Cooling device
A cooling device comprises a fan, a heat exchanger and an aerosol, whereby water will be nebulized and then ejected by the fan onto the heat exchanger, so that the water drops produced can be easily boiled or vaporized and absorb heat efficiently. This mechanism will save water and electricity significantly and at the same time reduce the temperature of the heat exchanger, therefore enhancing the cooling efficiency of the device. Further, if either the water quality or the air quality of the environment is bad, a pre-treatment of the water to be used by the aerosol is needed so as to prolong the life of the device.
The present invention relates to cooling devices, and more particularly to a cooling device with an aerosol capable of nebulizing water, and the nebulized water drops will be ejected outward by a fan and fall on a heat exchanger, whereby they may get boiled or vaporized and absorb heat efficiently, and whereby large amounts of electricity and water will be saved. Further, since the temperature of the heat exchanger is low, the cooling effect of an air conditioner or a cooler for a heat generating device can be enhanced. Further, if either the water quality or the air quality of the environment is bad, a pre-treatment of the water to be used by the aerosol is needed so as to prolong the life of the device.
BACKGROUND OF THE INVENTIONThe tonnage of the conventional gas-cooling air conditioners and coolers is selected according to the area of a space to be cooled. However, the cooling efficiency of the conventional air conditioners and coolers is low, and therefore they cannot attain the goal of saving energy, leading to high electricity cost. It is an alternative that air conditioners and coolers may use a cooling water tower or a water aerosol for the desired cooling effect. This method is disadvantageous in significant consumption of water, which is a waste of water resource and may pollute the environment after being used for an extended period of time. It is another disadvantage that this type of water-cooling devices will inevitably produce condensed water, which needs extra treatment to prevent water leakage that may cause environmental pollution and waste of water.
On the other hand, conventional cooling devices for engines can be categorized into two types. The first type utilizes a fan to send a wind to the unit to be cooled. However, the cooling effect is not good enough, especially when the air temperature is high. The second type utilizes a water cooling tower to spray water drops, which is more efficient but wastes a large mount of water. Moreover, the second type may pollute the environment for a long time of usage. Finally, it is very significant to invent a cooling device that is energy-economical, given that the energy price has been growing recently.
SUMMARY OF THE INVENTIONAccordingly, the primary objective of the present invention is to provide a cooling device of high cooling efficiency that solves the above-mentioned disadvantages.
The present invention mainly comprises a fan, a heat exchanger and an aerosol, whereby the forced convection of the air driven by the fan will blow the heat exchanger, so that the water drops produced can be easily boiled or vaporized and absorb heat efficiently. This mechanism will save water and electricity significantly and at the same time reduce the temperature of the heat exchanger, therefore enhancing the cooling efficiency of the device. Further, if either the water quality or the air quality of the environment is bad, a pre-treatment of the water to be used by the aerosol may be needed so as to lengthen the life of the device.
BRIEF DESCRIPTION OF THE DRAWINGS
The various objects and advantages of the present invention will be more readily understood from the following detailed description when read in conjunction with the appended drawings.
Referring a according to the present invention comprises a fan 1, an aerosol 2 and a heat exchanger 3, whereby the heat generated by a compressor or an engine will be transferred to the heat exchanger 3 by a coolant, such as water, and raise the temperature of the exchanger 3. The aerosol 2 will nebulize water into fine droplets and be blown away by forced convection of the air produced by the fan and then ejected onto the heat exchanger 3. The water droplets can be easily boiled or vaporized and absorb heat efficiently. Meanwhile, this mechanism will reduce the temperature of the heat exchanger, therefore enhancing the cooling efficiency of the device. The capacity of an air conditioner or a cooler installed with the device is therefore enhanced. Further, the problem of water leakage can be solved.
Three types of aerosols suitable for the invention will be illustrated as follows.
Referring to FIGS. 1 to 7, the first type of aerosols has the aerosol including at least one set of sprinkle-nozzle and pressurizing unit. The pressurizing unit is powered by a pump for transporting pressurized water. The water flows through the sprinkle-nozzle of the pressurizing unit and is ejected onto the fan and then is blown away in the down-stream, up-stream or lateral direction as nebulized droplets, which is then blown onto the heat exchanger, whereby the water droplets can easily boil or vaporize and absorb heat efficiently.
Referring to
Referring to
Further, the water collected in a water collector can be reused and ejected toward the fan, whereby the water will be cut and get mixed up with the air by the fan blades to form nebulized water droplets, which will be in turn blown onto the heat exchanger by the forced convention induced by the fan. Thereby, the water droplets can be easily boiled or vaporized and absorb heat efficiently.
The above-mentioned types of aerosols will be described in details with the figures.
Referring to
Referring to
Further, referring to
Referring to
Referring to
Referring to
The water source for the aerosol can be selected from regularly processed water, purified cooling water and purified deiced water by a water treatment means. The mixture of the above mentioned types of water can also be used.
