Security barrier
An apparatus and method for installing and deploying a barrier utilizing one or more gas generators. The invention includes a barrier component installed beneath the ground surface or substantially parallel to the ground and raised by activation of the gas generator. The device can be trigger automatically without human intervention and thereby faster deployment of the barrier. The barrier can include a reactive component. The barrier can include plurality of telescoping barrier subcomponents.
This application is a Continuation Application of and claims priority to U.S. Utility application Ser. No. 11/100,673 filed Apr. 4, 2005, which in turn is a Continuation in Part application claiming priority to and incorporating by reference application Ser. No. 10/832,654 entitled Security Bollard filed Apr. 27, 2004. Both application Ser. Nos. 11/200,673 and 10/832,654 are incorporated by reference herein.
BACKGROUND OF INVENTION1. Field of Use
The invention pertains to a high strength impact resistant and rapidly deployable security barrier for the protection of persons and property from objects such as trucks and cars traveling at ground surface level.
2. Prior Art
Vehicle and traffic barricades are well known and are in wide use for building and personnel security applications. These systems can be permanent or temporary. The barricades can be stationary or mobile with relatively rapid deployment for raising/lowering. The barricades can be wall like sections providing a resistive mass of reinforced concrete or hollow resinous plastic structures filled with water. Other types of traffic or vehicle control barriers are bollards that are fixed in position or that can be raised and lowered from the ground surface level.
Bollards have been shown to be capable of incapacitating or stopping vehicles up to 7.5 tons GVW moving at speeds of 50 mph. The current raisable bollard systems have deficiencies that have been demonstrated based on current world events and terrorism threats. These deficiencies are related to their dependency on human interaction to deploy the barrier of the bollard system, they are slow to activate, provide inadequate capabilities to prevent intrusion, and they are dependent on electric power or air systems which can be compromised by threats. The mechanism used to power the raising and lowering can be springs, hydraulics, motors or gas cylinders. However, existing bollards or barriers that are raised to selectively block or control vehicle movement require either human intervention that retards deployment time, thereby diminishing effectiveness, or do not have sufficient mass to effectively block a large or heavy vehicle. Other bollard/barrier devices require installation beneath the ground surface level and separately powered control and motor mechanisms to raise (deploy) the barrier.
There is accordingly a need for a rapidly deployable barrier system having sufficient capability to provide an effective barrier to heavy motor vehicles. There is also a need for a non-obtrusive barrier protective system than can be easily and quickly installed and removed.
SUMMARY OF INVENTIONThe invention pertains to a method and apparatus for erecting protective barriers/bollards utilizing a gas generation system (gas generator) to power the raising of the barrier structure to block the passage of a vehicle. The gas generator can be activated by a variety of means and independent of human intervention. The energy supplied by the gas generator allows deployment of the barrier from a stored to protective position at a speed significantly greater than achieved by existing methods. This allows the activation device to be placed close to the barrier, thereby permitting use of an automated barrier protective system in relatively confined spaces with minimized instances of unintended or unnecessary activation.
The gas generator power source also permits a variety of mechanical mechanisms for raising the barrier from a stored to protective position. The barrier can be raised in a relatively straight direction substantially normal to the plane of the ground surface. The barrier can also be raised from a stored position relatively parallel to the plane of the ground surface level to a position normal to the plane.
The activation of the barrier component of the barrier system can be achieved by a variety of means. One method would be activation occurring in response to the wheels of a motor vehicle passing over a pressure sensitive triggering mechanism. It will be readily appreciated that the pressure sensitivity can be adjusted to distinguish between a motor vehicle and a pedestrian.
The activation of the barrier system may also be a motion detector, or a magnetic, strain, chemical, infra-red or radiation sensor. A remote sensor can signal activation by RF signal, requiring little power. The power source may be batteries or similar independent means, thereby minimizing deactivation of the protective system by power failure or sabotage.
It is therefore an object of the invention to provide a rapidly deployable barrier.
It is another object of the invention to provide a barrier system that has a minimal visual impact to the protected structure or for protective surveillance.
It is a further object of the invention to provide a barrier that can be activated without human intervention.
It is another object of the invention to provide a barrier that can be quickly installed and removed It is another object of the invention that the protective barrier can be portable and installed with minimal site preparation.
It is another object of the invention to provide a protective barrier system without preparation or intrusion beneath the ground surface level.
It is also an object of the invention to provide a protective system that is operational/activation energy self-contained.
