Structure of heat dissipating fins

A structure of heat dissipating fins that can be assembled with increased efficiency without the use of adhesive agents such as soldering tin, and so on, while ensuring a tight fit on cooling ducts. More than one through hole defined in each of the heat dissipating fins that provide for cooling ducts to insert therein. A staircase-like member extends backward from each of the through holes to form a catch groove, and a catch end further extends backward from each of the catch grooves. When the heat dissipating fins are being successively disposed onto the cooling ducts through the through holes, the catch ends are respectively disposed into the catch grooves of the heat dissipating fin positioned therebehind, thereby producing a tight clamping effect on the cooling ducts, further causing an immobile mutual fastening between the heat dissipating fins without the use of soldering tin.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

(a) Field of the Invention

The present invention relates to a structure of heat dissipating fins, and more particularly to heat dissipating fins that can be assembled with increased efficiency without the use of adhesive agents such as soldering tin, and so on, while ensuring a tight fit on cooling ducts.

(b) Description of the Prior Art

The problem of heat dissipation is currently the most critical issue affecting development in 3C (computer, communications and consumer electronics) products. Thus, research and development in improving heat dissipation efficiency has already become one of industries active topics of research.

A traditional heat dissipating device uses heat dissipating fins in conjunction with a fan to disperse heat energy from within the 3C (computer, communications and consumer electronics) product. The heat dissipating fins are structured from a metal material such as copper, aluminum, and so on, and an assemblage of the heat dissipating fins is configured so as to increase area of heat exchange. Referring to FIG. 1, which shows clasp portions (11) and clasp grooves (12) configured on peripheral edges of each heat dissipating fin (10) so as to mutually clasp, thereby achieving the objective of enabling immobile mutual clasping together of adjoining front and rear heat dissipating fins (10) using the clasp portions (11) and the clasp grooves (12) configured thereon. However, such a configuration using purely the heat dissipating fins (10) to implement heat exchange is inadequate.

Hence, a combination of the heat dissipating fins (10) and cooling ducts (20) is used to increase heat dissipation efficiency. Referring to FIG. 2, which shows a method whereby the heat dissipating fins (10) and the cooling ducts (20) are combined primarily using through holes (13) defined on the heat dissipating fins (10), which enable the heat dissipating fins (10) to be successively disposed onto the cooling ducts (20) through the through holes (13), whereupon soldering tin or other adhering method is used to join the aforementioned heat dissipating fins (10) and the cooling ducts (20), thereby forming an integral body.

However, the configuration whereby the heat dissipating fins (10) are disposed on the cooling ducts (20) through the through holes (13) defined in the heat dissipating fins (10) requires the heat dissipating fins (10) to be slipped one by one onto the cooling ducts (20). Moreover, the cooling ducts (20) must fit tightly into the through holes (13), thus, the diameter of the through holes (13) must correspond to the diameter of the cooling ducts (20) in order to achieve an effective close-fitting configuration. Hence, when the heat dissipating fins (10) are being successively disposed onto the cooling ducts (20) through the through holes (13), friction results between the walls of the through holes (13) of the heat dissipating fins (10) and the walls of the cooling ducts (20), which causes gradual wearing away of the walls at the front ends of the cooling ducts (20), and results in a smaller outer diameter at the front ends of the cooling ducts (20). Thus, the dissipating fins (10) being subsequently disposed on the front ends of the cooling ducts (20) are slack, which spoils structural strength of the assemblage of heat dissipating fins (10), and, moreover, results in the heat dissipating fins (10) being askew or coming apart.

Hence, in order to prevent the aforementioned slackening phenomenon or coming apart of the heat dissipating fins (10) from occurring, tin paste or adhesive agents are used to bond together the cooling ducts (20) and the heat dissipating fins (10). However, the use of tin paste raises the cost of assembling the heat dissipating fins (10), assembly of the heat dissipating fins is considerably time-consuming, and, more particularly, results in environmental pollution, and is thus not an ideal configuration.

SUMMARY OF THE INVENTION

In light of the aforementioned shortcomings of a conventional configuration, the inventor of the present invention, having accumulated years of experience in research, design and manufacturing of related arts, attentively and circumspectly carried out extensive study and exploration to ultimately design a new structure for heat dissipating fins.

