Method of manufacturing porous body

- NGK Insulators, Ltd.

There is disclosed a method of manufacturing a porous body, which is capable of preferably manufacturing the porous body having a high open porosity and a small thermal expansion coefficient. In the manufacturing method, a raw material including an aluminum source and a titanium source is fired to obtain the porous body containing aluminum titanate as a main component. In this manufacturing method, inorganic micro balloons containing an aluminum component and/or a silicon component are used as a pore former.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a method of manufacturing a porous body which contains aluminum titanate as a main component.

2. Description of the Related Art

Since aluminum titanate has a low thermal expansivity, an excellent thermal shock resistance and a high melting point, it is expected as a porous material for use in a catalyst carrier for treatment of an exhaust gas of an automobile, a diesel particulate filter or the like. Therefore, various materials containing aluminum titanate have been developed.

For example, there is proposed an aluminum titanate and mullite based porous material having a predetermined chemical composition for a purpose of improvement of thermal cycle durability in a case where an aluminum titanate based material is used as a honeycomb catalyst carrier for a catalytic converter (see Patent Document 1).

Moreover, it is disclosed that in a case where the material containing aluminum titanate as the main component is used in the catalyst carrier for the treatment of the exhaust gas, the filter or the like, a pore former is generally added to a raw material to enhance porosity. It has been disclosed that as the pore former in a case where a honeycomb carrier made of aluminum titanate is manufactured, for example, active carbon, coke, polyethylene resin, starch, graphite or the like is preferable (see Patent Document 2).

[Patent Document 1] Japanese Patent Application Laid-Open No. 3-8757

[Patent Document 2] Japanese Patent Application Laid-Open No. 2005-87797

SUMMARY OF THE INVENTION

The present invention provides a method of manufacturing a porous body, which is capable of preferably manufacturing the porous body having a high open porosity and a small thermal expansion coefficient and preferably usable in the catalyst carrier, the filter or the like.

The present invention provides the following method of manufacturing a porous body.

[1] A method of manufacturing a porous body, comprising: firing a raw material including an aluminum source and a titanium source to obtain the porous body containing aluminum titanate as a main component, wherein the raw material further includes inorganic micro balloons containing an aluminum component and/or a silicon component.

[2] The method of manufacturing the porous body according to the above [1], wherein the total content of the aluminum component and the silicon component in the inorganic micro balloons is 90 mass % or more in terms of Al2O3 and SiO2, respectively.

[3] The method of manufacturing the porous body according to the above [1] or [2], wherein the inorganic micro balloons contain a sodium component and/or a potassium component, and the total content of the sodium component and the potassium component in the micro balloons is 0.5 mass % or more and 8.0 mass % or less in terms of Na2O and K2O, respectively.

[4] The method of manufacturing the porous body according to any one of the above [1] to [3], wherein a melting point of the micro balloons is 1100° C. or more.

According to the method of manufacturing the porous body in the present invention, since the porous body containing aluminum titanate as the main component is manufactured using the inorganic micro balloons containing the aluminum component and/or the silicon component as a pore former, it is possible to obtain the porous body having a high open porosity and a small thermal expansion coefficient.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1(a) is a schematic perspective view showing one embodiment of a porous body of the present invention, and FIG. 1(b) is a partially enlarged view of part b of FIG. 1(a).

DESCRIPTION OF THE PREFERRED EMBODIMENT

A method of manufacturing a porous body of the present invention will be described hereinafter in detail in accordance with an embodiment, but the present invention is not limited to these embodiments.

It is to be noted that in the present specification, a “particle diameter” means a particle diameter measured by a laser diffraction/scattering type particle size distribution measuring device (e.g., trade name: LA-920 or the like manufactured by HORIBA, Ltd.). Moreover, an “average particle diameter” means a particle diameter (D50) in a point where an accumulated mass of particles is 50% of the total measured mass in a particle diameter distribution measured. For example, the particle diameter can be measured by a method of dispersing 1 g of particulate matter as a measurement object in 50 g of ion-exchange water by ultrasonic dispersion in a glass beaker, and diluting the resulting suspension at an appropriate concentration to inject the suspension into cells of the measuring device. Furthermore, after the ultrasonic dispersion is performed in the measuring device for two minutes, the particle diameter is measured.