Other benefits of the invention will also become apparent to those skilled in the art and such advantages and benefits are included within the scope of this invention.
SUMMARY OF DRAWINGSThe accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention. These drawings, together with the general description of the invention given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention.
The above general description and the following detailed description are merely illustrative of the subject invention and additional modes, advantages and particulars of this invention will be readily suggested to those skilled in the art without departing from the spirit and scope of the invention. The requirements for the barrier system will vary based on the intended application. These variations are related to the denial requirements, the type of installation (permanent or temporary), location of the system, and the type of asset to be protected.
The invention proposed consists of an autonomous or automatic barrier or barrier restraint system, including automatic trigger sensors, communication devices to deploy the barrier component of the systems, automatic sensors to detect or activate the system, and an independent, self contained power supply to provide monitoring, activation, or alarm.
Deployment of the barrier component, regardless of the specific configuration of the barrier system, e.g., bollard, gate or wall-like sectional barrier, will be carried out by a gas generator. The gas generator will be integral to the system and be capable of deploying a barrier which is capable of stopping a 15000 lb gross vehicle weight (GVW) vehicle and which deploys the barrier in 150 milli-seconds or less. This is nominally 10 times faster deployment than the fastest barrier currently available and the proposed system does not depend on any human interaction which requires significant additional time. What this means is that a vehicle moving at 50 mph will travel 110 ft in 1.5 seconds. The proposed invention will permit 11 feet or less of travel at 50 mph from the time the barrier is activated until the vehicle is stopped. Add to the conventional system the time required for personnel to activate it and this would require detection of the threat and activation of the restraint system nominally 100's of feet before the vehicle reaches the barrier.
The gas generator will be integral to the barrier system. The gas generator will contain solid propellant that upon combustion creates heated gas to rapidly expand within a cylinder that raises the barrier component into its operating position. A mechanical mechanism will lock the barrier component into place. The propellant is ignited by a device termed a squib or igniter. The squib receives an electric signal from the integral power supply. This electrical signal may be activated manually or automatically depending on selection of how the barrier system is configured. The receipt of the signal to activate the squibs is received via radio frequency (RF) which can be encrypted as necessary for security reasons. The RF can also be sent by detectors that can detect motion, magnetic field, radiation, mass, chemicals or explosives. The receipt of the signal to activate the squibs may be hard wired or received via a wireless mode including but not limited to radio frequency (RF), microwave, satellite, cellular telephone or Bluetooth® signals. (Bluetooth is a registered trademark of Bluetooth SIG Inc.)
As an alternative to the gas generator, the barrier system could also be deployed through of a stored high-pressure gas or mechanical energy storage devices such as springs. Activation of the device would occur through an electro-mechanical switching device that will release the stored gas or the compressed springs. These devices will be slower to provide deployment than a gas generator and these types of devices will result in increase weight and maintenance requirements. The alternate systems do not utilize ordnance, however, the gas generator technology is very mature and they are commonly used in automobiles, aircraft evacuation slides and munitions dispensing.
The deployed barrier can also include a reactive component such as a gas generator powered air bag or separate explosive charge such as a directionally oriented shaped charge.
The drawings contained within this specification illustrate various embodiments of the invention. In addition to the traditional bollard (e.g. a typically round structure that protrudes above the ground level), this invention also includes a rapidly deployable barrier that is activated using both a gas generator and an automatic or manual deployment device as described previously. This system, called a “Toggle Retractable Barrier System” can be permanently installed on a roadway or other ground level surface or in a shallow recess. The “Toggle” system is held in a horizontal position until deployed. Referring to the models below, the structural member (or stability member) serves as a cover for the system and protects the deployment mechanism until activated. Upon activation, the pressure resulting from the gas generator drives a cylinder which raises the stability member (or barrier) into an upright position. The locking mechanism shown in the model locks the stability member into position. This design is very flexible in that it is portable and may be configured to accommodate multiple barriers in series or parallel. A benefit of this design is that the barrier takes advantage of the vehicle mass in anchoring the system to the ground. These system designs may be deployed individually in a pattern or all simultaneously depending on the instructions provided to its communication component.
The barrier system is comprised of several components. The system is comprised of the deployable barrier and a gas generator. The components of the embodiment particularly described in this disclosure may include a housing (which may comprise a cylinder), a barrier (which may be comprised of a piston or second cylinder), a gas generator, a locking mechanism, and an activation system.
