Nested channel ducts for nozzle construction and the like
A multiple conduit system for a gas turbine engine, the multiple conduit system extending between a plurality of conduit inlet and outlets. A channel, adapted for conveying fuel flow, is formed in a surface of a gas turbine engine component. The channel includes at least a first discrete conduit and a second discrete conduit. The first and second discrete conduits are each adapted to direct an independent fluid flow from respective inlets to respective outlets.
Latest Patents:
This application is a continuation of U.S. patent application Ser. No. 10/231,334 filed Aug. 30, 2002, which was allowed on Oct. 25, 2005, and the specification of which is incorporated herein by reference.
TECHNICAL FIELDThe present invention relates generally to gas turbine engines, and more particularly to a nested channel configuration for use in fuel manifolds, nozzle stems and the like.
BACKGROUND OF THE INVENTIONFuel nozzles which supply fuel to a combustion chamber in a gas turbine engine are well known in the art. Generally, a plurality of circumferentially distributed fuel nozzles forming a nozzle array in the combustion chamber are used to ensure sufficient distribution of the fuel. The fuel nozzle array typically comprises a plurality of injector tip assemblies for atomizing fuel into the combustion chamber, the injector tips being connected to an outer fuel manifold via nozzle stems.
Some conventional nozzle systems define duel adjacent fuel passages, sometimes concentrically disposed within an outer tube. In an effort to provide a dual passage stem member which is relatively simpler and more economical to manufacture, it is also known to use a stem comprised of a solid piece of material having adjacent slotted fuel conduits. The distinct slots, formed side by side, define primary and secondary fuel conduits extending between the inlet and outlet of the nozzle stem, and are sealed by a brazed cover plate.
Prior art multiple channel systems are cumbersome, difficult to manufacture and maintain, and heavy. Accordingly, improvements are desirable.
SUMMARY OF THE INVENTIONIt is an object of the present invention to provide an improved fuel injection system that is simpler and more economical to manufacture.
It is a further object of the present invention to provide a fuel injection system that, among other things, eliminates the need for multiple independent fuel manifolds and for complex fuel nozzle stems.
Therefore, in accordance with the present invention, there is provided a gas turbine engine fuel nozzle having a spray tip assembly in flow communication with a fuel source, the fuel nozzle comprising: a fuel-conveying member comprising a stepped channel formed in a surface of the fuel-conveying member for providing fuel flow to the spray tip assembly; at least a first inner sealing plate being disposed within the stepped channel and dividing the stepped channel into at least a primary and a secondary discrete nested conduit; and an outer sealing plate being engaged with the surface for enclosing the stepped channel; whereby each discrete nested conduit is adapted for directing an independent fuel flow from the fuel source to the spray tip assembly.
There is also provided, in accordance with the present invention, a method of manufacturing a gas turbine engine fuel nozzle having multiple discrete fuel conduits for directing independent fuel flows from a fuel source to a spray tip assembly, the method comprising: providing a fuel-conveying member formed from a single solid piece of material; machining a single stepped channel in a surface of the fuel-conveying member, the stepped channel defining at least primary and secondary nested slots, the secondary slot defining a larger cross-sectional area than the primary slot and being immediately open to the surface; fixing at least a first inner sealing plate having a width greater than a width of the primary slot, within the secondary slot with the first inner sealing plate abutting a shoulder formed by the stepped channel, thereby dividing the stepped channel into a primary discrete nested fuel conduit and the nested secondary slot; and fixing an outer channel sealing plate to the fuel-conveying member to enclose the secondary slot thereby forming a secondary discrete nested fuel conduit.
BRIEF DESCRIPTION OF THE DRAWINGSFurther features and advantages of the present invention will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
Referring to
Referring now to
The annular stepped channel 36 comprises at least two nested fuel conduits; namely a primary nested fuel conduit 40 and secondary nested fuel conduit 42. The annular primary fuel conduit is located in the manifold ring closest to the spray tip assemblies, and preferably (to facilitate manufacture) is much smaller in cross-sectional area than the annular secondary nested fuel conduit 42, which opens immediately to the peripheral surface 38 in which the stepped channel 36 is formed. A first inner sealing member or plate 44, sized such that it fits within the secondary conduit portion of the stepped channel and is larger than the width of the primary conduit (i.e. to seal it), is fixed against a first shoulder 43 formed in the stepped channel between the primary and secondary nested conduits, by way of brazing or another fastening/sealing method. The first inner sealing plate 44 for the annular fuel manifold ring 22, is preferably also an annular ring plate, substantially extending around the full circumference of manifold ring. An outer stepped channel sealing member or plate 46 is similarly fixed to the fuel manifold ring 22 by brazing or other similar fastening method, against a second shoulder 45 formed within the stepped channel for receiving the annular outer sealing plate ring 46 abutted therein. The outer sealing ring plate 46 could also be brazed directly to the outer peripheral surface 38 of the manifold ring, without the need for the second shoulder 45 in the stepped channel 36. The two sealing plates thereby divide the single stepped channel 36 into two discrete, nested fuel conduits that are sealed from one another and which can supply independent fuel supplies to the spray tip assemblies, primary nested fuel conduit 40 and secondary nested fuel conduit 42. This therefore permits the use of a single-piece fuel manifold, having at least two discrete fuel galleries formed therein in a simple and cost effective manner. This eliminates the need for employing fuel nozzle stems and conventional fuel nozzle injector arrays comprising hundreds of sub-components merely to connect an exteriorly located fuel manifold to the spray tip assemblies in the combustion chamber.
