Gas-measuring probe for determining the physical characteristic of a measuring gas
A gas-measuring probe for determining a physical characteristic of a measuring gas, in particular the concentration of a gas component or the temperature or pressure of the measuring gas, which includes a sensor element accommodated in a housing, at least one connection cable for the sensor element having an electrical conductor, which is enclosed by an insulation sheath and contacts the sensor element, and a cable channel sealing the housing end, which has at least one axial cable feedthrough through which the connection cable is guided out of the housing. To achieve long-lasting sealing at the cable-exit end of the housing even at higher temperatures, the insulation sheath of the connection cable is at least regionally welded to the cable wall of the cable feedthrough. To this end, a tube made of a material that fuses with the insulation sheath and the cable channel when heated is slipped over the cable section of the connection cable lying inside the cable channel.
The present invention relates to a gas-measuring probe for determining the physical characteristic of a measuring gas, in particular the concentration of a gas component or the temperature or pressure of the measuring gas.
BACKGROUND INFORMATIONIn a known measuring-gas probe (German Patent Application No. DE 196 11 572), the connection cables, which are electrically and mechanically connected to contact surfaces on the sensor element, are accommodated in a cable sheathing at the end of the cable feedthrough, the sheathing being made up of an at least sectionally porous PTFE tube. The PTFE tube is slipped over a reduced-diameter housing section of the housing on the end side and shrink-fitted onto the housing section by heating. Reference air from the environment can penetrate the housing through the porous PTFE hose, the PTFE hose simultaneously preventing moisture or impurities from getting inside the housing.
SUMMARY OF THE INVENTIONThe gas-measuring probe according to the present invention has the advantage that reliable sealing is achieved at the cable exit point of the housing even at higher temperatures so that improved temperature resistance of the gas-measuring probe is ensured. Moreover, high resistance against the cable being pulled out of the housing is achieved, so that damage during the installation by severing of the electrical contact connections between the connection cable and sensor element, which may render the gas-measuring probe useless, is reliably prevented.
According to an advantageous specific embodiment of the present invention, the preferably several connection cables run in a shared shrink tube, at least at the housing exit, the shrink tube having been shrink-fitted onto the housing via an end section of the tube. Owing to the shrink tube, the sealing-tightness at the cable exit point is improved further and the thermal loading of the connection cables guided in the shrink tube is reduced as well.
If the shrink tube is dyed or pigmented according to an advantageous specific embodiment of the present invention, this may be utilized to adjust the emission degree of the tube material and to suppress the introduction of heat into the shrink tube even further. The same is achieved if the shrink tube is made of a plurality of layers.
According to an advantageous specific embodiment of the present invention, the shrink tube has at least one tube section made of solid material in which axial feedthrough ducts for the preferably several connection cables are present. The tube section made of a solid material preferably lies at the tube end that faces away from the housing. In conjunction with the cable feedthrough situated at the housing exit, the connection cables are thus guided in the shrink tube in a defined manner and the cable ends emerging from the shrink tube at the housing-remote end of the shrink tube are able to be fitted more easily on the plug side.
BRIEF DESCRIPTION OF DRAWINGS
The gas-measuring probe shown in a side view and in a part-sectional view in
A cable feedthrough made of a fluorine-containing plastic such as PTFE is inserted in diameter-reduced end section 151 of protective sleeve 15, the cable feedthrough having a number of axial cable feedthroughs 25 that corresponds to the number of connection cables 21. Connection cables 21, which are fixed in place on sensor element 16 by force-locking via their electrical conductors 20, are fed through cable feedthroughs 25 and emerge from protective sleeve 15 at the end of cable channel 24. In order to achieve adequate sealing at the cable exit even at higher temperatures, insulation sheath 19 of connection cables 21 made of fluorine-containing material is at least regionally welded to the channel wall of cable feedthroughs 25. As can be gathered from the enlarged cutaway view of
From the point of exit from the housing, connection cables 21 are accommodated in a shared shrink tube 27, which is slipped over end section 151 of protective sleeve 15 via its tube end section 271 on the side of the housing. By preheating shrink tube 27 or end section 151 of protective sleeve 15, shrink tube 27 shrinks and is pressed onto end section 151 in a sealing manner. Shrink tube 27 may have one or a plurality of layers and is made of a material which has mechanical, physical and chemical properties that are comparable to fluorine-containing plastics.
