Structural-based inhibitors of the glutathione binding site in aldose reductase, methods of screening therefor and methods of use
Provided herein is a crystallized ternary structure of aldose reductase (AR) bound to NADPH and γ-glutamyl-S-(1,2-dicarboxyethyl)cysteinylglycine (DCEG). Also provided are specific inhibitors of glutathione-aldehyde binding to aldose reductase which are designed via at least computer modeling of the ternary AR:NADPH:DCEG structure and methods of designing and of screening the inhibitors for inhibition of glutathione-aldehyde binding to aldose reductase. In addition methods of treating a pathophysiological state or symptoms thereof resulting from aldose reductase-mediated signaling in a cytotoxic pathway using a small interfering RNA (siRNA) or the designed inhibitors.
This is a continuation-in-part of non-provisional application U.S. Ser. No. 11/282,801, filed Nov. 18, 2005, which claims benefit of provisional U.S. Ser. No. 60/629,448, filed Nov. 19, 2004, now abandoned.
FEDERAL FUNDING LEGENDThis invention was produced in part using funds obtained through Grants DK36118 and EY01677 from the National Institutes of Health. Consequently, the federal government has certain rights in this invention.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates generally to the fields of enzymology, protein structure and drug screening. More specifically, the present invention relates to the use of a crystalline structure of an aldose reductase complexed with NADPH and glutathione conjugate as a screening tool for inhibitors of aldose reductase.
2. Description of the Related Art
Aldose reductase (AR) is a monomeric (α/β)8-barrel (TIM barrel) protein belonging to the aldo-keto reductase (AKR) superfamily (1-3). Aldose reductase is a broad-specificity oxidoreductase catalyzing the reduction of a structurally-diverse range of aldehydes, including medium to long chain aldehydes, glucose and other aldo-sugars, aldehyde metabolites of neurotransmitters, isocorticosteroid hormones, and a variety of xenobiotic aldehydes to their corresponding alcohols (4). Reduction of glucose to sorbitol by aldose reductase constitutes the first and rate-limiting step of the polyol pathway that converts glucose to fructose via sorbitol dehydrogenase. Although this pathway usually represents a minor route of glucose metabolism, its activation during diabetes has been linked to the development of several clinically significant secondary complications such as nephropathy, neuropathy, retinopathy and cardiovascular related complications (4, 5). Several drugs that inhibit aldose reductase have been shown to prevent hyperglycemia-induced changes in nerve, kidney, and lens of experimental animals, although clinical trials with Type I and Type II diabetics have not been uniformly positive (4-6).
In addition to glucose, it has been shown that aldose reductase catalyzes the reduction of multiple biologically-active aldehydes generated by the peroxidation of membrane lipids and lipoproteins (7-9) or during glucose (10) and amine (11) metabolism. The aldehyde-detoxifying role of aldose reductase is supported by the observation that inhibition of the enzyme increases the accumulation of lipid peroxidation products (12, 13) that cause cytotoxicity (14, 15). The most abundant and toxic lipid peroxidation product is 4-hydroxy-trans-2-nonenal (16) which is efficiently reduced by aldose reductase in vitro and in vivo.
A primary role of aldose reductase in aldehyde detoxification is consistent with its structure. The active site of the enzyme is highly hydrophobic and contains few polar residues typically required for binding sugars with high specificity and affinity (2, 3). These features are, however, compatible with binding to hydrophobic lipid-derived aldehydes. Additionally, the substrate-specificity of aldose reductase is unusually broad, in part because the enzyme derives most of the energy required to achieve a substrate transition state from cofactor-binding (17). The active site environment exerts low stabilization on the transition state (18). Furthermore, it has been demonstrated recently that aldose reductase-catalyzed products mediate cytokine, chemokine, growth factor, and hyperglycemia-induced signaling that activates NF-kB and AP1, and regulates vascular epithelial cell (VEC) and human lens epithelial cell (HLEC) apoptosis, and vascular smooth muscle cell (VSMC) proliferation (15, 21, 22).
The range of aldehydes recognized by the aldose reductase active site is increased further by the ability of the enzyme to bind glutathione-aldehyde conjugates (19, 20), such as glutathionyl HNE. Given the high concentration of reduced glutathione in most cells and the highly electrophilic nature of several aldose reductase substrates, it is possible that reduction of aldehyde-glutathione conjugates, in addition to free aldehydes, may be a primary in vivo function of aldose reductase and that glucose may be an incidental substrate of the enzyme. Previous kinetic studies showed that glutathiolation increases the catalytic efficiency with which unsaturated aldehydes are reduced by aldose reductase (19), suggesting that the active site of aldose reductase contains a specific glutathione-binding domain (20). Nevertheless, the precise nature of glutathione binding to aldose reductase remained unclear.
There is a need in the art for three-dimensional structures of aldose reductase-glutathione-moiety binding complexes to understand the nature of glutathione-moiety binding at the active site. Also there is a need for methods incorporating computer modeling of three-dimensional structures to identify, design and test molecules with improved binding affinity. A further need for molecules that would be useful as therapeutics and/or modulators of aldose reductase-mediated physiological events is also present in the art.
The prior art is deficient in structure based aldose reductase inhibitors that preferentially occlude one binding site in the inhibitor. Specifically, the prior art is deficient in the lack of aldose reductase:NADPH:glutathione-like ligand based inhibitors that inhibit binding and reduction of glutathione-lipid aldehyde conjugates without inhibiting the detoxification of free aldehydes. The present invention fulfills this long-standing need and desire in the art.
SUMMARY OF THE INVENTIONThe present invention is directed to a crystalline structure of a ternary AR:NADPH:glutathione-like ligand complex. The crystalline structure diffracts x-rays for determining atomic co-ordinates of said complex with a resolution of about 3 Å to about 1.94 Å. The glutathione-like ligand interacts with both a glutathione binding domain and a carbonyl binding site within an active pocket formed by an AR:NADPH complex within the ternary structure. The present invention also is directed to a related crystalline structure comprising a ternary AR:NADPH:DCEG complex diffracts x-rays for determining atomic co-ordinates of the complex with a resolution of about 1.94 Å.
The present invention also is directed to a method of designing a potential inhibitor of glutathione-aldehyde conjugate binding to aldose reductase. The method comprises identifying a glutathione-like ligand that interacts with the glutathione binding domain, but does not block the carbonyl binding site, in the active pocket of an aldose reductase which has the three-dimensional conformation determined by DCEG binding to AR:NADPH. The identification of the potential inhibitor is based at least in part on a computer model of the crystalline AR:NADPH:DCEG ternary structure described herein.
The present invention is directed to a related method of screening for inhibitors of glutathione-aldehyde conjugate reduction by aldose reductase. The method comprises using the crystalline ternary structure described herein to design a potential inhibitor that binds to the glutathione binding domain in aldose reductase, but does not interfere with the carbonyl binding site. The design is based in part on computer modeling of the crystalline AR:NADPH:DCEG. The aldose reductase is complexed with the potential inhibitor and the aldose reductase:inhibitor complex is contacted with a lipid aldehyde and with the lipid aldehyde conjugated to glutathione. Detection of a reduced lipid aldehyde product, but not a reduced glutathione-lipid aldehyde product, screens for the inhibitor.
The present invention is directed further to the specific inhibitors of glutathione-aldehyde conjugate reduction designed and screened for by the methods described herein.
The present invention is directed further yet to a method of preventing a pathophysiological state or treating symptoms thereof resulting from aldose-reductase mediated signaling of a cytotoxic pathway in a subject. The method comprises administering a pharmacologically effective amount of the inhibitors of glutathione-aldehyde conjugate reduction described herein to the subject and inhibiting the reduction of a glutathione-aldehyde substrate via aldose reductase to prevent cytotoxic signaling in the subject. The cytotoxic signals could be generated by cytokines, chemokines, reactive oxygen species, endotoxins, growth factors, hyperglicemia and biologically active agents, e.g., bioterrorism agents.
