mutually adhered regions of the core comprises dielectric material.
40. The contact of claim 34, wherein each region of the plurality of adjacent, mutually adhered regions comprises a dielectric material.
41. The contact of claim 40, wherein the dielectric material comprises photopolymer.
42. The contact of claim 40, wherein the plurality of adjacent, mutually adhered regions form at least a portion of a core of the contact.
43. The contact of claim 42, further including a conductive coating on at least a portion of an exterior surface of the core.
44. A contact for use with an electronic device component, comprising:
- a flexible, resilient core including a plurality of adjacent, mutually adhered layers; and
- a conductive coating on the core.
45. The contact of claim 44, further comprising a protective element protruding adjacent thereto, the protective element being configured to limit compression of the core of the contact.
46. A method for protecting flexible, resilient contacts that protrude from at least one of surface of a substrate, comprising disposing a protective structure on the at least one surface laterally adjacent to each flexible, resilient contact that protrudes from the at least one surface, the protective structure:
- having a height which at least partially prevents an adjacent flexible, resilient contact from being deformed beyond its elastic limit; or
- being spaced apart from the adjacent flexible, resilient contact a distance which at least partially prevents the adjacent flexible, resilient contact from being deformed beyond the elastic limit.
47. The method of claim 46, wherein disposing comprises forming the protective structure on the at least one surface.
48. The method of claim 46, wherein disposing comprises securing a preformed protective structure to the at least one surface.
49. The method of claim 46, further comprising forming the protective structure.
50. The method of claim 49, wherein forming comprises selectively consolidating unconsolidated material in accordance with a program.
51. The method of claim 50, wherein selectively consoliding unconsolidated material in accordance with a program comprises stereolithographically forming the protective structure.
52. The method of claim 46, wherein disposing comprises disposing a substantially planar protective structure on the at least one surface, the substantially planar protective structure including a plurality of apertures therethrough, at least some contacts of the flexible, resilient contacts being at least partially disposed within corresponding apertures of the plurality of apertures and at least partially laterally surrounded by the substantially planar protective structure.
53. The method of claim 46, wherein disposing comprises disposing an individual protective structure around at least one flexible, resilient contact of the flexible resilient contacts, the individual protective structure including:
- an aperture therethrough within which the at least one flexible, resilient contact is at least partially disposed; and
- a side wall that at least partially laterally surrounds the at least one flexible, resilient contact.
54. The method of claim 46, wherein disposing comprises disposing at least one element adjacent to at least one flexible, resilient contact of the flexible, resilient contacts so as to protrude from the at least one surface.
Type: Application
Filed: May 4, 2006
Publication Date: Sep 21, 2006
Inventors: Warren Farnworth (Nampa, ID), William Hiatt (Eagle, ID), Charles Watkins (Eagle, ID)
Application Number: 11/429,012
International Classification: H01R 13/02 (20060101);