Electronic circuit device and method of manufacturing the same
An electronic component having connection terminals on one side thereof is bonded to a circuit board via an adhesive sheet having through-holes. The connection terminals on the electronic component are connected to electrode pads provided on the circuit board via a conductive adhesive in the through-holes. Thus, an electronic circuit device is formed. Using a polymeric resin film sheet for the circuit board and mounting an electronic component, e.g. an LSI, onto the circuit board can provide a small, light, thin, and inexpensive electronic circuit device.
The present invention relates to an electronic circuit device using a polymeric resin sheet as substrate material of a circuit board on which electronic components are mounted, and a method of manufacturing the electronic circuit device.
BACKGROUND OF THE INVENTION1. Field of the Invention
In recent years, there have been an increasing number of demands for reduction in size, weight, and thickness of electronic circuit devices incorporated into electronic equipment, such as a portable phone. For this purpose, a technique of mounting high-density thin electronic components, such as large scale integrated circuits (hereinafter referred to as LSIs), has been proposed.
2. Background art
For example, Japanese Patent Unexamined Publication No. 2000-340607 is disclosed.
A method of manufacturing the conventional electronic circuit device is described with reference to
First, as shown in
Next, as shown in
Next, as shown
However, in the conventional electronic circuit device, solder having a melting point of at least 200° C. is used as an electrically connecting material; thus, an inexpensive general-purpose polymeric resin sheet having a low heat-resistant temperature cannot be used as substrate material of a circuit board. Therefore, because expensive substrate material having a high heat-resistant temperature, e.g. epoxy resin including glass fiber or a ceramic plate, is used, there is a problem of an expensive electronic circuit device.
Further, there is another problem. When the adhesive sheet is heated to bond the LSI and circuit board, air may be mixed into the adhesive sheet, or melted solder may diffuse into adjacent bumps, thus decreasing insulation resistance. For this reason, it is difficult to manufacture highly reliable electronic circuit devices with high yields.
SUMMARY OF THE INVENTIONAn electronic circuit device of the present invention is structured so that an electronic component, having connection terminals provided on one side thereof, and a circuit board are bonded via an adhesive sheet having through-holes formed therethrough, and the connection terminals on the electronic component and electrode pads on the circuit board are connected by conductive adhesive provided in the through-holes.
A method of manufacturing the electronic circuit device of the present invention includes the following steps of:
A) bonding the adhesive sheet to the circuit board so that the through-holes formed through the adhesive sheet are aligned with corresponding electrode pads provided on a surface of the circuit board;
B) providing conductive adhesive in the through-holes; and
C) bonding the connection terminals provided on the one side of the electronic component to the electrode pads provided on the circuit board with the conductive adhesive in the through-holes, and bonding the electronic component to the adhesive sheet.
BRIEF DESCRIPTION OF THE DRAWINGS
An exemplary embodiment of the present invention is described hereinafter with reference to
Possible substrates for circuit board 11 include a heat-resistant substrate made of epoxy resin including glass fiber, or a ceramic plate, and a polymeric resin sheet including a film sheet made of polyethylene terephthalate (PET) resin, acrylnitrile-butadiene-styrene (ABS) resin, polycarbonate resin, or polyimide resin. Any material used for a general circuit board is applicable. Especially preferable is a polymeric resin sheet made of PET resin, ABS resin, polycarbonate resin, polyimide resin, or the like. Because such polymeric resin sheets find a wide variety of applications as general-purpose plastic, they are inexpensive. Additionally, because circuit board 11 can be formed to have a thickness ranging from approximately 50 to 400 μm, such polymeric resin sheets are effective in reducing a thickness of electronic circuit devices.
Applicable adhesive sheet 13 includes an adhesive sheet including thermosetting resin, e.g. epoxy resin or acrylic resin, and a generally well-known hot-melt sheet including thermoplastic resin. In this case, it is preferable that a thickness of adhesive sheet 13 ranges from 100 to 800 μm, in consideration of a thinner electronic circuit device and adhesive strength and connection resistance between circuit board 11 and electronic component 15.
Preferable conductive adhesive 17 is conductive paste in which conductive particles made of pulverized conductive material, e.g. gold (Au), silver (Ag), cupper (Cu), nickel (Ni), palladium (Pd), and Ag—Pd alloys, are dispersed in a binder. Especially, a binder including thermosetting resin, e.g. polyester resin, epoxy resin, acrylic resin, polyimide resin, or polyurethane resin, is preferable because it securely bonds electrode pads 12 on circuit board 11 to connection terminals 16 on electronic component 15.