The present invention is directed further still to a related method of treating a pathophysiological state or symptoms thereof resulting from aldose-reductase-mediated signaling in a cytotoxic pathway in a subject. The method comprises administering a pharmacologically effective amount of an inhibitor of aldose reductase to the subject thereby preventing aldose reductase mediated signaling. The aldose reductase inhibitor may be a small interfering RNA (siRNA) or an inhibitor that is effective to inhibit reduction of a glutathione-aldehyde conjugate by aldose reductase.
The present invention is directed further still to another related method of treating cancer, such as colon cancer, in a subject. The method comprises administering a pharmacologically effective amount of an aldose reductase small interfering RNA (siRNA) to the subject to inhibit colon cancer cell proliferation thereby treating the cancer.
Other and further aspects, features, and advantages of the present invention will be apparent from the following description of the embodiments of the invention given for the purpose of disclosure.
BRIEF DESCRIPTION OF THE DRAWINGSSo that the matter in which the above-recited features, advantages and objects of the invention, as well as others which will become clear, are attained and can be understood in detail, more particular descriptions of the invention briefly summarized above may be had by reference to certain embodiments thereof which are illustrated in the appended drawings. These drawings form a part of the specification. It is to be noted, however, that the appended drawings illustrate embodiments of the invention and therefore are not to be considered limiting in their scope.
In one embodiment of the present invention there is provided a crystalline structure of a ternary AR:NADPH:glutathione-like ligand complex, wherein the crystalline structure diffracts x-rays for determining atomic co-ordinates of the complex with a resolution of about 3 Å to about 1.94 Å and wherein the glutathione-like ligand interacts with both a glutathione binding domain and a carbonyl binding site within an active pocket formed by an AR:NADPH complex within the ternary structure.
In one aspect of this embodiment, the ternary structure has a space group of P21 and a unit cell with dimensions of a=47.21 Å, b=66.72 Å and c=49.30 Å. In this aspect the crystalline structure has the protein data base accession code of 1Q9N. In a related aspect the active pocket comprises three flexible loops A, B, and C where the glutathione-like ligand interacts with at least the C loop. An example of the glutathione-like ligand is γ-glutamyl-S-(1,2-dicarboxyethyl)cysteinylglycine.
In a related embodiment there is provided a crystalline structure of a ternary AR:NADPH:DCEG complex wherein the crystalline structure diffracts x-rays for determining atomic co-ordinates of the complex with a resolution of about 1.94 Å. The crystalline structure has the protein data base accession code of 1Q9N.
In another embodiment of the present invention there is provided a method of designing a potential inhibitor of glutathione-aldehyde conjugate binding to aldose reductase, comprising identifying a glutathione-like ligand that interacts with the glutathione binding domain, but does not block the carbonyl binding site, in the active pocket of an aldose reductase having a three-dimensional conformation determined by DCEG binding to AR:NADPH, where the identification is based at least in part on a computer model of the crystalline AR:NADPH:DCEG ternary structure described supra.
Further to this embodiment the method comprises screening the potential inhibitors for inhibition of glutathione-aldehyde conjugate reduction by aldose reductase. Screening may comprise contacting aldose reductase with the potential inhibitor, contacting the AR:inhibitor complex with a lipid aldehyde and with the lipid aldehyde conjugated to glutathione and detecting only a reduced lipid aldehyde product.
In this embodiment, the glutathione-binding domain comprises residues Trp-20, Trp-79, Trp-111, Trp-219, Phe-122, Val-47, Cys-298, Ala-299, Leu-300, Ser-302 and Leu-301. In an aspect of this embodiment the residues Ser-302, Ala-299, Leu-300, and Leu-301 comprise a C loop of the active pocket. Particularly in this aspect Ser-302, Ala-299, Leu-300, and Leu-301 interact with the glutathione-like ligand via a network of water molecules within the C loop. Also in this embodiment the carbonyl binding site comprises residues Tyr-48, His-110, and Trp-111 and NADPH. A representative example of a glutathione-like ligand has a γ-glutamylcysteinylglycine backbone with an S-cysteinyl-substituted moiety.
In a related embodiment there is provided a method of screening for inhibitors of glutathione-aldehyde conjugate reduction by aldose reductase, comprising using the crystalline structure of the ternary AR:NADPH:DCEG described supra to design a potential inhibitor that binds to the glutathione binding domain in aldose reductase, but does not interfere with the carbonyl binding site, where the design is based at least in part on computer modeling; contacting aldose reductase with the potential inhibitor; contacting the AR:inhibitor complex with a lipid aldehyde and with the lipid aldehyde conjugated to glutathione; and detecting a reduced lipid aldehyde product, but not a reduced glutathione-lipid aldehyde product, thereby screening for the inhibitor.
In yet another embodiment there is provided an inhibitor of glutathione-aldehyde conjugate reduction by aldose reductase designed by the methods described supra.
In a related embodiment there is provided a method of preventing a pathophysiological state or treating symptoms thereof resulting from aldose-reductase mediated signaling of a cytotoxic pathway in a subject, comprising administering a pharmacologically effective amount of the inhibitor described supra to the subject; and inhibiting the reduction of a glutathione-aldehyde substrate via aldose reductase, thereby preventing the cytotoxic signaling in the subject. An example of a pathophysiological state is colon cancer or one comprising inflammation. An example of a cytotoxic pathways are PLC/PKC/NF-κB or orther NF-κB dependent inflammatory processes, for example, due to a bacterial infection.
In another related embodiment there is provided a method of treating a pathophysiological state or symptoms thereof resulting from aldose reductase-mediated signaling in a cytotoxic pathway in a subject, comprising administering a pharmacologically effective amount of an inhibitor of aldose reductase to the subject thereby preventing aldose reductase mediated signaling.
In one aspect of this embodiment the inhibitor may be a small interfering RNA (siRNA). An example of an siRNA has the sequence of SEQ ID NO: 1. Alternatively, the siRNA may comprise a vector effective to transfect a cell characteristic of the pathophysiological state. A person having ordinary skill in this art would readily recognize that any method to reduce aldose reductase, e.g., antisense molecules, etc. may be utilized. A representative example of such a cell is a colon cancer cell, although any cancer cell may be targeted in this manner.
In another aspect of this embodiment the inhibitor may be effective to inhibit reduction of a glutathione-aldehyde conjugate by aldose reductase. In this aspect the inhibitor may interact with a glutathione binding domain, but does not block a carbonyl binding site, in an active pocket of an aldose reductase having a three-dimensional conformation determined by DCEG binding to AR:NADPH. Also, the glutathione-binding domain may comprise residues Trp-20, Trp-79, Trp-111, Trp-219, Phe-122, Val-47, Cys-298, Ala-299, Ser-302, Leu-300, and Leu-301. In addition, in this aspect the active pocket may comprise three flexible loops A, B, and C such that the inhibitor interacts with at least the C loop. In a representative example, the C loop comprises residues Ser-302, Ala-299, Leu-300, and Leu-301. These residues may interact with the inhibitor via a network of water molecules within the C loop. Furthermore, in this aspect the carbonyl binding site may comprise residues Tyr-48, His-110, and Trp-111 and NADPH. In this aspect the inhibitor may have a γ-glutamylcysteinylglycine backbone with an S-cysteinyl-substituted moiety.
In both aspects of this embodiment the pathophysiological state may be a cancer. A representative example of a cancer is colon cancer. Also, in both aspects the pathophysiological state may be characterized by inflammation. A representative example of such a state is sepsis. In a representative example the inflammation may be induced by lipopolysaccharide (LPS). Furthermore, the cytotoxic pathway may be a PLC/PKC/NF-κB pathway. Inhibition of this pathway may inhibit signaling by one or more of NF-κB, 2 prostaglandin (PGE2) or cyclooxygenase (Cox-2).
In yet another related embodiment there is provided a method of treating colon cancer in a subject, comprising administering a pharmacologically effective amount of an aldose reductase small interfering RNA (siRNA) to the subject to inhibit colon cancer cell proliferation thereby treating the colon cancer. The siRNA or vector comprising the same are as described supra.