When the water quality or the air quality is low, the cooling water used by the aerosol can be added with chemicals or go through a water treatment means, such as magnetic, nano-particle or quantum methods, whereby the water can be purified. This will lengthen the durability of the heat exchanger 3.
The aerosol may be further equipped with a control unit to activate the aerosol in accordance with the setting of the cooling temperature, so as to enhance the efficiency of the aerosol.
The above mentioned twisted tube can be installed vertically or horizontally into the heat exchanger. The outer surface of the twisted tube can have fins, added or intrinsically formed, or a screw thread for better heat exchange. The twisted tube can be made of materials of high thermal conductivity.
The aluminum fins attached onto the copper tube can be treated by surface treatment means for lengthening their durability.
The present invention is thus described, and it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Claims
1. A cooling device, comprising:
- a fan;
- a heat exchanger; and
- an aerosol for nebulizing cooling water which is then ejected onto said heat exchanger by said fan, whereby water droplets of said water is easily boiled or vaporized and absorb heat efficiently, and whereby the temperature of said heat exchanger is reduced and the cooling efficiency is enhanced.
2. The cooling device of claim 1 wherein said aerosol includes at least a pair of sprinkle-nozzle and a pressurizing unit selected from a device power by a pump, a pressurized water tank and a regular water tank disposed higher than said sprinkle-nozzle, whereby said water will get nebulized when passing through said sprinkle-nozzle.
3. The cooling device of claim 1 wherein said aerosol uses a pressure produced by fast rotation of a set of blades of said fan, whereby said water will be chopped into fine drops and mixed up with the air as induced by a wind convection by said fan.
4. The cooling device of claim 1 further including a water collector for collecting condensed water, said aerosol draining water from said water collector and then ejecting said water onto a plurality of blades of said fan, said fan being rotating fast to chop into fine drops and mixed up with the air as induced by a wind convection by said fan.
5. The cooling device of claim 1 wherein said aerosol further includes a water collector for containing water in which a portion of a blade set of said fan is immersed into a pool of collected water, whereby fast rotation of said blade set will chop said collected water into fine drops that will be blown away by a convection induced by said fan to mix with the air and achieve nebulization of said water.
6. The cooling device of claim 1 wherein said fan is selected from an internal fan of said cooling device and an external fan.
7. The cooling device of claim 1 wherein said water is selected from tap water, condensed water, deiced water and water purified by either of adding chemicals, a magnetic treatment, a nano-particle treatment and a quantum treatment, said water capable of being a mixture of at least two of the above-mentioned water types.
8. The cooling device of claim 2 wherein said water is selected from tap water, condensed water, deiced water and water purified by either of adding chemicals, a magnetic treatment, a nano-particle treatment and a quantum treatment, said water capable of being a mixture of at least two of the above-mentioned types of water.
9. The cooling device of claim 3 wherein said water is selected from tap water, condensed water, deiced water and water purified by either of adding chemicals, a magnetic treatment, a nano-particle treatment and a quantum treatment, said water capable of being a mixture of at least two of the above-mentioned types of water.
10. The cooling device of claim 4 wherein said water is selected from tap water, condensed water, deiced water and water purified by either of adding chemicals, a magnetic treatment, a nano-particle treatment and a quantum treatment, said water capable of being a mixture of at least two of the above-mentioned types of water.
11. The cooling device of claim 5 wherein said water is selected from tap water, condensed water, deiced water and water purified by either of adding chemicals, a magnetic treatment, a nano-particle treatment and a quantum treatment, said water capable of being a mixture of at least two of the above-mentioned types of water.
12. The cooling device of claim 1 wherein the location of said aerosol is selected from inside said cooling device and outside said cooling device, said water being ejected inwardly into said cooling device, nebulized and blown onto said heat exchanger by said fan.
13. The cooling device of claim 1 wherein said aerosol ejects water in a direction selected from a wind direction, a counter-wind direction and a lateral direction with respect to said fan.
14. The cooling device of claim 1 wherein said water collector includes a sloppy bottom surface with a cleansing outlet at the lowest point thereon.
15. The cooling device of claim 1 wherein said water used by said aerosol is purified by a means selected from the addition of chemicals, a magnetic treatment, a nano-particle treatment and a quantum treatment, whereby said water will be so purified as to lengthen the durability of said heat exchanger.
16. The cooling device of claim 1 wherein said aerosol further includes a control unit which is activated in accordance with a predetermined cooling temperature, so as to enhance the efficiency of said aerosol.
17. The cooling device of claim 1 wherein said twisted tube is selected from a copper tube with fins, a copper tube squeezed to be screw threaded, a cooper tube with surface-treated aluminum fins, and a copper tube with punch-formed fins.
18. The cooling device of claim 1 wherein said twisted tube of said heat exchanger is placed in a configuration selected from a vertical configuration and a horizontal configuration.
19. The cooling device of claim 1 capable of being applied to air conditioners, heat generating units of coolers.
Type: Application
Filed: Nov 9, 2005
Publication Date: May 10, 2007
Inventor: An Hsu (Taipei)
Application Number: 11/269,048
International Classification: F28D 5/00 (20060101);