For instance, shrink tube 27 is made of polyolefin vulcanized by high-energy radiation. Shrink tube 27 is elastically deformable; the material hardness of shrink tube 27 is able to be adjusted in such a way that connection cables 21 guided in shrink tube 27 are not bent. The form of shrink tube 27 is variable. In the exemplary embodiment of
In the modified gas-measuring probe illustrated in a cutaway view in
In the exemplary embodiment of
The additional exemplary embodiment of the gas-measuring probe shown in
The exemplary embodiments of the gas-measuring probe illustrated in
Of course, it is possible to use welding mass 28 or welding ring 29 described in
Claims
1. A gas-measuring probe for determining a physical characteristic of a measuring gas, comprising:
- a housing;
- a sensor element accommodated in the housing;
- at least one connection cable for the sensor element, which has an electrical conductor enclosed by an insulation sheath and contacts the sensor element; and
- a cable channel sealing a housing end, which has at least one axial cable feedthrough through which the at least one connection cable is guided out of the housing,
- wherein the insulation sheath of the connection cable is at least regionally welded to a channel wall of the cable feedthrough in the cable channel.
2. The gas-measuring probe according to claim 1, wherein a welding point is situated at at least one of an entry and an exit point, at least one of into and out of the cable channel of the at least one connection cable.
3. The gas-measuring probe according to claim 1, wherein the at least one cable feedthrough has, at at least one channel end, a channel section having a larger inside diameter, which, after the connection cable has been threaded through the cable feedthrough, is filled with a material that fuses with the insulation sheath and the channel wall of the cable feedthrough in the cable channel after heating.
4. The gas-measuring probe according to claim 1, wherein a tube, composed of a material that fuses with the insulation sheath of the connection cable and the channel wall of the cable feedthrough in the cable channel after heating, is slipped over a cable section of the at least one connection cable lying in the cable feedthrough.
5. The gas-measuring probe according to claim 1, wherein the insulation sheath of the connection cable, the cable channel and a material for fusing with the insulation sheath and the cable channel are composed of fluorine-containing plastic.
6. The gas-measuring probe according to claim 1, wherein, at least at a housing exit, the at least one connection cable extends in an interior of a shrink tube, which is shrink-fitted onto the housing via one tube end section.
7. The gas-measuring probe according to claim 6, wherein at least one tube section of the shrink tube is composed of a solid material, which is provided with at least one axial feedthrough channel for the at least one connection cable.
8. The gas-measuring probe according to claim 7, wherein the tube section composed of solid material lies at a tube end facing away from the housing.
9. The gas-measuring probe according to claim 6, wherein the shrink tube is bendable.
10. The gas-measuring probe according to claim 6, wherein the shrink tube tapers in one of a continuous and a stepped manner in a direction of a housing-remote end.
11. The gas-measuring probe according to claim 6, wherein the shrink tube is a corrugated tube.
12. The gas-measuring probe according to claim 6, wherein the shrink tube is one of dyed and color-pigmented.
13. The gas-measuring probe according to claim 6, wherein the shrink tube has at least one layer.
14. The gas-measuring probe according to claim 1, wherein the at least one connection cable includes a plurality of connection cables which are electrically connected to the sensor element and are guided out of the housing, and the cable channel has a number of cable feedthroughs that corresponds to a number of connection cables.
15. The gas-measuring probe according to claim 1, wherein the probe determines at least one of (a) a concentration of a gas component, (b) a temperature of the measuring gas, and (c) a pressure of the measuring gas.
Type: Application
Filed: Apr 13, 2006
Publication Date: Feb 15, 2007
Inventors: Bernhard Wild (Markgroeningen), Rainer Maier (Tamm), Gregor Jaehnig (Muehlacker), Peter Dettling (Waiblingen), Stefan Heinzelmann (Kernen), Bernd Rattay (Stuttgart), Bastian Buchholz (Stuttgart), Juergen Moratz (Neuhausen A.D.F.)
Application Number: 11/404,234
International Classification: G01N 33/00 (20070101); G01K 13/00 (20060101); G01L 19/00 (20070101);