Depending on material of circuit board 11 and a shape and material of electronic component 15, optimum combinations of adhesive sheet 13 and conductive adhesive 17 can be selected. Combinations of adhesive sheet 13 made of thermosetting resin and conductive adhesive 17 including thermosetting resin binder are preferable. Because these combinations are applicable even to circuit boards poor in heat resistance that are made of PET resin, ABS resin, or the like, circuit boards can be selected from a broader range. Most preferable among these is combinations in which thermosetting resin in adhesive sheet 13 starts curing at a lower temperature than does thermosetting resin binder in a conductive paste used as conductive adhesive 17. The combinations can prevent warp of adhesive sheet 13 when the thermosetting resin and the thermosetting resin binder are heated and cured.
As electronic component 15, general electronic components, such as chip components including LSIs, resistors, capacitors, and coils, can be used.
As shown in
As described above, forming bump 20 or 24 on at least one of electrode pad 12 on circuit board 11, and connection terminal 16 on electronic component 15, can reduce an amount of applied conductive adhesive 17. Further, if the amount of conductive adhesive 17 applied to through-hole 14 varies, a large contact area prevents variation in connection resistance.
In the embodiment of the present invention, connection terminals 16 on electronic component 15 do not necessarily protrude from the surface thereof. When connection terminals 16 are formed on electronic component 15 with the connection terminals recessed from a surface of the electronic component, the connection terminals can be connected to corresponding electrode pads 12 on circuit board 11 by forming bumps 20 on connection terminals 16.
Hereinafter, a description is provided of a method of manufacturing an electronic circuit device in accordance with the exemplary embodiment of the present invention.
First, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
This manufacturing method can provide an electronic circuit device in which electronic component 15 is mounted on circuit board 11 as shown in
As shown in this embodiment, because connection terminals 16 on electronic component 15 are connected to electrode pads 12 on circuit board 11 via conductive adhesive 17, and electronic component 15 is connected to circuit board 11 via adhesive sheet 13, a highly reliable connection is possible even with use of sheet-shaped circuit board 11.
The present invention is not limited to the above-described manufacturing method. An electronic circuit device can also be manufactured by providing conductive adhesive 17 in through-holes 14 through adhesive sheet 13, aligning the through-holes with corresponding electrode pads 12 on circuit board 11, and then bonding adhesive sheet 13 to circuit board 11.
EXAMPLEHereinafter, a detailed description is provided of an electronic circuit device using an LSI as electronic component 15, and a polymeric resin sheet as circuit board 11.
Materials used as circuit board 11, electronic component 15, and conductive adhesive 17 are described below.
Used as circuit board 11 is a 100-μm-thick polyethylene terephthalate (PET) film sheet having wiring patterns formed on both sides thereof. Used as electronic component 15 is an LSI that has semi-spherical bumps 20, each approximately 0.2 mm in diameter, formed on a surface of corresponding connection terminals 16. In this case, a pitch of arranged bumps 20 is approximately 0.4 mm. Used as adhesive sheet 13 is a 0.6-mm-thick thermosetting hot-melt sheet having a curing temperature of 80° C. (Macromelt 6301 made by the Henkel Japan Ltd.) Used as conductive adhesive 17 is Ag paste. As a binder of the Ag paste, thermosetting epoxy resin having a curing temperature of 110° C. is used.
The method of manufacturing the electronic circuit device is specifically described with reference to
Next, according to the method described as shown in
Next, as shown in
The above-described method can realize an electronic circuit device by using an inexpensive and flexible polymeric resin sheet, that enables production at low temperatures, as a circuit board. Further, an adhesive sheet having conductive adhesive in through-holes thereof advantageously realizes a highly reliable electronic circuit device that provides high adhesive strength and low connection resistance between the circuit board and electronic component.
Claims
1-7. (canceled)
8. A method of manufacturing an electronic circuit device, comprising:
- bonding an adhesive sheet to a circuit board so that a through-hole, through said adhesive sheet, is aligned with an electrode pad provided on a surface of said circuit board;
- providing a conductive adhesive in said through-hole; and
- bonding a connection terminal, provided on one side of an electronic component, to said electrode pad on said circuit board via said conductive adhesive in said through-hole, and bonding said electronic component to said adhesive sheet.
9. The method according to claim 8, wherein said adhesive sheet is one of a thermosetting resin sheet and a thermoplastic resin sheet.
10. The method according to claim 8, wherein said conductive adhesive consists essentially of conductive particles and a thermosetting resin binder, and said adhesive sheet includes a thermosetting resin, with said thermosetting resin being such that it begins to cure at a lower temperature than does said thermosetting resin binder.
Type: Application
Filed: Jan 30, 2007
Publication Date: Jun 7, 2007
Inventors: Norihito Tsukahara (Soraku-gun), Kazuhiro Nishikawa (Osaka)
Application Number: 11/699,433
International Classification: H01L 21/8242 (20060101);