In the present invention, when a raw material including an aluminum source and a titanium source is fired to manufacture the porous body containing aluminum titanate as a main component, there are used inorganic micro balloons which contain an aluminum component and/or a silicon component and which function as a pore former. This respect will be described hereinafter in detail.

(Aluminum Source)

The aluminum source is a raw material which forms aluminum titanate together with the titanium source. As the aluminum source, there may be used the inorganic micro balloons described later in detail. When the inorganic micro balloons do not contain any aluminum component, however, another aluminum source is necessary. Even in a case where the inorganic micro balloons contain the aluminum component, and are used as the aluminum source, in consideration of a balance of a ratio between the aluminum component and titanium component forming aluminum titanate with respect to an open porosity, it is usually preferable to add the other aluminum source. As the other aluminum source, alumina (Al2O3) is preferable. Above all, α-alumina is preferable. It is preferable that the other aluminum source is alumina particles having particle diameters of 1 to 50 μm. It is further preferable that the alumina particles include 50 mass % or more, preferably 70 mass % or more of particles having particle diameters of 10 to 20 μm. In a case where aluminum titanate is formed using such-alumina particles, the alumina particles function as aggregates, and aluminum titanate is formed so that the titanium source is dissolved in the alumina particles, thereby forming pores which have excellent communicating properties and a comparatively small pore diameter distribution.

As to the total amount of the aluminum source, the amount of the aluminum component in the porous body is preferably 48 mass % or more, further preferably 50 to 55 mass % in terms of Al2O3. If the amount of the aluminum component in the porous body is excessively small, a fired article runs short of aluminum titanate crystals, and a desired thermal shock resistance cannot be obtained in some case.

(Titanium Source)

There is not any special restriction on the titanium source, but from viewpoints of availability and ease of forming aluminum titanate, the titanium source is preferably titania (TiO2). As to titania, there are a rutile type, an anatase type and a brookite type, and any of the types may be used, but rutile type titania is preferable. The titanium source has an average particle diameter of preferably 0.5 to 10 μm, further preferably 0.5 to 5 μm. When the titanium source having such a particle diameter is used, aluminum titanate is easily formed through the above-described process, and pressure losses can further be reduced. As the titanium source having the above-described particle diameter distribution, from the viewpoint of the availability, titanium oxide is preferable which is usually used in a pigment or the like and which is manufactured by a sulfate process or a chlorine process.

As to the amount of a titanium source material, the amount of titanium in the fired article is preferably 10 to 50 mass %, further preferably 30 to 45 mass % in terms of TiO2. If the amount of titanium in the fired article is excessively small, the fired article runs short of aluminum titanate crystals, and the desired thermal shock resistance cannot be obtained in some case. If the amount is excessively large, titanium oxide remains in the fired article, and the desired thermal shock resistance cannot be obtained in some case.

(Inorganic Micro Balloons)

The inorganic micro balloons are inorganic hollow particles containing the aluminum component and/or the silicon component, and function as the pore former. When the inorganic micro balloons contain the aluminum component, the aluminum component forms the aluminum source. That is, the aluminum component in the inorganic micro balloons is fired to react with the titanium source, thereby forming aluminum titanate. In this case, hollow portions of the inorganic micro balloons constitute pores, and it is possible to form an aluminum titanate porous body having a high open porosity.

When the inorganic micro balloons contain the silicon component, the silicon component in the inorganic micro balloons is fired to react with the aluminum source, and an aluminum titanate and mullite based porous body can be formed. That is, aluminum titanate constitutes aggregates, and the aggregates are bonded to one another by mullite as a binder, and this structure enhances strength of the porous body. Therefore, when the inorganic micro balloons contain the silicon component, a porous body having a higher strength can be formed. Furthermore, when mullite is formed, the hollow portions of the inorganic micro balloons constitute pores, and it is possible to form an aluminum titanate and mullite based porous body having a high open porosity.