The components may be stored and transported within a housing component which, when installed, may form part of the barrier system structure. Alternatively, some components may be separately stored and assembled together at the installation site. In a further embodiment of the invention, the components may be disassembled and relocated to a separate installation site as needed.
The system subject of this invention may also be constructed of various materials having high compression, shear and tensile strengths. Although these materials include metals, particularly ferrous metals, fiber reinforced composite materials may be used, particularly where light weight is desired. Such designs may be combined with components allowing weight to be added to the system after placement in the selected location.
The end uses of this invention are to protect vital assets and personnel from terrorist acts. A barrier system is applicable to embassies, power plants fuel storage depots, military and industrial installations, traffic control, and critical industrial facilities.
The subject invention will utilize the same technology in terms of stopping the vehicle but will perform this function with/without human intervention. In other words, the bollard system can be made autonomous with its own sensors and triggering system. Where human intervention activates the bollard or barrier system, the response is rapid (less than 150 milliseconds), thus allowing an operator a last second decision to stop a threat with as little time as 12 feet from the penetration point of the asset being protected.
The invention consists of using a rapidly deployable barrier system activated by a gas generator. The activation of the gas generator is not dependent on any external support such as electricity or air pressure and is activated by RF signal. The RF signal can be activated by numerous different sensors that detect movement, proximity, light curtains, acoustic, pressure plate, infrared, vision system, chemical detectors, explosive detectors, magnetic or radiation detectors. A key advantage of the RF command link is the ability to configure the system allowing the user to use or not use its variability to detect and activate. Various sensor systems allow the user to configure the activation of the barrier. For example, if the system is configured in an automatic mode, an underground magnetic detector could arm the system. A second sensor, such as motion or speed sensor, could trigger the system when detecting the threat will not stop.
The barrier system may contain its own power through rechargeable power that can incorporate solar cell technology supply. It will be appreciated that the main power source is the stored energy of the gas generator. The proposed invention may also have the ability to monitor its status. Therefore, in the event of power failure, the barrier system continues to function and is not compromised. Other systems depend on electric, hydraulic or air to activate their systems. These are all dependent on electric power.
The barrier component may include a separate gas generator powered air bag or directed gas stream. The barrier may include another type explosive charge. The explosive charge may be a shaped charge. A barrier of the type described in this paragraph will be referred to as a reactive barrier.
The barrier component is elevated from the stored position to the deployed position by movement of a piston powered by energy from the gas generator. The force of the rapidly expanding gas from the gas generator may push a piston within a cylinder and extend the piston out of the cylinder. This piston may comprise the barrier. The gas generator is preferably located within the cylinder. It will be appreciated that there may be alternate configurations to the cylinder and piston assembly. For example, the components may comprise two or more cylinders with two cylinders having a closed end and an open end. See for example
The barrier system may utilize the weight of the object, i.e., vehicle, to anchor the system into position and to transfer the load to the ground. See
The deployment of the barrier is powered by the activation of the gas generator solid propellant. The generator may be a steel canister (nominally 1-2″ diameter and 3-4″ long). Inside this canister is a small amount of propellant. The propellant may be ball shot, i.e., basically the same powder found in a shot gun shell. Other propellants are known and may also be used. For example, the gas may be generated by the pyrolytic reaction of sodium azide (NaN3) with potassium nitrate (KNO3). The gas generator may have a nozzle that releases the pyrolysis gases at a controlled rate. The gas generator may deploy the barrier in less than 150 milliseconds.
The propellant may be activated by ignition by a squib or igniter. The squib may look basically like a paper match. It may be coated with an accelerator/propellant that ignites very hot and fast. If one is set off it sounds like a firecracker. The squib may be ignited by the application of electrical current. The speed at which it ignites is based on the amperage applied. Squibs are typically identified as “5 amp all fire.” What this means is that if the squib is energized by a 5 amp current, it will fire at its highest rated speed. If the amperage is lower, it takes slightly longer to fire but it still ignites in a very short time. Typically, if the energy is less than 1 amp, the squib will not fire (this is for safety and stray currents created by static etc.). The amount of propellant in the gas generator can be varied depending on the object to be moved with the energy. In the embodiment illustrated by
The expanding gases drive the piston (or cylinder) within a first cylinder, which raises the barrier component into its deployed position. In the preferred embodiment, once raised, there is a lock which holds the barrier component in position. The locks are basically mechanical where it “snaps” into position and holds the barrier (not shown).