The primary and secondary annular nested fuel conduits 40 and 42 permit circumferential distribution of the primary and secondary fuel supply around the fuel manifold ring. At the location of each spray tip assembly 24 mounted to the annular manifold ring 22, fuel outlet passage holes are formed, by drilling or otherwise, in the manifold ring body substantially perpendicularly to the outer peripheral surface 38, to enable fluid flow communication between the nested fuel conduits and the spray tip assembly 24. Specifically, primary fuel conduit outlet passage 48 permits primary fuel flow from the primary fuel conduit 40 to be fed into the primary distributor 54 of the spray tip assembly, and secondary fuel conduit outlet passage 50 permits secondary fuel flow from the secondary fuel conduit 42 to be fed into the annular secondary fuel swirling cavity 63 of the spray tip assembly 24.
Such spray tip assemblies typically also comprise a valve member 52 disposed within the primary distributor 54 for regulating primary fuel flow through a primary cone 56, protected by a primary heat shield 58, before being ejected by a primary fuel nozzle tip 59. A secondary fuel swirler 60 disposed substantially concentrically about the primary distributor, comprises an annular secondary fuel swirling cavity, which swirls the secondary fuel flow before it is ejected through annular secondary fuel nozzle tip 61. An outer air swirler 62 comprises a plurality of circumferentially spaced air passages 64 which convey air flow for blending with the primary and secondary fuel sprays issuing from the primary and secondary spray orifices, 59 and 61 respectively, of the spray tip assembly.
Referring to
The auxiliary channel 172 can be used to carry a coolant, such as for example recirculated fuel, which will draw heat from the ring. The coolant flow in the auxiliary channel 172 is independent of the quantity of fuel being delivered to the engine. This is particularly needed during low power operation, when less fuel flows through the conduits of the manifold, and therefore more heat is absorbed from the combustion chamber by the entire manifold ring. This reduces fuel coking within the fuel manifold, which can occur if sufficient fuel flow is not maintained to cool the manifold ring. Each conduit, namely the primary fuel conduit 140, the secondary fuel conduit 142 and the auxiliary cooling conduit 172, each has its own inlet feed line, such that the fuel rates and the coolant flow rate can be independently controlled. Independent control of the primary and secondary fuel flows and independent feeding of each spray tip from the annular conduits providing circumferential fuel distribution, also permits fuel staging, wherein specific amounts of fuel are partitioned to specific circumferential locations of the combustion chamber to enhance ignition or to control emissions.
The present invention may also be used to provide multiple nested channels for providing discrete fuel conduits in a fuel nozzle stem.
Referring to
While the above description constitutes the preferred embodiments, it will be appreciated that the present invention is susceptible to modification and change without departing from the fair meaning of the accompanying claims. For example, the present invention can offer reliability and weight benefits in any gas turbine engine application wherever multiple hydraulic or other fluid conduits are required or desired. Also, the stepped construction of the channel is preferred, but other configurations will be apparent to those skilled in the art. Still other modifications and applications beyond those described will be apparent to those skilled in the art.
Claims
1-20. (canceled)
21. A fuel manifold for a gas turbine engine, the fuel manifold comprising an annular body defining at least one fuel conduit therein, the fuel conduit having a fuel inlet defined in the body in communication with a fuel source and a fuel outlet defined in the body in communication with at least one fuel nozzle, a coolant conduit being defined within the body in heat transfer communication with the fuel conduit, the coolant conduit having at least one coolant inlet and at least one coolant outlet defined in the body, the fuel and coolant conduits being fed independently from each other such as to respectively direct fluid flow therethrough independently of each other.
22. The fuel manifold as defined in claim 21, wherein the body includes a channel formed therein, the channel defining at least one shoulder along a length thereof corresponding to a change in width of the channel, at least a first inner sealing member being disposed within the channel and mounted to the shoulder substantially along the length of the channel, the fuel and coolant conduits being defined in nested relationship in the channel and sealingly separated from one another by the first inner sealing member, and an outer sealing member enclosing the channel substantially along its length to define an outer one of the fuel and coolant conduits.