Hence, the heat dissipating fins of the present invention includes more than one through hole defined in each heat dissipating fin that provide for cooling ducts to insert therein. A staircase-like member extends backward from each of the through holes to form a catch groove, and a catch end further extends backward from each of the catch grooves. Accordingly, when the heat dissipating fins are being successively disposed onto the cooling ducts through the through holes, the catch ends of the heat dissipating fin positioned in front are respectively disposed into the catch grooves of the heat dissipating fin positioned therebehind, thereby producing a tight clamping effect on the cooling ducts, which further realizes an immobile mutual fastening between the heat dissipating fins.

The objective of the present invention is to use the catch grooves backward extending from the through holes and the catch ends backward extending from the catch grooves so that when the heat dissipating fins are being disposed on the cooling ducts through the through holes, the backward extending catch ends of the heat dissipating fin positioned in front are respectively inserted within the backward extending catch grooves of the heat dissipating fin positioned therebehind, thereby forming a clamping effect between the cooling ducts and the catch grooves, which tightens the catch ends within the catch grooves. Moreover, a mutual clamping between the heat dissipating fins and a tight fit on the cooling ducts is further realized, which succeeds in achieving a sufficient heat dissipation effect. Because it is unnecessary for an extremely tight fit between the through holes and the cooling ducts when assembling the heat dissipating fins, thus, not only is abrasion of the cooling ducts eliminated, but also assembly efficiency of each of the heat dissipating fins on the cooling ducts is improved. Moreover, structural strength between each of the heat dissipating fins is increased because of the clamping effect and more particularly, because there is no need to use soldering tin or other adhesive agents, the present invention does not cause environmental pollution.

To enable a further understanding of said objectives and the technological methods of the invention herein, brief description of the drawings is provided below followed by detailed description of the preferred embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic view of conventional heat dissipating fins being assembled.

FIG. 2 shows a schematic view of conventional heat dissipating fins and cooling ducts of another prior art being assembled.

FIG. 3 shows a schematic view of heat dissipating fins and cooling ducts being assembled according to the present invention.

FIG. 4 shows a cross-sectional schematic view of the present invention after assembly.

FIG. 5 shows a schematic view of an enlarged portion of FIG. 4 according to the present invention.

FIG. 6 shows a schematic view of a second embodiment according to the present invention.

FIG. 7 shows a schematic view of a third embodiment according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 3, which shows a structural assembly of heat dissipating fins of the present invention, comprising more than one through hole (13) defined in each heat dissipating fin (10) that provide for cooling ducts (20) to insert therein. The present invention is characterized in that a staircase-like member extends backward from each of the through holes (13) to form a catch groove (14), and a protrudent catch end (15) extends backward from each of the catch grooves (14). Outer diameter of the catch ends is slightly larger than inner diameter of the catch grooves (14).

Accordingly, each of the heat dissipating fins (10) are successively slipped onto one end of each of the cooling ducts (20), while another end of each of the cooling ducts (20) is disposed within a limit arc groove (16) of a top end of each of the heat dissipating fins (10). Referring to FIG. 4, when each of the heat dissipating fins (10) is successively disposed onto the cooling ducts (20) through the through holes (13), because the outer diameter of the backward extending catch ends (15) of the heat dissipating fin (10) positioned in front is slightly larger than the inner diameter of the backward extending catch grooves (14) of the adjoining heat dissipating fin (10) positioned therebehind, thus, after each of the heat dissipating fins (10) has been disposed onto the cooling ducts (20) through the through holes (13), then the heat dissipating fins (10) become slightly compressed, thereby enabling the catch ends (15) of the heat dissipating fin (10) positioned in front to be respectively tightly fitted within the catch grooves (14) of the adjoining heat dissipating fin (10) positioned therebehind. Thus, the catch grooves (14) and the cooling ducts (20) in conjunction with the catch ends (15) form a mutual clasping effect, furthermore, a mutual clamping effect is realized between each of the heat dissipating fins (10).

Referring to FIG. 5, when the catch ends (15) of the heat dissipating fin (10) positioned in front are tightly fitted within the catch grooves (14) of the heat dissipating fin (10) positioned therebehind, because the outer diameter of the catch ends (15) is slightly larger than the inner diameter of the catch grooves (14), thus, a coordinative compact configuration between the catch ends (15), the catch grooves (14) and the cooling ducts (20) is realized through the cooling ducts (20) functioning in coordination with the catch grooves (14), thereby effectuating an immobile mutual clamping between each of the heat dissipating fins (10), which further prevents slackening and coming apart of the heat dissipating fins (10). Moreover, the immobile fastening effect realized between the heat dissipating fin (10) positioned in front and the adjoining heat dissipating fin (10) positioned therebehind on the cooling ducts (20) structures a heat dissipating device of superior strength.