As used herein, the term, “a” or “an” may mean one or more. As used herein in the claim(s), when used in conjunction with the word “comprising”, the words “a” or “an” may mean one or more than one. As used herein “another” or “other” may mean at least a second or more of the same or different claim element or components thereof. As used herein, the term 'subject” refers to any target of the treatment.
The following abbreviations are used herein: AR: aldose reductase or human aldose reductase, ARL2, E.C. 1.1.1.21; sAR: Sus scrofa (Pig) aldose reductase, AR, E.C. 1.1.1.21; ARI: aldose reductase inhibitor; NADPH: dihydro-nicotinamide-adenine-dinucleotide phosphate; NADP: nicotinamide-adenine-dinucleotide phosphate; DCEG: S-(1,2-dicarboxyethyl) glutathione, γ-glutamyl-S-(1,2-dicarboxyethyl)cysteinylglycine; ROS: reactive oxygen species; CNS: Crystallography and NMR Software; GS or GSH: glutathione; γ-glutamylcysteinylglycine; GS-HNE: glutathionyl-4-hydroxynonenal; GS-DHN: glutathionyl-1,4-dihydroxynonene; PGE2: prostaglandin E2; MTT: [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt]; bfgf: basic fibroblast growth factor; Cox: cyclooxygenase; DHN: 1,4-dihydroxynonene; HNE: 4-hydroxy-trans-2-nonenal; NF-κB: nuclear factor kappa binding protein; PKC: Protein kinase C; PDGF: Platelet derived growth factor; SEAP: Secretory alkaline phosphatase.
Provided herein is a crystallized ternary complex of human aldose reductase bound to NADPH and γ-glutamyl-S-(1,2-dicarboxyethyl)cysteineinylglycine, a competitive inhibitor of AR-catalyzed reaction of glutathionyl-propanal (19). The ternary structure confirms the presence of two active sites within AR:NADPH. The crystal structure was determined to 1.9 Å and revealed novel interactions between the glutathione backbone and active site residues.
The ternary structure demonstrates that DCEG binding induces a significant conformational reorganization of the active site. The carboxylate moiety of DCEG binds in the aldose reductase active site, while the GS C-terminus binds in the aldose reductase loop C. The binding of glutathione to aldose reductase significantly reorients loops A and B of the protein thereby providing an induced-fit mechanism that enables the active site to bind substrates of different sizes. This induced-fit rearrangement and the multiplicity of specific interactions at the aldose reductase active site with glutathione are indicative of a highly selective glutathione-binding domain.
Thus, the ternary structure is used in methods of developing therapeutic inhibitors that selectively prevent binding of glutathione-conjugated substrates. These structure-based inhibitors are designed using rational drug design in conjunction with computer modeling of the coordinates of the ternary crystalline structure. The coordinates indicate that structure based inhibitors could be synthesized which will inhibit the glutathione-aldehyde binding site without affecting the detoxification role of aldose reductase since it will not inhibit the carbonyl binding site. For example, the specific inhibitors would not interfere the detoxification of free aldehydes, such as 4-hydroxy trans-2 nonenal which is formed during lipid peroxidation.
Also provided are the designed structure-based inhibitors and methods of screening therefor. The aldose reductase inhibitors may function through one of two mechanisms. Either remodeling of the aldose reductase loop-C backbone or steric hindrance of the GS-specific binding site in this loop may prevent the binding of GS-conjugates and their entry into the aldose reductase active site. A designed inhibitor may comprise a γ-glutamylcysteinylglycine backbone with an S-cysteinyl-substituted moiety that does not interfere with aldehyde binding to aldose reductase at the carbonyl active site.
These designed inhibitors may be tested for selective inhibition of glutathione-aldehyde binding in a screening assay. A selective inhibitor will form a complex with aldose reductase in the presence of NADPH by binding or otherwise interacting within the glutathione-binding domain in aldose reductase. Such a specific inhibitor will exclude glutathione-aldehyde binding and prevent subsequent reduction of the glutathione-aldehyde, but will not interfere with binding and reduction of the unconjugated lipid aldehyde at the carbonyl active site. Such screening assays are standard and well within the ordinary skill of an artisan to implement without undue experimentation or burden.
It is contemplated that other AKR proteins have similar sites that are capable of high affinity interactions with glutathione or glutathione conjugates. The same or similar techniques used to elucidate the AR:NADPH:DCEG ternary structure may be used to determine the coordinates of other similar AKR:ligand three-dimensional structures. Such crystal structures may be used in the design of relevant therapeutic inhibitors.
It is further contemplated that the aldose reductase inhibitors provided herein may be used as a therapeutic to treat or modulate or otherwise alter a pathophysiological state or event or symptoms thereof mediated by reduction products of aldose reductase as part of the pathology. For example, and without being limiting, a specific inhibitor could prevent glutathione binding without affecting the carbonyl reduction necessary to detoxify lipid aldehydes. Such inhibition could regulate TNF-α, growth factor, lipopolysaccharide, and hyperglycemia-induced cytotoxicity mediated by reactive oxygen species in, for example, the PLC/PKC/NF-κB pathway. It is further contemplated that such an inhibitor may limit access of other bulky molecules, such as glucose, to the AR active site thereby reducing other adverse effects of hyperglycemia as mediated by AR's role in the osmotic stress pathway.
Alternatively, the present invention provides methods of inhibiting expression of aldose reductase at the RNA translational level. It is contemplated that administration of aldose reductase small interfering RNAs (siRNA) is useful in the treatment of a pathophysiological state, such as a cancer. It is specifically contemplated that inhibiting expression of aldose reductase will be useful in treating any type of cancer. A representative cancer is colon cancer. The siRNAs may be useful in the treatment of or alleviation of other pathophysiological conditions or symptoms resulting from aldose reductase-mediated signaling of a cytotoxic pathway. For example, conditions exhibiting or characterised by inflammation, e.g., lipopolysaccharide-induced inflammation, may benefit from such treatment or therapy.
The design methodology for siRNAs is known in the art and/or they may be obtained commercially. For example, without being limiting, an siRNA effective as a therapeutic may have the sequence of SEQ ID NO: 1. siRNAs may be administered to a subject as the naked oligomer or as comprising a suitable transfection vector or with a carrier molecule or moiety as are known and standard in the art.
It is standard in the art to formulate a therapeutic compound with a pharmaceutically acceptable carrier as a pharmaceutical composition. It is also standard in the art to determine dose, dosage and routes of administration of the therapeutic or pharmaceutical compounds. Such determination is routinely made by one of skill in the art based on the individual and the particular pathophysiological state or symptoms exhibited by the patient and the patients history.
The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion.
EXAMPLE 1Aldose Reductase Crystallography and Inhibitor Design
Overexpression and Purification of Recombinant Human AR
Recombinant human AR was over expressed and purified as described previously (23). In brief, the cell extract was subjected to chromatofocusing on PBE94 (Pharmacia LKB Biotechnology Inc.) followed by hydroxylapatite column chromatography and reactive blue affinity chromatography as the final step. All purification buffers contained 1 mM dithiothretiol (DTT).
Crystallization of the Ternary Complex
Purified AR was concentrated by ultrafiltration (Amicon YM-10 membrane) to ˜10 mg/mi. Prior to crystallization, 10 mg/ml AR in phosphate buffer (10 mM phosphate pH 7.1, 0.5 mM EDTA, 10 mM DTT) was incubated with NADPH and DCEG (γ-glutamyl-S-(1,2-dicarboxyethyl) glutathione) at a AR:NADPH:DCEG molar ratio of 1:2:2 for 10 min at 4° C. The ternary complex was crystallized using the vapor diffusion method at 4° C. The protein:ligand solution was mixed with an equal volume of 22% (w/v) polyethylene glycol (PEG) 4000 in 100 mM sodium citrate (pH 5.0) and 6 μl of droplets were placed above an identical well solution.