It is to be noted that in a case where the aluminum titanate and mullite based porous body is formed, in addition to the inorganic micro balloons, there may be used a material constituting a silicon source, such as silica glass, kaoline, mullite or quartz. In this case, the inorganic micro balloons do not have to contain any silicon source. When the inorganic micro balloons contain both of the aluminum component and the silicon component, a melting point tends to lower, and easily falls into a preferable range of melting points in which satisfactory pores are formed as described later.

It is to be noted that in a case where the aluminum titanate and mullite based porous body is formed, it is preferable to blend raw materials so that the amounts of the titanium component, the aluminum component and the silicon component in the resultant porous body are 12 to 35 mass % of TiO2, 48 to 78 mass % of Al2O3 and 5 to 25 mass % of SiO2 in terms of TiO2, Al2O3 and SiO2, respectively, with respect to the whole porous body. It is further preferable to blend the raw materials so that the amount of TiO2 is 14 to 33 mass %, the amount of Al2O3 is 53 to 74 mass %, and the amount of SiO2 is 6 to 20 mass %.

There is not any special restriction on the type of the inorganic micro balloons as long as the inorganic micro balloons are hollow articles containing the aluminum component as the aluminum source which is fired to form aluminum titanate and/or the silicon component as the silicon source which is fired to form mullite. Typical examples of the inorganic micro balloons include fly ash balloons, alumina balloons, glass balloons, Shirasu balloons, and silica balloons. The inorganic micro balloons containing both of the aluminum component and the silicon component are preferably Al2O3—SiO2-based balloons, typical examples of the balloons include fly ash balloons, Shirasu balloons and glass balloons, and the fly ash balloons or the Shirasu balloons are especially preferable.

The total content of the silicon component in terms of SiO2 and the aluminum component in terms of Al2O3 in the inorganic micro balloons is preferably 80 mass % or more, further preferably 85 mass % or more, especially preferably 87 mass % or more. If the total content of the silicon component and the aluminum component is less than 80 mass %, a softening temperature of the inorganic micro balloons unfavorably tends to be excessively low.

It is also preferable that the inorganic micro balloons contain a sodium component and/or a potassium component. When the inorganic micro balloons contain an appropriate amount of the alkali source, the melting point of the inorganic micro balloons can appropriately be lowered. When an appropriate amount of a glass phase is formed in the resultant aluminum titanate based porous body, the strength of the porous body can be enhanced.

The total content of the sodium component in terms of Na2O and the potassium component in terms of K2O in the inorganic micro balloons is preferably 0.5 mass % or more, further preferably 1 mass % or more, especially preferably 2 mass % or more. If the total content of the sodium component and the potassium component is excessively small, it is not sufficiently easy to obtain an effect of lowering the melting point of the inorganic micro balloons and an effect of enhancing the strength of the porous body. On the other hand, the total content is preferably 8 mass % or less, further preferably 6 mass % or less. If the total content of the sodium component and the potassium component is excessively large, the melting point of the inorganic micro balloons becomes excessively low, and the effect of enhancing the strength of the porous body cannot sufficiently easily be obtained.

The melting point of the inorganic micro balloons is preferably 1100° C. or more, further preferably 1200° C. or more. If the melting point of the inorganic micro balloons is excessively low, there is a tendency for the micro balloons to melt, allowing the pores to contract before aluminum titanate is formed. Thus, unfavorably, a pore forming effect is not easily exerted. On the other hand, the melting point of the inorganic micro balloons is preferably 1600° C. or less, further preferably 1400° C. or less, especially preferably 1350° C. or less. If the melting point of the inorganic micro balloons is excessively high, shells of the inorganic micro balloons tend to fail to open at a firing temperature, and pore diameters tend to be reduced.