23. The fuel manifold as defined in claim 22, wherein the first inner sealing member abuts the shoulder.
24. The fuel manifold as defined in claim 22, wherein the outer sealing member is engaged to an outer surface of the body.
25. The fuel manifold as defined in claim 21, wherein the coolant conduit has a larger cross-sectional area than the fuel conduit.
26. The fuel manifold as defined in claim 21, wherein the body includes an additional fuel conduit defined therein, the additional fuel conduit having an additional fuel inlet and an additional fuel outlet defined in the body, the coolant conduit being in heat transfer communication with the additional fuel conduit, the additional fuel conduit being fed independently from the fuel and coolant conduits such as to direct fluid flow independently of the fuel and coolant conduits.
27. The fuel manifold as defined in claim 22, wherein a second inner sealing member is disposed within the channel along the length thereof and separates the fuel conduit from an additional fuel conduit also defined in the channel, the additional fuel conduit being fed independently from the fuel and coolant conduits.
28. The fuel manifold as defined in claim 21, wherein the fuel manifold is provided in a single solid piece of material.
29. A fuel manifold for a gas turbine engine, the fuel manifold comprising:
- an annular body defining at least one fuel conduit and at least one coolant conduit therein, the fuel conduit circulating fuel from a fuel inlet to at least one fuel nozzle, and the coolant conduit circulating coolant therein from a coolant inlet to a coolant outlet to absorb heat from the fuel manifold;
- means for controlling a flow of the fuel in the fuel conduit; and
- means for controlling a flow of the coolant in the coolant conduit;
- wherein the fuel flow control means and the coolant flow control means are independent from one another.
30. The fuel manifold as defined in claim 29, wherein the fuel flow control means includes a first inlet feed line feeding the fuel inlet and the coolant flow control means includes a second inlet feed line feeding the coolant inlet.
31. The fuel manifold as defined in claim 29, wherein the body includes a channel formed therein, the channel defining at least one shoulder along a length thereof corresponding to a change in width of the channel, at least a first inner sealing member being disposed within the channel and mounted to the shoulder substantially along the length of the channel, the fuel and coolant conduits being defined in nested relationship in the channel and sealingly separated from one another by the first inner sealing member, and an outer sealing member enclosing the channel substantially along its length to define an outer one of the fuel and coolant conduits.
32. The fuel manifold as defined in claim 29, wherein the coolant conduit has a larger cross-sectional area than the fuel conduit.
33. The fuel manifold as defined in claim 29, wherein the body includes an additional fuel conduit defined therein, the fuel additional conduit circulating fuel from an additional fuel inlet to at least one additional fuel outlet, and the manifold further includes means for controlling a flow of the fuel in the additional fuel conduit, and wherein the additional fuel flow control means are independent from the fuel flow control means and the coolant flow control means.
34. The fuel manifold as defined in claim 33, wherein the additional fuel flow control means includes a third inlet feed line feeding the additional fuel inlet, the third inlet feed line being independent from the first and second inlet feed lines.
35. The fuel manifold as defined in claim 33, wherein the body includes a channel formed therein, first and second inner sealing members being mounted within the channel along a length thereof in spaced apart relationship, the fuel, additional fuel and coolant conduits being defined in the channel and sealingly separated from one another by the first and second sealing members, and an outer sealing member enclosing the channel substantially along its length to define an outer one of the conduits.
36. The fuel manifold as defined in claim 29, wherein the fuel manifold is provided in a single solid piece of material.
37. A method of drawing heat from a manifold ring in a gas turbine engine, the method comprising:
- providing the manifold ring having a body with at least one fuel conduit and at least one coolant conduit defined therein, the fuel conduit being in fluid communication with at least one fuel nozzle;
- circulating a coolant through the cooling conduit from an inlet to an outlet thereof to absorb heat from the manifold ring; and
- controlling a flow of the coolant within the cooling conduit independently of a fuel flow to the fuel nozzle through the fuel conduit.
38. The method as defined in claim 37, wherein controlling the flow of the coolant includes feeding the coolant through the inlet independently from a fuel feed to the fuel conduit.
39. The method as defined in claim 37, wherein circulating the coolant through the cooling conduit includes circulating fuel through the cooling conduit.
Type: Application
Filed: Jan 25, 2006
Publication Date: Nov 23, 2006
Applicant:
Inventors: Lev Prociw (Elmira), Harris Shafique (Longueull), John Sokalski (Greenfield Park), Claude Pelletier (Varennes)
Application Number: 11/338,827
International Classification: F02C 7/22 (20060101);