Data Collection
X-ray data were collected using a MacScience DIP 2030H area detector and a M06XHF rotating anode X-ray generator operating at 50 KV and 90 Ma and equipped with Gbbel collimating optics (Bruker AXS). The first crystal, 0.1×0.1×0.1 mm3, was flash-cooled, without the addition of cryo-protectants to the drop, using nitrogen boil-off (Cryo Industries). Weak ice rings were observed in the diffraction pattern. The protein crystallized in the P21 monoclinic space group with cell dimensions a=47.21 Å, b=66.72 Å, c=49.30 Å, α=γ=90.00°, β=92.24°. This crystal form was not observed previously for any AR crystal structures. Based upon the Matthews coefficient (24), there was predicted to be one AR molecule per au. The data were processed to 2.6 Å resolution using the programs HKL (25).
A second crystal was soaked in mother liquor containing 20% glycerol (v/v) and 25 mM of DCEG and flash cooled. Diffraction data collected from crystal 2 were processed with HKL to 1.94 Å resolution and was used for high-resolution refinements of the model. Space group and unit cell dimensions were similar to crystal 1. Data collection and processing statistics for crystal 2 are shown in Table 1. Atomic coordinates and structure factors have been deposited in the protein data bank with accession code 1Q9N.
* Values for the highest-resolution shells are given in parentheses.
Structure Determination and Refinement
The P21 crystal form structure was solved by molecular replacement using the program EPMR (26) with the 1ADS (3) structure as a search model. Initial model building in CNS (27) used data collected to 2.6 Å resolution from crystal 1. Since this data set contained scattering noise from ice crystals, the initial refinement contained resolutions shells with unusually high R-factors. An alternate processing of this data, which removed all reflections in the narrow resolution range affected by the ice, also was used for model building.
The PMB suite of programs (28) was used to generate a test set using 5% of the reflections chosen in thin shells equally spaced in 1/d. The PMB suite was used as an interface to the structure refinement program CNS to simplify and partially automate the structure refinement process. The variable sigma model of B-factor restraints (29) was implemented in CNS and the parameters optimized to minimize the free R. This led to a significant reduction in the free R value. The result was a model that had the least bias without over-fitting free parameters (30,31).
An initial rigid body refinement was followed by repetitive rounds of isotropic variable sigma B-factor and positional refinement, until the free R factor (32) no longer decreased (The PMB software suite is available from the author M.A.W. (http://www.xray.utmb.edu/PMB)). The model was rebuilt in iterative rounds of model building (Xtalview (33)) and refinement. Structure factors were corrected for anisotropic scattering and absorption using a local scaling algorithm (28,34,35). The DCEG (
The second P21 crystal structure was solved using the partially refined 2.6 Å model. The initial rigid body refinement was followed by repetitive rounds of individual atomic isotropic variable sigma B-factor and positional refinement, until the free R factor no longer decreased. Model building included the examination of waters selected by CNS. Waters with excessive B-factors (>60 Å2) or poor density correlation were deleted.
Model quality was assessed after each refinement step with XtalView or PROCHECK (37). Refinement of the final model proceeded in parallel with alternate conformations of the DCEG ligand. The model with the lowest free R was chosen as the final model. The DCEG ligand of this model produced the best fit to the electron density from the two separate refinements. Multiple conformation refinement of DCEG in REFMAC (38, 39), including TLS anisotropic B-factors, with a single AR model and the two DCEG models confirmed that the chosen conformation had the highest correlation with the observations. All molecular figures were generated using PYMOL (40).
Overall Structure
The AR:NADPH:DCEG ternary complex structure was refined to 1.94 Å resolution with a final R-factor of 21.6%. This structure showed well-defined electron density for the DCEG substrate at the “top” of aldose reductase active site pocket (
The active site of aldose reductase sat at the base of a deep cleft or binding pocket. The sides of the active site pocket were formed by three flexible loops A, B, and C (43) which sat on top of the aldose reductase (
DCEG Interactions with AR
The C-terminal glycine moiety of DCEG was extensively hydrogen bonded to the backbone atoms of residues 300-302 in the flexible human aldose reductase C-terminal loop (loop-C). In addition, the ligand made several van der Waals contacts with aldose reductase. Several bound water molecules mediated the interaction between the DCEG glycine moiety and aldose reductase. The amides of Ala-299 and Leu-300 were bound indirectly to DCEG through a water molecule. The terminal carboxylate group of the DCEG interacted with the backbone of Leu-301 and Ser-302 and indirectly with Leu-301 through a network of waters (
The dicarboxyethyl group of DCEG was anchored in the conserved anion-binding site between the nicotinamide ring of the NADPH cofactor and aldose reductase residues Tyr-48, His-110, and Trp-111 similar to other known aldose reductase inhibitors (41,42). The terminal carboxylates of the dicarboxyethyl conjugate's longer arm, Oi2 and Oj2, were hydrogen bonded to active site residues His-110, Tyr-48, and Trp-111 (
The higher temperature factors for these atoms reflected the relative disorder in the N-terminal end of DCEG. The hydrophobic walls of the upper portion of the aldose reductase active site pocket were formed in large part by Trp-219 and Phe-122, similar to the structures observed in other AR:inhibitor complexes (41,42). These two aromatic residues tightly constrained the position of the cysteine moiety in DCEG. The Phe-122 and Trp-219 side chains could move slightly to accommodate differently sized inhibitors. The extensive van der Waals contacts with Trp-20 observed in the aromatic inhibitors tolrestat, zopolrestat, and sorbinil were completely absent in DCEG. The Trp-20 and Trp-79 residues, although still defining the active site pocket, did not interact with DCEG directly. They did, however, limit the conformational space available to the DCEG molecule.
The conformation of the glutathione (GS)-moiety of the AR-bound DCEG (
The GS backbone of DCEG overlapped with the GS structures with root mean square deviations (rmsd) from 0.4 to 1.4 Å. The largest rmsd between the observed structures of GS bound to several different enzymes and DCEG bound to aldose reductase occurred in the N- and C-terminal atoms. In comparison with GS bound to glutathione reductase, the cysteine of DCEG bound to aldose reductase had a i angle that was rotated by ˜180 degrees. The aldose reductase-bound DCEG glutathione backbone conformation was most similar to that observed in GS complexes with hematopoietic prostaglandin d synthase (53) or yeast prion URE2P (48).
DCEG binding to aldose reductase lacks the N-terminal hydrogen bonds seen in the other GS:protein complexes. The placement of the GS backbone was largely determined by the interaction of the conjugate with the active site of the enzyme and the mobile loop-C. The van der Waals interactions with the binding cleft were nonspecific and allowed for flexibility of the GS moiety.
Comparison with Other AR Structures
The structure of the human aldose reductase enzyme within the ternary complex showed significant conformational differences relative to the AR:NADPH binary complex (3). The backbone atoms of Pro-123 to Val-131 in loop A and Pro-218 to Pro-225 in loop B, which flank the active site pocket, were reoriented >5 Å upon DCEG binding relative to the binary structure. The AR:NADPH:DCEG ternary complex more closely resembled the AR:NADP:zopolrestat (54) and AR:NADP:Idd384 (41) ternary complexes than the AR:NADPH binary complex. In the ternary complexes the largest relative atomic movements, with rmsd>1 Å, occurred in the region of Ser-127, Pro-222, and Leu-300.
The conformation of loop B, residues Pro-218 to Pro-225, was very similar in all of the AR structures, with just the backbone conformation of residues Pro-222 and Asp-224 flipping in the holoenzyme. Loop A of the holoenzyme structure (3) displayed a completely different conformation for this entire loop region relative to the current complex. Loop C was observed in two different conformations, which depended on the size and shape of the inhibitor bound in the solved AR structures. The conformation of loop C in AR:NADPH:DCEG had the greatest similarity to the human aldose reductase structures found in the AR:NADPH holoenzyme (3) and AR:NADPH:Idd384 ternary complex (41). Additionally, loop C in the current structure had large positional differences with the conformation observed in the zoplorestat and tolrestat ternary complexes (42). This indicated that loop C was dynamic and could move to accommodate larger molecules such as zopolrestat and tolrestat. The smaller sorbinil inhibitor did not change this loop's conformation significantly (42).