A moisture content of the inorganic micro balloons is preferably 0.1 mass % or less, further preferably 0.08 mass % or less. When the inorganic micro balloons having a moisture content above 0.1 mass % are used, defects are sometimes generated in the aluminum titanate based porous body obtained by rupturing the article owing to volume expansion during the firing. When the aluminum titanate based porous body is used as a filter, a trapping efficiency of the filter might drop unfavorably.

Since a method of manufacturing the inorganic micro balloons including the fly ash balloons usually includes a water elutriation step, moisture sometimes remains in micro pores. Therefore, to reduce a remaining moisture amount, in the present invention, it is preferable to use the inorganic micro balloons calcined at 300° C. or more, and it is further preferable to use the inorganic micro balloons calcined at 320° C. or more.

There is not any special restriction on the average particle diameter of the inorganic micro balloons, but in a case where a honeycomb porous body is manufactured in which partition walls have a thickness of 300 μm or less, the average particle diameter is preferably 100 μm or less. This average particle diameter is a value measured by laser scattering type particle size distribution measurement. It is also preferable that a crushing strength of the inorganic micro balloons for use in the present invention, measured by a micro compression tester, is 1 MPa or more, because the balloons are not easily crushed during kneading. The crushing strength is further preferably 5 MPa or more. This crushing strength refers to a value which is measured using the micro compression tester and which is calculated assuming that the inorganic micro balloons are solid balls. Furthermore, a tap density of the inorganic micro balloons is preferably 0.5 g/cm3 or less, further preferably 0.41 g/cm3 or less. The thickness of the shell of the inorganic micro balloon is preferably 10 μm or less, further preferably 5 μm or less. It is to be noted that the thickness of the shell is a value measured by observing a broken or polished surface of the shell with a microscope.

There is not any special restriction on an amount of the inorganic micro balloons to be added, but if the added amount of the inorganic micro balloons is excessively small, an effect of increasing the open porosity is excessively reduced. If the added amount is excessively large, the total amount of aluminum titanate in the fired article is reduced, and a thermal expansion coefficient increases. The added amount of the inorganic micro balloons is preferably 5 to 40 mass %, further preferably 10 to 35 mass %, especially preferably 15 to 25 mass % with respect to the total of the raw materials constituting the aluminum source and the titanium source and the inorganic micro balloons.

(Other Inorganic Components)

In a case where the aluminum titanate based porous body is formed, when another inorganic component is contained, stability of aluminum titanate can be enhanced. Examples of the other inorganic component that is present in the aluminum titanate based porous body and that can enhance the stability of aluminum titanate include an Fe2O3 component, an MgO component and a CaO component, and it is preferable that at least one of them is contained in the aluminum titanate based porous body. However, if an excessively large amount of these components are contained, the thermal expansion coefficient tends to increase. It is preferable that the Fe2O3 component in a range of 0.05 to 5 mass % is present in the aluminum titanate based porous body. It is preferable that the MgO component in a range of 0.01 to 10 mass % is present in the aluminum titanate based porous body. It is preferable that the CaO component in a range of 0.01 to 10 mass % is present in the aluminum titanate based porous body. Such an inorganic component is contained in the above-described raw material in some case. In this case, it is preferable to adjust a type and an amount of the raw material so that each component of the aluminum titanate based porous body falls in the above-described range. It is especially preferable that the inorganic micro balloons contain at least one selected from the group consisting of an iron component, a magnesium component and a calcium component so as to indicate the amount in the above-described range. Alternatively, in addition to the inorganic micro balloons, there may be used the raw material containing at least one selected from the group consisting of the iron component, the magnesium component and the calcium component.

(Process of Manufacturing Porous Body)

To the above-described inorganic raw material, an organic auxiliary agent component and a dispersion medium are added, mixed and kneaded to prepare the raw material to be fired. Usually, after molding this raw material to be fired into a predetermined shape, for example, a molded article having a honeycomb structure, the article can be fired to obtain the porous body containing aluminum titanate as a main component.