In other words, the present invention is characterized in having a configuration comprising catch grooves (14) that extend backwards from a rear of the through holes (13) and catch ends (15) that extend backwards from the catch grooves (14), which enable achieving the objective of immobile mutual clamping between each of the heat. dissipating fins (10) through clamping together of the catch ends (15) and the catch grooves (14) in conjunction with the diameter of the cooling ducts (20). Furthermore, because the outer diameter of the catch ends (15) is slightly larger than the inner diameter of the catch grooves (14), thus, an effective tight clamping configuration is formed between the heat dissipating fin (10) positioned in front and the adjoining heat dissipating fin (10) positioned therebehind on the cooling ducts (20), which prevents slackening and coming apart of the dissipating fins (10) because of wearing away on the walls of the front ends of the cooling ducts (20).

Furthermore, when assembling the present invention, the heat dissipating fins (10) are simply slipped one by one onto the cooling ducts (20), which then become slightly compressed from two sides, thereby assembling the heat dissipating fins (10). The structural assembly of the present invention simplifies that of conventional heat dissipating fins that require configuring clasp portions and clasp grooves on peripheral edges of the heat dissipating fins. Hence, the present invention not only simplifies the manufacturing process of the heat dissipating fins (10), moreover, it enhances assembly efficiency between the heat dissipating fins (10), which significantly increases productivity. Furthermore, contact area between the heat dissipating fins (10) and the cooling ducts (20) is increased, which further enhances heat dissipation efficiency of the heat dissipating fins (10), and saves on tin paste as used in conventional heat dissipating fins. The present invention not only effectively reduces manufacturing costs, moreover, it is environmental conscious and economical on energy resources. Clasp portion and clasp groove structural members can be further configured on peripheral edges of the heat dissipating fins of the present invention (structures of which are the same as conventional art, and thus details are not included herein), thereby further increasing structural strength and heat dissipation effect of each of the heat dissipating fins (10).

Furthermore, referring to FIG. 6, wherein the outer diameter of the catch end (15) of the heat dissipating fin (10) further assumes a backward extending gradual tapering funnel form, which further facilitates assembling each of the heat dissipating fins (10) onto the cooling ducts (20), and avoids interference therebetween. Referring to FIG. 7, wherein a vent groove (17) can be further defined in each of the catch ends (15), and formation of the vent grooves enable the catch ends (15) to create an elastic deformation effect within a reasonable space, which further improves assembly time efficiency of the heat dissipating fins (10), and, moreover, enables forming a more compact integral body between the heat dissipating fins (10).

It is of course to be understood that the embodiments described herein are merely illustrative of the principles of the invention and that a wide variety of modifications thereto may be effected by persons skilled in the art without departing from the spirit and scope of the invention as set forth in the following claims.

Claims

1. A structure of heat dissipating fins comprising more than one through hole defined in each heat dissipating fin that provide for cooling ducts to insert therein, and characterized in that a staircase-like member extends backward from each of the through holes to form a catch groove, and a protrudent catch end further extends backward from each of the catch grooves, moreover, outer diameter of the catch ends is slightly larger than inner diameter of the catch grooves.

2. The structure of heat dissipating fins as described in claim 1, wherein the outer diameter of the catch end assumes a backward extending gradual tapering funnel form.

3. The structure of heat dissipating fins as described in claim 1, wherein a vent groove is defined in an end of the catch end.

4. The structure of heat dissipating fins as described in claim 1, wherein the catch ends of the heat dissipating fin positioned in front are respectively disposed into the catch grooves of the heat dissipating fin positioned therebehind, and tightened to clamp onto the cooling ducts.

Patent History
Publication number: 20060260792
Type: Application
Filed: May 23, 2005
Publication Date: Nov 23, 2006
Inventors: Dong-Mau Wang (Banchiau City), Dong-Yuan Wang (Banchiau City)
Application Number: 11/134,437
Classifications
Current U.S. Class: 165/182.000
International Classification: F28F 1/30 (20060101);