Comparison with Molecular Dynamics Models
Based on molecular dynamics (MD) simulations on a GS-propanal conjugate binding to human aldose reductase (19), two possible alternate conformations of the bound substrate were proposed. The observed structure of DCEG in the AR:NADPH:DCEG ternary complex was very similar to the first, lowest energy model (Model 1) of our molecular dynamics simulation, i.e., 0.8 Å overall rmsd on the GS-backbone and 0.5 Å rmsd, excluding the disordered N-terminus of the substrate. The small variations between the model and DCEG structure could be attributed to the change in the active-site atoms from carbonyl in GS-propanal to a carboxylate in DCEG, and the conformational freedom of the γ-glu N-terminus.
It has been demonstrated that DCEG is a competitive inhibitor of aldehyde reduction by aldose reductase, indicating that the conjugate bound selectively to AR:NADPH and had little or no affinity for the enzyme of the AR:NADP+ binary complex. The reasons for this behavior are apparent from the current structure. The non-specific interactions of DCEG with the active site cleft and loose shape complimentarity are consistent with a very low affinity of DCEG for apo AR.
The result of NADPH binding is rearrangement of the active site residues Tyr-48, His-110 and Trp-111, plus the adjacent A, B, and C loops. Thus, NADPH binding reorients these regions to form the active site pocket. It is only after these rearrangements that AR would have any significant affinity for DCEG. Therefore, DCEG binding must be preceded by formation of the holoenzyme AR:NADPH complex.
In the AR:NADPH:DCEG ternary complex, a larger percentage, i.e., 50%, of DCEG is buried by AR side chains than has been observed in structures of other GS-binding proteins (40-45%), suggesting that the strongly aliphatic nature of DCEG, which allows multiple contacts at the active site, was essential for competitive inhibition of aldehyde reduction. This was due to selective binding to the AR:NADPH binary complex. In contrast, more aromatic inhibitors, which bind to the aldose reductase active site primarily via hydrophobic interactions, bind with greater affinity to the AR:NADP+ binary complex and thus behave as non-competitive inhibitors of aldehyde reduction, but competitive inhibitors of alcohol oxidation (19).
DCEG-Based Inhibitor Design
The structure of DCEG bound to aldose reductase provides a starting model for the design of an inhibitor of aldose reductase carbonyl metabolism which would not significantly interfere with aldose reductase detoxification of reactive aldehydes. The proposed GS-based inhibitor binding in the DCEG site would permit long alkyl chain peptides to reach the active site. Modeling of a DCEG-like selective inhibitor, based on the AR:NADPH:DCEG structure with an alkyl chain bound in the active site showed that there was more than one possible path for the alkyl chain to reach the active site (
Aldose Reductase Inhibition: Materials and Methods
Materials
McCoy's 5A medium, Dulbecco's modified Eagle's medium (DMEM), phosphate-buffered saline (PBS), penicillin/streptomycin solution, trypsin, and fetal bovine serum (FBS) were purchased from Invitrogen. Antibodies against Cox-1, Cox-2 and phospho PKC-β2 were obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, Calif.). Sorbinil and tolrestat were gifts from Pfizer and American Home Products, respectively. Mouse anti-rabbit glyceraldehyde-3-phosphate dehydrogenase antibodies were obtained from Research Diagnostics Inc.
Cyclooxygenase (Cox) activity assay and prostaglandin E2 (PGE2) assay kits were obtained from Cayman Chemical Company (Ann Arbor, Mich.). Platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), and other reagents used in the Electrophoretic Mobility Shift Assay (EMSA) and Western blot analysis were obtained from Sigma. AR-siRNA (5′-AATCGGTGTCTCCAACTTCAA-3′; SEQ ID NO: 1) or scrambled siRNA (control) (5′-AAAATCTCCCTAAATCATACA-3′; SEQ ID NO: 2) were synthesized by Dharmacon Reseacrh. All other reagents used were of analytical grade.
Cell Culture
Human colon cancer cell lines, HCT-1 16 and Caco-2 were obtained from American type culture collection (ATCC). HCT-116 cells were maintained and grown in McCoy's 5A medium supplemented with 10% FBS and 1% penicillin/streptomycin and Caco-2 cells were grown in DMEM with 10% FBS and 1% penicillin/streptomycin at 37° C. in a humidified atmosphere of 5% CO2. Human colon adenocarcinoma (SW480) cells were purchased from ATCC and cultured at 37° C. in a humidified atmosphere of 5% CO2 in RPMI-1640 medium supplemented with 10% (v/v) heat-inactivated FBS, 1% (v/v) P/S solution, 2 mM L-glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 4.5 g/L glucose, and 1.5 g/L sodium bicarbonate.
Measurement of Cytotoxicity
Caco-2 cells were grown to confluency in DMEM medium, harvested by trypsinization and plated ˜2500 cells/well in a 96-well plate. Sub-confluent cells were growth-arrested in 0.1% FBS. After 24 h, 10 ng/ml of bFGF or PDGF without or with AR inhibitors sorbinil or tolrestat were added to the media and the cells were incubated for another 24 h. Cells incubated with the AR inhibitors alone served as control. Cell viability was determined by cell count and MTT-assay as described earlier (15, 55-56).
Determination of PKC Activity
PKC activity was measured using the Promega-Sigma TECT PKC assay system as described earlier (15). Briefly, aliquots of the reaction mixture (25 mM Tris-HCl pH 7.5, 1.6 mg/mL phosphatidylserine, 0.16 mg/mL diacylglycerol, and 50 mM MgCl2) were mixed with [−-32P] ATP (3,000 Ci/mmol, 10 μCi/μL) and incubated at 30° C. for 10 min. To stop the reaction, 7.5 M guanidine hydrochloride were added and the phosphorylated peptide was separated on binding paper. The extent of phosphorylation was detected by measuring radioactivity retained on the paper.
PGE2 Assay
Caco-2 cells were plated in 6 well plates at a density of 2×105 cells/well. After 24 hours, the medium was replaced with fresh medium containing 0.1% serum with or without, sorbinil (20 μM) followed by treatment with either 10 ng/ml bFGF or PDGF, for another 24 h. The medium was collected from each well and analyzed for PGE2 by using an Enzyme Immuno Assay kit according to the manufacturer's instructions (Cayman Chemical Co., Inc.).
Briefly, 50 μl of diluted standard/sample were pipetted into a pre-coated goat polyclonal anti-mouse IgG 96-well plate. Aliquots (50 μl) of a PGE2 monoclonal antibody and PGE2 acetylcholine esterase (AChE) conjugate, (PGE2 tracer) were added to each well and allowed to incubate at 4° C. for 24 h. After incubation, the wells were washed five times with wash buffer containing 0.05% Tween-20, followed by the addition of 200 μl of Ellman's reagent containing acetylthiocholine and 5, 5′-dithio-bis-(2-nitrobenzoic acid). Samples were read after 60 min at 412 nm with an ELISA reader. In this procedure the intensity of yellow color, is proportional to the amount of PGE2 tracer bound to the well and is inversely proportional to the amount of free PGE2 present in the well during incubation.
Cyclooxygenase Activity Assay
For determination of Cox activity growth-arrested Caco-2 cells were treated with either 10 ng/ml bFGF or PDGF in the absence and presence of sorbinil (20 μM) for 24 h. The cells were harvested and homogenized in cold (4° C.) buffer containing 0.1M Tris-HCl, pH 7.8 and 1 mM EDTA and the activity was measured in 96 well plate according to the manufacturer's (Cayman Chemical Co., Inc.) instructions. Briefly, 10 μl of standard/sample were incubated in the presence of arachidonic acid and substrate, N, N, N, N-tetra methyl-p-phenylenediamine (TMPD) in a total reaction volume of 210 μl. The Cox peroxidase activity was measured calorimetrically by monitoring appearance of oxidized TMPD at 590 nm by using ELISA reader.