(Organic Auxiliary Agent Component)

Examples of the organic auxiliary agent component include the pore former, the binder and a dispersant. Although the inorganic micro balloons function as the pore former, another pore former may be used together with the inorganic micro balloons. Examples of the other pore former include graphite, foamed resin, flour, starch, phenol resin, polymethyl methacrylate, polyethylene and polyethylene terephthalate.

Examples of the binder include hydroxypropyl methylcellulose, methylcellulose, hydroxyethyl cellulose, carboxyl methylcellulose and polyvinyl alcohol. Examples of the dispersant include ethylene glycol, dextrin, fatty acid soap and polyalcohol.

(Dispersion Medium)

Examples of the dispersion medium in which the above-described components are dispersed include water and wax. Above all, water is preferable because a volume change is small during drying, little gas is generated, and the water is thus easy to handle.

A blend ratio of the components, for example, with respect to 100 parts by mass of the inorganic raw material, can be set to 0 to 50 parts by mass of pore former and 10 to 40 parts by mass of dispersion medium (e.g., water), and, if necessary, 3 to 5 parts by mass of binder or 0.5 to 2 parts by pass of dispersant.

Examples of a device for mixing and kneading these components include a combination of a kneader and an extruder and a continuous kneading extruder. As a method of molding the material into a predetermined shape, it is possible to perform an extrusion molding method, an injection molding method, a press molding method, a method of forming through holes after molding a ceramic material into a columnar shape or the like. Above all, it is preferable to perform the extrusion molding method in that continuous molding is easy.

Subsequently, it is preferable to dry the resultant molded article. The molded article can be dried by hot-air drying, microwave drying, dielectric drying, reduced-pressure drying, vacuum drying, freeze drying or the like. Above all, it is preferable to perform a drying step in which the hot-air drying is combined with the microwave drying or the dielectric drying in that the whole article can quickly and uniformly be dried.

Subsequently, the dried molded article is fired. Examples of a firing method include a method in which the article is fired using a device such as an electric furnace on conditions that the maximum firing temperature is 1500 to 1700° C., a time for retaining the maximum firing temperature is 0.5 to 10 hours, and a firing atmosphere is the atmosphere or the like.

For example, to obtain the honeycomb structure for use in a catalyst carrier for treatment of an exhaust gas, a diesel particulate filter or the like, as shown in FIGS. 1A and 1B, there is molded a molded article in which cells 3 extending from an end face 4 to an end face 5 in an axial direction are formed by partition walls 2, and this article is dried and then fired. In a case where a honeycomb structure 1 is used in a filter such as the diesel particulate filter, openings of predetermined cells 3a and 3b are plugged in either of the end faces 4 and 5. A plugging step can be performed by: adding the dispersion medium, the binder or the like to a predetermined material such as an aluminum titanate powder to obtain a slurry state; disposing this material so as to close predetermined cell openings; and drying and/or firing the material. In the plugging step, the end face of each predetermined cell is plugged so as to form a checkered pattern. The step is preferably performed so that end portions of adjacent cells are alternately plugged on each side. The plugging step may be performed in any stage after a molding step. If the plugging requires firing, the plugging is preferably performed prior to a firing step, because the firing may be performed once.

EXAMPLES

The present invention will be described hereinafter in more detail in accordance with examples, but the present invention is not limited to these examples.