A battery may be the source of the power for activating the squib and hence the gas generator. Once power is sent, the gas generator is ignited by the squib. It will be appreciated that the signal triggering the battery powered circuit can transmitted by RF signal and be activated by numerous types of sensors. In other words, the sensor may detect a threat; send the signal via RF or other means to the control box. This small amount of energy would be used to activate a switch that would send the current to the squib. The power for the squib would be part of the barrier system and could be a battery or capacitor. The energy required to set off the squib can be adjustable to prevent false signal from setting off the activation switch.
The locking component 299 can be in conjunction with a component (not shown) to divert the upper section 292 of the barrier component (stability member) 290 toward a vertical position.
This specification is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the manner of carrying out the invention. It is to be understood that the forms of the invention herein shown and described are to be taken as the presently preferred embodiments. As already stated, various changes may be made in the shape, size and arrangement of components or adjustments made in the steps of the method without departing from the scope of this invention. For example, equivalent elements may be substituted for those illustrated and described herein and certain features of the invention may be utilized independently of the use of other features, all as would be apparent to one skilled in the art after having the benefit of this description of the invention.
Further modifications and alternative embodiments of this invention will be apparent to those skilled in the art in view of this specification.
Claims
1. A cylindrical barrier comprising:
- a) a first cylinder installed substantially below a ground surface plane and said cylinder having an axis of orientation substantially normal to the plane of the ground surface;
- b) a cylindrical barrier comprising a second cylinder substantially within the first cylinder and having the same axis of orientation of the first cylinder;
- c) a gas generator to move the cylindrical barrier along the axis of orientation in a manner that the cylindrical barrier extends from the second end of the first cylinder and above the plane of the ground level; and
- d) a mechanism to retain and lock the cylindrical barrier to the first cylinder after activation of the gas generator.
2. The barrier of claim 1 wherein the cylindrical barrier contains a reactive barrier.
3. The barrier of claim 1 further comprising guide grooves or protrusions in an inner wall of the first cylinder and complementary guide grooves or protrusions in the outer wall of the cylindrical barrier.
4. The barrier of claim 1 further comprising a mechanism to activate the gas generator.
5. The barrier of claim 4 wherein the mechanism activating the gas generator comprises an RF signal.
6. A barrier comprising:
- a) a barrier component comprising at least one nested cylinder having a longitudinal axis of orientation extending out of a ground surface plane;
- b) a gas generator to move the barrier component along the axis of orientation in a manner that the barrier component extends from a first cylinder and above the plane of the ground level;
- c) a structural support member pivotally attached to the barrier component; and
- d) a connecting component extending along a ground surface attached to the first cylinder and pivotally attached to the structural support member.
7. The barrier of claim 6 wherein the barrier component comprises a reactive barrier.
8. The barrier of claim 7 wherein the reactive barrier comprises a second gas generator.
9. The barrier of claim 7 wherein the reactive barrier comprises an explosive.
10. A barrier comprising:
- a) at least one first outer structure having a longitudinal axis of orientation and a first end and a second end;
- b) a barrier component comprising a second inner structure located at least partially within the first structure and having a top and the same longitudinal axis of orientation as the first structure and mechanisms to retain and lock the second structure to the first structure; and
- c) a gas generator to move the barrier component along the longitudinal axis of orientation in a manner that the barrier component extends from the second end of the first structure.
11. The barrier of claim 10 further comprising a mechanism to activate the gas generator.
12. The barrier of claim 11 wherein the mechanism activating the gas generator comprises an RF signal.
13. The barrier of claim 10 wherein the longitudinal orientation of the extended barrier component is at least 45 degrees to the plane of the ground level.
14. The barrier of claim 10 wherein at least a portion of the barrier system is located below the ground surface level.
15. A method of deploying a barrier comprising:
- a) activating a gas generator; and
- b) using the expanding gas to move a barrier component from a first position to a second position wherein the barrier component consists essentially of a cylinder having a top and a mechanism to retain and lock the barrier component to another component.
16. The method of claim 15 further comprising transmitting an RF signal from a remote sensor to a gas generator activation mechanism.
Type: Application
Filed: Apr 7, 2006
Publication Date: Mar 1, 2007
Inventors: Robert Burns (The Villages, FL), Dennis Darling (Redington Beach, FL), Paul Hurlburt (Kennebunk, ME), Gary Ketner (Kenmore, WA)
Application Number: 11/399,919
International Classification: E01F 13/00 (20060101);