NF-κB-Dependent Reporter Secretory Alkaline Phosphatase (SEAP) Expression Assay.
Caco-2 cells (1.5×105 cells/well) were plated in six-well plates and after attachment overnight, were serum-starved in optiMEM medium for 24 h with or without aldose reductase inhibitor, sorbinil (20 μM) and were transiently transfected with PNF-κB-SEAP construct or control plasmid pTALSEAP DNA (Clontech, USA) using the lipofectamine plus reagent. After 6 h of transfection, cells were treated either with 10 ng/ml bFGF or PDGF for 48 h in DMEM medium containing 0.1% FBS. The cell culture medium was then harvested and analyzed for SEAP activity, essentially as described by the manufacturer (Clontech Laboratories, Palo Alto, Calif.), using a 96-well chemiluminiscence plate reader and Kodak Image Station 2000R.
Determination of NF-κB Activation
The cytosolic as well as nuclear extracts were prepared as described earlier (15) and the NF-κB activity was determined by using the colorimetric non-radioactive NF-κB p65 Transcription Factor Assay kit (Chemicon Intl.) as per the supplier's instructions. Briefly, a double stranded biotinylated oligonucleotide containing the consensus sequence for NF-κB binding (5′-GGGACTTTCC-3′; SEQ ID NO: 3) was mixed with nuclear extract and assay buffer. After incubation, the mixture (probe+extract+buffer) was transferred to the streptavidin-coated ELISA kit and read at 450 nm using an ELISA plate reader. For each experiment, triplicate samples were measured for statistical significance.
RT-PCR
Total RNA was isolated from Caco-2 cells by using RNaeasy micro isolation kit (Qiagen). Total RNA (1.5 μg) sample was reverse transcribed with Omniscript and Sensiscript reverse transcriptase one-Step RT PCR system with HotStarTaq DNA polymerase (Qiagen) at 55° C. for 30 min followed by PCR amplification. The oligonucleotide primer sequences were as follows: 5′-AAACCCACTCCAAACACAG-3′ (sense; SEQ ID NO: 4) and 5′-TCATCAGGCACAGGAGGAAG -3′ (antisense; SEQ ID NO: 5) for Cox-2, and 5′-TGAGACCTTCAACACCCCAG-3′ (SEQ ID NO: 6) and 5′-TTCATGAGGTAGTCTGTCAGGTCC-3′ (SEQ ID NO: 7) for β-actin. PCR reaction was carried out in a GeneAmp 2700 thermocycler (Applied Biosystems, Foster City, Calif.) under the following conditions: initial denaturation at 95° C. for 15 min; 35 cycles of 94° C. 30 s, 62° C. 30 s, 72° C. 1 min, and then 72° C. 5 min for final extension (57). PCR products were electrophoresed in 2% Agarose-1™ TAE gels containing 0.5 μg/ml ethidium bromide.
Flowcytometric Analysis of Cell Cycle
The Caco-2 cells were grown in 6 well plates at a density of approximately 1.5×105 cells/well. Growth-arrested Caco-2 cells were pre-incubated with or without sorbinil 20 μM or carrier for 24 h and then stimulated with either 10 ng/ml bFGF or PDGF for another 24 h. The cells were then washed with PBS and harvested by trypsinization. Cellular DNA was stained with low and high salt solutions. Briefly, cells were resuspended in 250 μl of solution A, low salt stain, containing polyetheleneglycol (30 mg/ml), propidium iodide (0.05 mg/ml), triton-x-100 (1 μl/ml), sodium citrate 4 mM, RNAse A 10 μg/ml and incubated at 37° C. for 20 min followed by the addition of 250 μl of solution B, high salt stain containing 400 mM NaCl instead of 4 mM sodium citrate in solution A, and incubated overnight at 4° C. Cell cycle analysis was performed with a minimum of 10,000 events per analysis by using FACScan flow cytometer (Becton, Dickinson and Co., San Jose, Calif., USA).
Measurement of Reactive Oxygen Species
Caco-2 cells were plated in a 24-well plate at a density of 1.5×104 cells/well in DMEM and then serum-starved at 60-70% confluence in the absence and presence of 20 μM sorbinil or tolrestat for overnight in phenol red-free DMEM supplemented with 0.1% FBS. Cells were then pre-incubated for 30 min with the ROS-sensitive fluorophore 2′, 7′-dichlorofluorescein diacetate (DCFH-DA), which is taken up and oxidized to the fluorescent dichlorofluorescein by intracellular ROS. After incubation with DCFH-DA, the cells were exposed to FGF or PDGF 10 ng/ml for 60 min and fluorescence was measured with a CytoFluorII fluorescence plate reader (PerSeptive Biosystems, Inc., Framingham, Mass.) at excitation of 485 nm and emission of 528 nm.
Preparation of GS-Aldehyde Esters
HNE was synthesized as described previously (14). The glutathione monoethyl-ester (GS-ester) obtained from Sigma was purified by HPLC using a reverse phase column (14) and the conjugate of GS-ester and HNE was made by incubating 1 μmol of [4-3H]-HNE with 3-fold excess of GS-ester and 0.1 M potassium phosphate, pH 7.0, at 37° C. The reaction was followed by monitoring absorbance at 224 nm. Approximately 90% of HNE was conjugated with GSH over a period of 60 min. The GS-HNE-ester thus formed was purified by HPLC (14) and its concentration was calculated on the basis of radioactivity. For synthesis of GS-DHN-ester, 1 μmol of GS-HNE-ester was incubated with 1 unit of recombinant human AR and 0.1 mM NADPH in 0.1 M potassium phosphate, pH 7.0, at 37° C. The reaction was followed by monitoring the decrease in absorbance at 340 nm. More than 85% of the conjugate was reduced in 30 min. The enzyme was removed by ultrafiltration using an Amicon Centriprep-10, and GS-DHN-ester in the filtrate was purified on HPLC and confirmed by ESI/MS.
Western Blot Analysis
To examine Cox-1, Cox-2, phospho PKC-β2 and GAPDH Western blot analyses were carried out as described earlier (15). Equal amounts of protein from cell extracts were subjected to 12% SDS-PAGE followed by transfer of proteins to nitrocellulose filters, probing with the indicated antibodies, and the antigen-antibody complex was detected by enhanced chemiluminescence (Pierce, Piscataway, N.J., USA).
Antisense Ablation of AR
Caco-2 cells were grown to 50-60% confluence in DMEM supplemented with 10% FBS and washed four times with Opti-MEM, 60 min before the transfection with oligonucleotides (15). The cells were incubated with 2 μM AR antisense or scrambled control oligonucleotides using LipofectAMINE Plus (15 μg/ml) as the transfection reagent as suggested by the supplier. After 12 h, the medium was replaced with fresh DMEM (containing 10% FBS) for another 12 h followed by 24 h of incubation in serum-free DMEM (0.1% FBS) before growth factor stimulation. Changes in the expression of AR were estimated by Western blot analysis using anti-AR antibodies.
Statistical Analysis
Data are presented as mean±SE and P values were determined by unpaired Student's t test. P values of <0.01 were considered significant.
EXAMPLE 3Effect of AR Inhibition on TNF-α Generation in High Glucose
The effects of inhibiting PLC, NADPH oxidase and aldose reductase on the production of TNF-α in a culture medium (rat VSMC cells) are demonstrated. Growth-arrested VSMC in 5.5 mM glucose (NG) were preincubated for 1 h without or with apocyanin (25 μM), D609 (100 μM), calphostin C (0.2 μM), N-acetyl cysteine (10 mM) and NF-κB inhibitor (18 μM) respectively, followed by the addition of 19.5 mM glucose, after which the cells were incubated for 12 and 24 hrs. As shown in
That this mechanism requires aldose reductase is suggested by data presented in
Effect of AR Inhibition on NF-κB Mediated Inflammatory Response Induced by Bacterial Infection
NF-κB is a central transcriptional regulator of inflammatory mediators. Reactive oxygen species (ROS) can stimulate nuclear localization and activation of NF-κB however the exact mechanism is unknown. A model of NF-κB activation induced by bacterial infection was used to study how ROS might activate NF-κB.