Example 1

As an aluminum source, alumina (Al2O3) particles having an average particle diameter of 15 μm were used. As a titanium source, titania (TiO2) particles having an average particle diameter of 4 μm were used. As inorganic micro balloons, there were used fly ash balloons having a chemical composition shown in Table 1, an average particle diameter of 58 μm and a melting point of 1600° C. With respect to the total of the alumina particles, the titania particles and the fly ash balloons, 20 mass % of fly ash balloons were blended. The alumina particles and the titania particles were blended so that the amounts of an aluminum component, a titanium component and a silicon component in the resultant porous body were about 65 mass %, about 21 mass % and about 13 mass % in terms of Al2O3, TiO2 and SiO2, respectively. Furthermore, with respect to 100 parts by mass of the alumina particles, the titania particles and the fly ash balloons in total, 2 parts by mass of methyl cellulose, 2 parts by mass of hydroxypropoxyl methylcellulose, 0.5 part by mass of fatty acid soap as a surfactant and an appropriate amount of water were added, mixed and kneaded to obtain clay. This clay was extruded and molded into a honeycomb structure, and moisture was removed by dielectric drying and hot-air drying. Thereafter, the resultant article was fired in the atmosphere on conditions that the maximum temperature was 1500° C. and a time for retaining the maximum temperature was eight hours, thereby obtaining a porous body having the honeycomb structure.

Examples 2 to 12

Porous body were obtained in the same manner as in Example 1 except that inorganic micro balloons shown in Table 1 were used by amounts shown in Table 1, and alumina particles and titania particles were blended so that amounts of an aluminum component, a titanium component and a silicon component in the resultant porous body indicated ratios shown in Table 1 in terms of Al2O3, TiO2 and SiO2, respectively.

Comparative Example 1

A porous body was obtained in the same manner as in Example 1 except that instead of inorganic micro balloons, quartz (SiO2) particles having an average particle diameter of 5 μm, alumina (Al2O3) particles having an average particle diameter of 15 μm, titania (TiO2) particles having an average particle diameter of 4 μm and a reagent as another oxide were used and blended so as to obtain the same composition as that of the inorganic micro balloons of Example 1 as shown in Table 1, and alumina particles and titania particles were blended so that amounts of an aluminum component, a titanium component and a silicon component in the resultant porous body indicated ratios shown in Table 1 in terms of Al2O3, TiO2 and SiO2, respectively.

Open Porosity:

Using the Archimedes process by immersion in water, an in-water weight (M2g), a saturated water weight (M3g) and a dry weight (M1g) were measured by a method in conformity to JIS R1634, and the open porosity was calculated by the following equation:
Open porosity (%)=100×(M3−M1)/(M3−M2)
Median Pore Diameter:

The median pore diameter was measured using a mercury porosimeter (Pore Master-60-GT manufactured by QUANTACHROME Co.) by mercury porosimetry.

A-Axis Direction Thermal Expansion Coefficient:

The thermal expansion coefficient was measured using a sample cut out of a honeycomb structure, assuming that an A-axis direction was a measurement direction, and using quartz as a standard sample by a differential measurement method.

In the present invention, the “A-axis direction” means a direction parallel to a channel of the honeycomb structure as defined in JASO M505-87 (Method of Testing Ceramic Monolith Carrier for Automobile Exhaust Gas Purification Catalyst). A “B-axis direction” means a direction vertical to the A-axis direction and a partition wall surface.