The effect of AR inhibition on 4-hydroxy-trans-2-nonenol (HNE) induction by bacterial lipopolysaccharide (LPS) was evaluated in RAW264.7 macrophages. LPS was found to increase HNE and protein-HNE adducts by nearly 3-fold within 6 h (
To determine if GS-DHN serves as a cellular sensor of ROS-induced insults, its effects on phosphorylation events upstream of IKK/NF-κB activation in RAW264.7 macrophages was examined. After GS-DHN challenge, the activity of protein kinase C (PKC), a kinase upstream of IKK increased by ˜2.5 fold within 60 min (
To investigate whether AR mediates the LPS signal in vivo, examined the effects of AR inhibition on NF-κB signaling pathways and myocardial dysfunction in a mouse model of overwhelming sepsis was examined. After pretreatment with sorbinil or vehicle alone, mice were injected peritoneally with a sub-lethal dose (4 mg/kg body wt) of LPS, and serum levels of inflammatory cytokines and chemokines were measured (
To determine if AR inhibition could also rescue the cardiac dysfunction associated with the inflammatory response, serial echocardiography in LPS-challenged mice pretreated with sorbinil or vehicle and in unchallenged controls injected with vehicle or sorbinil was performed. In all LPS-challenged mice, percent fractional shortening (FS %) was depressed at 4 h after the injection; however, at 8 h, FS % had recovered significantly in the mice pretreated with sorbinil, but had deteriorated further in vehicle-injected controls (
To more rigorously assess the effect of AR inhibition on cardiac function, spontaneously beating isolated mouse hearts (Langendorff preparation) were perfused with the AR inhibitor and challenged with LPS (
The above studies were performed with sublethal doses of LPS in order to assess effects on cardiac function. However, levels of LPS after bacterial sepsis often cause lethality in humans despite antibiotic therapy. Therefore increasing doses of LPS was administered to determine the dose at which fifty percent lethality occurred (LD50) in the presence or absence of aldose reductase inhibitor (ARI) in order to determine if ARI protected mice for LPS-induced death (
In untreated mice, LPS increased cardiac NF-κB activation by 16-fold and AP1 activation by 5-fold within 2 h, and the levels remained elevated even after 24 h (
In Vitro and In Vivo Effects of Aldose Reductase Inhibition on Colon Cancer Cells
Inhibition of AR Prevents PGE2 Production and Cox Activity in Colon Cancer Cells
The growth factors are known to induce PGE2 production by activating inducible Cox-2 in colon cancer (58), but the mechanism is not well understood. Inhibition of AR significantly (>90%) prevented the production of PGE2 by Caco-2 cells induced by bFGF and PDGF (
Since PGE2 is synthesized from its precursor arachidonic acid catalyzed by cyclooxygenases, whether or not inhibition of AR prevents growth factor-induced expression of Cox enzymes was examined. Treatment of Caco-2 cells with bFGF and PDGF significantly (60-80%) increased Cox activity (
Inhibition of AR Prevents Growth Factor-Induced NF-κB Activation in Colon Cancer Cells
The effect of AR inhibitors on growth factor-induced NF-□B activation was examined, because it is known that redox sensitive transcription factor NF-□B transcribes Cox-2 DNA (59) and it has been demonstrated that AR inhibition prevents growth factors and cytokine-induced NF-κB activation (15). Treatment of caco-2 cells with bFGF or PDGF significantly (2-3 fold) increased the mRNA levels of Cox-2 and sorbinil prevented it by 55-65% (
Inhibition of AR Prevents Growth Factors-Induced PKC Activation in Colon Cancer Cells
Since PKC is an upstream kinase for the activation of NF-κB and activation of PKC-β2 has been implicated in colon carcinogenesis (60), the effect of growth factors on total PKC activity in Caco-2 cells in the absence and presence of AR inhibitor was examined. Stimulation with growth factors led to a significant (˜3 fold) increase in membrane-bound PKC activity (
Attenuation of Growth Factors-Induced Colon Cancer Cell Line Proliferation
Since increased Cox-2 expression has been shown to facilitate colon cancer progression by stimulating cell proliferation and survival (61), we next examined the role of AR in growth factors-induced Caco-2 cell growth was examined. Treatment of Caco-2 cells with bFGF and PDGF for 24 h significantly (>40%) stimulated growth (
AR Inhibition Affects S-Phase of Cell Cycle
Since inhibition of AR attenuates growth factors-induced Caco-2 cell proliferation, the stage of cell cycle that is inhibited was determined. Treatment of cells with growth factors significantly induced synthetic (S)-phase of cell cycle (
Attenuation of Growth Factors-Induced Upregulation of PGE2 Production by Inhibitors of Signaling Cascade for NF-κB Activation
In order to understand the role of NF-κB in the growth factor-induced upregulation of PGE2, inhibitors of PKC (Calphostin c), Cox-2 (DUP697), reactive oxygen species scavenger (N-acetyl cysteine), and NF-□B (SN50) were utilized. Growth factors caused a pronounced increase in the production of PGE2 and preincubation of Caco-2 cell with the above inhibitors attenuated, indicating that signaling events that lead to activation of NF-□B and its dependent Cox-2 expression are involved in the production of PGE2 (
Effect of AR Inhibition on Lipid Aldehyde-Induced Signaling in Caco-2 Cells
It has been demonstrated previously that AR is an excellent catalyst for the reduction of lipid peroxidation-derived aldehydes, such as HNE and their conjugates with glutathione to corresponding alcohols (4, 20). Since, it is contemplated that AR inhibition or ablation prevents growth factor-induced expression of Cox-2 and production of PGE2, AR-catalyzed reduction of lipid aldehydes involvement in this mechanism was determined. Treatment of cells with HNE or cell permeable esters of GS-HNE or GS-DHN resulted in increased PGE2 production (
Effect of Aldose Reductase siRNA on SW480 Xenografts
Athymic nude nu/nu mice were obtained from Harlan, Indianapolis, Ind. All animal experiments were carried out in accordance with a protocol approved by the Institutional Animal Care and Use Committee (IACUC). Nine 20-weeks-old athymic nu/nu nude mice were divided into three groups of 3 animals (Group 1: treated with PBS; Group 2: treated with scrambled siRNA and Group 3: treated with aldose-reductase siRNA). An aliquot of 2×106 SW480 human colon adenocarcinoma cell suspensions in 100 μl PBS was injected subcutaneously into one flank of each nu/nu nude mouse. Animals were examined daily for signs of tumor growth. Treatment was administered when the tumor surface area exceeded 45 mm2, i.e., day 25. Treatment consisted of 200 μg aldose-reductase siRNA in 100 μl PBS. Control groups were treated with 200 μg/100 μl scrambled siRNA, or diluent (PBS) alone. Mice were treated on days 1 and 14. Tumors were measured in two dimensions using calipers over 40 days.
Results presented in
The following references were cited herein:
- 1. Jez, et al., (1997) Biochem. J. 326: 625-636.
- 2. Rondeau, et al., (1992) Nature 355:469-72.
- 3. Wilson, et al., (1992) Science 257:81-84.
- 4. Bhatnagar et al., (1992) Biochem. Med. Metab. Biol. 48:91-121.
- 5. Nishikawa, et al., (2000) Kidney Int. Suppl. 77:S26-30.
- 6. Parry, G. J. (1999) Am J Med 107:27S-33S.
- 7. Srivastava, et al., (1995) Biochem. Biophys. Res. Commun. 217:741-746.
- 8. Srivastava, et al., (1998) Biochem. J. 329:469-475.
- 9. Srivastava, et al., (1999) Biochemistry 38:42-54.
- 10. van der Jagt, et al., (1992) J. Biol. Chem. 267:4364-4369.
- 11. Kawamura, et al., (1999) Biochem Pharmacol 58:517-24.
- 12. Rittner, et al., (1999) J Clin Invest 103:1007-13.
- 13. Shinmura, et al., (2002) Circ Res 91:240-6.
- 14. Ruef, et al., (2000) Arterioscler Thromb Vasc Biol 20:1745-52.
- 15. Ramana, et al., (2002) J Biol Chem 277(35) :32063-70.
- 16. Uchida, K. (2003) Prog Lipid Res 42:318-43.
- 17. Grimshaw, C. E. (1992) Biochemistry 31:10139-45.
- 18. Varnai, P., Richards & Lyne (1999) Proteins 37:218-27.
- 19. Dixit, et al., (2000) J. Biol. Chem. 275:21587-21595.
- 20. Ramana, et al., (2000) Biochemistry 39:12172-12180.
- 21. Ramana, et al., (2004) FASEB J 18:1209-18.
- 22. Ramana, et al., (2004) Diabetes 53:2910-2920.
- 23. Petrash, et al., (1992) J. Biol. Chem. 267:24833-24840.
- 24. Matthews, B. W. (1962) J. Mol. Biol. 33:491-7.
- 25. Otwinowski, Z. & Minor, W. (1997) Meth. Enz. 276:307-326.
- 26. Kissinger, et al., (2001) Acta Crystallogr D Biol Crystallogr 57:1474-9.
- 27. Brunger, et al., (1998) Acta Crystallogr D Biol Crystallogr 54(Pt 5):905-21.
- 28. Scott, et al., (2004) J Biol Chem 279:27294-301.
- 29. Tickle, et al., (1998) Acta Crystallogr D Biol Crystallogr 5 (Pt 2):243-52.
- 30. Tickle, et al., (1998) Acta Crystallogr D Biol Crystallogr 54(Pt 4) :547-57.
- 31. Tickle, et al., (2000) Acta Crystallogr D Biol Crystallogr 56(Pt 4):442-50.
- 32. Brunger, A. T. (1992) Nature 355:472-474.
- 33. McRee, D. E. (1999) J Struct Biol 125:156-65.
- 34. Matthews, et al., (1975) Acta CrystallogrA31 :480-487.
- 35. Hynes, T. R. & Fox, R. O. (1991) Proteins 10:92-105.
- 36. van Aalten, et al., (1996) Journal of Computer Aided Molecular Design 10:255-262.
- 37. Laskowski, et al., (1996) J Biomol NMR. 8:477-86.
- 38. Murshudov, et al., (1999) Acta Crystallogr D Biol Crystallogr 55:247-255.
- 39. (1994) Acta Cryst D 50:760-763.
- 40. Delano, W. L. (2003) (Delano Scientific, San Carlos, Calif.).
- 41. Calderone, et al., (2000) Acta Crystallogr D Biol Crystallogr 56:536-40.
- 42. Urzhumtsev, et al., (1997) Structure 5:601-12.
- 43. El-Kabbani, et al., (1998) Mol Vis 4:19.
- 44. Bohren, et al., (1992) J Biol Chem 267:20965-70.
- 45. Prade, et al., (1997) Structure 5:1287-.
- 46. Sussman, et al., (1998) Acta Crystallogr D Biol Crystallogr 54:1078-84.
- 47. Yang, et al., (1998) Biochemistry 37:17145-56.
- 48. Bousset, et al., (2001) Biochemistry 40:13564-.
- 49. Harrop, et al., (2001) J. Biol. Chem. 276:44993-5000.
- 50. Becker, et al. (1998) Nat Struct Biol 5:267-71.
- 51. Epp, et al., (1983) Eur J Biochem 133:51-69.
- 52. Karplus, et al., (1989) Eur J Biochem 178:693-703.
- 53. Kanaoka, et al., (1997) Cell 90:1085-95.
- 54. Wilson, et al., (1993) PNAS 90:9847-51.
- 55. Ramana, et al. (2004) FEBS Lett., 570(1-3):189-194.
- 56. Ramana, et al. (2003) FASEB J. 17(2):315-317.
- 57. Smith, et al. (2000) Eur. J. Cancer, 36(5):664-674.
- 58. Liu, et al. (2003) Cancer Res. 63(13):3632-3636.
- 59. Chen, et al. (2005) J Biol Chem., 280(16):16354-16359.
- 60. Gokmen-Polar, et al. (2001) Cancer Res., 61(4):1375-1381.
- 61. Tsujii, et al. (1998) Cell, 93(5):705-716.
Any patents or publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. These patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. It will be apparent to those skilled in the art that various modifications and variations can be made in practicing the present invention without departing from the spirit or scope of the invention. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention as defined by the scope of the claims.
Claims
1. A method of treating a pathophysiological state or symptoms thereof resulting from aldose reductase-mediated signaling in a cytotoxic pathway in a subject, comprising:
- administering a pharmacologically effective amount of an inhibitor of aldose reductase to the subject thereby preventing aldose reductase mediated signaling.
2. The method of claim 1, wherein the inhibitor is a small interfering RNA (siRNA) or an antisense molecule.
3. The method of claim 2, wherein said siRNA comprises a vector effective to transfect a cell characteristic of said pathophysiological state.
4. The method of claim 3, wherein said cell is a colon cancer cell.
5. The method of claim 1, wherein the siRNA has the sequence shown in SEQ ID NO: 1.
6. The method of claim 1, wherein the inhibitor is effective to inhibit reduction of a glutathione-aldehyde conjugate by aldose reductase.
7. The method of claim 6, wherein said inhibitor interacts with a glutathione binding domain, but does not block a carbonyl binding site, in an active pocket of an aldose reductase having a three-dimensional conformation determined by DCEG binding to AR:NADPH.
8. The method of claim 7, wherein said glutathione-binding domain comprises residues Trp-20, Trp-79, Trp-111, Trp-219, Phe-122, Val-47, Cys-298, Ala-299, Ser-302, Leu-300, and Leu-301.
9. The method of claim 7, wherein said active pocket comprises three flexible loops A, B, and C, said inhibitor interacting with at least said C loop.
10. The method of claim 9, wherein C loop comprises residues Ser-302, Ala-299, Leu-300, and Leu-301.
11. The method of claim 10, wherein residues Ser-302, Ala-299, Leu-300, and Leu-301 interact with said inhibitor via a network of water molecules within the C loop.
12. The method of claim 7, wherein said carbonyl binding site comprises residues Tyr-48, His-110, and Trp-111 and NADPH.
13. The method of claim 7, wherein said inhibitor has a γ-glutamylcysteinylglycine backbone with an S-cysteinyl-substituted moiety.
14. The method of claim 1, wherein said pathophysiological state is a cancer.
15. The method of claim 14, wherein said cancer is colon cancer, breast cancer, prostate cancer and lung cancer.
16. The method of claim 1, wherein said pathophysiological state is characterized by inflammation.
17. The method of claim 16, wherein said inflammation is induced by lipopolysaccharide (LPS) and/or is related to sepsis.
18. The method of claim 1, wherein said cytotoxic pathway is a PLC/PKC/NF-κB pathway.
19. The method of claim 18, wherein signaling by NF-□B, prostaglandin E2 (PGE2), or cyclooxygenase (Cox-2) or a combination thereof is inhibited.
20. A method of treating colon cancer in a subject, comprising:
- administering a pharmacologically effective amount of an aldose reductase small interfering RNA (siRNA) to the subject to inhibit colon cancer cell proliferation thereby treating the colon cancer.
21. The method of claim 20, wherein said siRNA comprises a vector effective to transfect a colon cancer cell.
22. The method of claim 20, wherein the siRNA has the sequence shown in SEQ ID NO: 1.
Type: Application
Filed: Jun 29, 2006
Publication Date: Jan 25, 2007
Inventors: Satish Srivastava (Galveston, TX), Kota Ramana (Galveston, TX)
Application Number: 11/478,069
International Classification: A61K 48/00 (20070101);