TABLE 1 Inorganic micro balloons Properties K2O + Particle SiO2 Al2O3 Fe2O3 TiO2 CaO MgO K2O Na2O Na2O diameter Mass % Mass % Mass % Mass % Mass % Mass % Mass % Mass % Mass % μm Example 1 63 34 0.4 1.3 0.1 0.2 0.4 0.1 0.5 58 Example 2 56 36 2 1.1 1.5 0.4 0.9 0.5 1.4 48 Example 3 65 27 2.1 0.7 0.4 0.8 2.1 0.7 2.8 78 Example 4 55 37 1.7 1 0.8 0.5 1.5 0.4 1.9 96 Example 5 54 32 3.7 0.8 0.4 1.5 4.6 1.1 5.7 58 Example 6 76 13 1.9 2.4 0.5 1.6 2.9 4.5 20 Example 7 74 13 1.4 0.8 0.2 4.5 2.8 7.2 25 Example 8 63 34 0.4 1.3 0.1 0.2 0.4 0.1 0.5 58 Example 9 63 34 0.4 1.3 0.1 0.2 0.4 0.1 0.5 58 Example 10 63 34 0.4 1.3 0.1 0.2 0.4 0.1 0.5 58 Example 11 62 35 0.3 1 0.1 0.2 0.3 0.1 0.4 63 Example 12 54 22 3.7 0.8 0.4 1.5 5.1 3.1 8.2 55 Comparative Example 1 Inorganic micro Aluminum titanate and mullite based balloons porous body Properties A-axis direction Median Melting Added Chemical composition Open thermal expansion pore point amount Al2O3 TiO2 SiO2 porosity coefficient diameter ° C. Mass % Mass % Mass % Mass % [%] [ppm/K] [μm] Example 1 1600 20 65 21 13 55 1 16 Example 2 1400 20 65 22 10 54 1.3 17 Example 3 1300 20 64 21 13 53 1.2 28 Example 4 1400 20 63 24 11 51 1.2 18 Example 5 1200 20 62 24 11 47 1.1 24 Example 6 1100 20 64 18 15 48 1.2 23 Example 7 1100 20 64 18 15 48 1.5 22 Example 8 1600 15 64 26 10 48 1.4 18 Example 9 1600 33 68 10 21 58 1.5 21 Example 10 1600 35 69 8 22 59 2 14 Example 11 1600 20 66 21 12 59 1 12 Example 12 1000 20 64 23 10 45 2 9 Comparative 0 65 21 13 41 1 11 Example 1

It has been confirmed from Table 1 that the porous bodies obtained in Examples 1 to 12 have large open porosities as compared with the porous body obtained in Comparative Example 1. In the porous body obtained in Example 12 using the inorganic micro balloons containing 8.2 mass % of K2O and Na2O in total, the open porosity and the median pore diameter are small as compared with the other examples in which the total content of K2O and Na2O is 6 mass % or less, but the open porosity is large as compared with the comparative example. In the porous body obtained in Example 11 using the inorganic micro balloons containing 0.4 mass % of K2O and Na2O in total, the average pore diameter is small as compared with the porous bodies obtained in the other examples in which the total content of K2O and Na2O is 0.5 mass % or more. In the porous body obtained in Example 10 in which the added amount of the inorganic micro balloons is 35 mass %, the thermal expansion coefficient is large as compared with the other examples.

A method of manufacturing a porous body of the present invention is capable of manufacturing the porous body having a high open porosity and a small thermal expansion coefficient, and the method is preferably usable in manufacturing a filter such as a diesel particulate filter or a catalyst carrier.

Claims

1. A method of manufacturing a porous body, comprising: firing a raw material including an aluminum source and a titanium source to obtain the porous body containing aluminum titanate as a main component,

wherein the raw material further includes inorganic micro balloons containing an aluminum component and/or a silicon component.

2. The method of manufacturing the porous body according to claim 1, wherein the total content of the aluminum component and the silicon component in the inorganic micro balloons is 90 mass % or more in terms of Al2O3 and SiO2, respectively.

3. The method of manufacturing the porous body according to claim 2, wherein the inorganic micro balloons contain a sodium component and/or a potassium component, and the total content of the sodium component and the potassium component in the micro balloons is 0.5 mass % or more and 8.0 mass % or less in terms of Na2O and K2O, respectively.

4. The method of manufacturing the porous body according to claim 1, wherein a melting point of the micro balloons is 1100° C. or more.

5. The method of manufacturing the porous body according to claim 2, wherein a melting point of the micro balloons is 1100° C. or more.

6. The method of manufacturing the porous body according to claim 3, wherein a melting point of the micro balloons is 1100° C. or more.

Patent History
Publication number: 20070063397
Type: Application
Filed: Sep 7, 2006
Publication Date: Mar 22, 2007
Patent Grant number: 7691319
Applicant: NGK Insulators, Ltd. (Nagoya-city)
Inventor: Katsuhiro Inoue (Awa-gun)
Application Number: 11/516,560
Classifications
Current U.S. Class: 264/628.000; 264/681.000; 264/630.000
International Classification: C04B 33/32 (20060101); C04B 35/64 (20060101); B28B 1/00 (20060101);